
 Open access Proceedings Article DOI:10.1109/ICTAI.2014.116

On a Fuzzy Algebra for Querying Graph Databases — Source link

Olivier Pivert, Virginie Thion, Hélène Jaudoin, Grégory Smits

Institutions: University of Rennes

Published on: 10 Nov 2014 - International Conference on Tools with Artificial Intelligence

Topics: Fuzzy set operations, Graph algebra, Fuzzy classification, Graph database and Graph (abstract data type)

Related papers:

 Fuzzy Queries over NoSQL Graph Databases: Perspectives for Extending the Cypher Language

 Fuzzy database query languages and their relational completeness theorem

 Fuzzy database systems

A New Approach for Query Processing and Optimization Base on the Fuzzy Object Algebra and Equivalent
Transformation Rules

 Fuzzy Preference Queries to NoSQL Graph Databases

Share this paper:

View more about this paper here: https://typeset.io/papers/on-a-fuzzy-algebra-for-querying-graph-databases-
3l887shmib

https://typeset.io/
https://www.doi.org/10.1109/ICTAI.2014.116
https://typeset.io/papers/on-a-fuzzy-algebra-for-querying-graph-databases-3l887shmib
https://typeset.io/authors/olivier-pivert-1jeg0gqk2g
https://typeset.io/authors/virginie-thion-1wlof85w4j
https://typeset.io/authors/helene-jaudoin-38gj7tec18
https://typeset.io/authors/gregory-smits-4rpchp9w26
https://typeset.io/institutions/university-of-rennes-2sxbfr7v
https://typeset.io/conferences/international-conference-on-tools-with-artificial-3n1t3uf6
https://typeset.io/topics/fuzzy-set-operations-33su49gq
https://typeset.io/topics/graph-algebra-tnn0g6ne
https://typeset.io/topics/fuzzy-classification-h44dphfm
https://typeset.io/topics/graph-database-14g4q8ht
https://typeset.io/topics/graph-abstract-data-type-1ax3631y
https://typeset.io/papers/fuzzy-queries-over-nosql-graph-databases-perspectives-for-4uaga471w6
https://typeset.io/papers/fuzzy-database-query-languages-and-their-relational-86f80zsypu
https://typeset.io/papers/fuzzy-database-systems-v4areb7gwx
https://typeset.io/papers/a-new-approach-for-query-processing-and-optimization-base-on-1wgnumvjug
https://typeset.io/papers/fuzzy-preference-queries-to-nosql-graph-databases-4gk50tkui0
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/on-a-fuzzy-algebra-for-querying-graph-databases-3l887shmib
https://twitter.com/intent/tweet?text=On%20a%20Fuzzy%20Algebra%20for%20Querying%20Graph%20Databases&url=https://typeset.io/papers/on-a-fuzzy-algebra-for-querying-graph-databases-3l887shmib
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/on-a-fuzzy-algebra-for-querying-graph-databases-3l887shmib
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/on-a-fuzzy-algebra-for-querying-graph-databases-3l887shmib
https://typeset.io/papers/on-a-fuzzy-algebra-for-querying-graph-databases-3l887shmib

HAL Id: hal-01059991
https://hal.inria.fr/hal-01059991

Submitted on 8 Jul 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution| 4.0 International License

On a Fuzzy Algebra for Querying Graph Databases
Olivier Pivert, Virginie Thion, Hélène Jaudoin, Grégory Smits

To cite this version:
Olivier Pivert, Virginie Thion, Hélène Jaudoin, Grégory Smits. On a Fuzzy Algebra for Querying
Graph Databases. IEEE International Conference on Tools with Artificial Intelligence (ICTAI), Nov
2014, Limassol, Cyprus. pp.748-755, 10.1109/ICTAI.2014.116. hal-01059991

https://hal.inria.fr/hal-01059991
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

On a Fuzzy Algebra for Querying Graph Databases

Olivier Pivert, Virginie Thion, Hélène Jaudoin, Grégory Smits

IRISA – University of Rennes 1 – Lannion, France

pivert@enssat.fr, virginie.thion@irisa.fr, jaudoin@enssat.fr, gregory.smits@irisa.fr

Abstract—This paper proposes a notion of fuzzy graph
database and describes a fuzzy query algebra that makes it
possible to handle such database, which may be fuzzy or not,
in a flexible way. The algebra, based on fuzzy set theory and
the concept of a fuzzy graph, is composed of a set of operators
that can be used to express preference queries on fuzzy graph
databases. The preferences concern i) the content of the vertices
of the graph and ii) the structure of the graph. In a similar
way as relational algebra constitutes the basis of SQL, the fuzzy
algebra proposed here underlies a user-oriented query language
and an associated tool implementing this language that are also
presented in the paper.

Keywords-Graph Database, Query Algebra, Fuzzy theory

I. INTRODUCTION

Much work has been done about fuzzy querying of

relational databases, cf. for instance [1] or [2], which led

in particular to a fuzzy extension of the SQL language,

called SQLf [3]. However, even though relational databases

are still widely used, the need to handle complex data has

led to the emergence of other types of data models. In the

last few years, a new concept has started to attract a lot

of attention in the database world, namely that of graph

databases (see eg. [4], [5], [6], [7], [8], [9] and [10]), whose

basic purpose is to efficiently manage networks of entities

where each node is described by a set of characteristics (for

instance a set of attributes), and each edge represents a link

between entities. Such a database model has many potential

applications, e.g. for modeling social networks, RDF data,

cartographic databases, bibliographic databases, etc.

Graph databases raise new challenges in terms of flexible

querying since two aspects may be involved in the prefer-

ences that a user may express: i) the content of the nodes

and ii) the structure of the graph itself. Furthermore, graph

database management systems still lack query languages

with a clear syntax and semantics [11]. Our work tackles

these two problems as we aim to outline a fuzzy algebra

suited to querying graph databases in a flexible way, for

graph databases that may be fuzzy or not.

Our contributions are: (i) a formal definition of fuzzy

graph databases and a fuzzy algebra for querying fuzzy

or crisp graph databases and (ii) a language based on this

algebra with an associated prototype software.

The remainder of the paper is structured as follows.

Section II presents some background notions about graph

databases, fuzzy set theory and fuzzy graphs. Section III

describes the main elements that may be involved in a

fuzzy query addressed to a graph database. Section IV is

the heart of the paper: it proposes a definition of a fuzzy

graph database and presents the fuzzy query algebra. Then

Section V discusses of a concrete language based on the

algebra, and presents an tool implementing this language.

Related work is discussed in Section VI. Section VII recalls

the contributions and outlines perspectives for future work.

II. BACKGROUND NOTIONS

A. Graph databases

A graph database management system enables managing

data for which the structure of the schema is modeled as a

graph (nodes are entities and edges are relations between en-

tities), and data is handled through graph-oriented operations

and type constructors [12]. Among the existing systems, let

us mention AllegroGraph [13], InfiniteGraph [14], Neo4j

[15] and Sparksee [16]. There are different models for graph

databases (see [12] for an overview), including the attributed

graph (aka. property graph) aimed to model a network of

entities with embedded data. In this model, nodes and edges

may contain data in attributes (aka. properties).

B. Fuzzy sets and fuzzy graphs

Fuzzy set theory was introduced by Zadeh [17] for mod-

eling classes or sets whose boundaries are not clear-cut. For

such objects, the transition between full membership and full

mismatch is gradual rather than crisp. Typical examples of

such fuzzy classes are those described using adjectives of the

natural language, such as young, cheap, fast, etc. Formally,

a fuzzy set F on a referential U is characterized by a

membership function µF : U → [0, 1] where µF (u) denotes

the grade of membership of u in F . In particular, µF (u) = 1
reflects full membership of u in F , while µF (u) = 0
expresses absolute non-membership. When 0 < µF (u) < 1,

one speaks of partial membership. Two crisp sets are of

particular interest when defining a fuzzy set F : the core

C(F) = {u ∈ U |µF (u) = 1}, which gathers the prototypes

of F , and the support S(F) = {u ∈ U | µF (u) > 0}.

In practice, the membership function associated with F
is often of a trapezoidal shape. Then, F is expressed by

the quadruplet (A, B, a, b) where C(F) = [A, B] and

S(F) = [A− a, B + b], see Fig. 1.

The α-cut of a fuzzy set F , denoted by Fα, is an ordinary

set of elements whose satisfaction degree is at least equal to

α: Fα = {u ∈ U | µF (u) ≥ α}. Thus, C(F) and S(F) are

two particular α-cuts of F where α is respectively equal to

1 and 0+.

A− a A B B + b U
0

1 µF

Figure 1. Trapezoidal membership function

Let F and G be two fuzzy sets on the universe U ,

we say that F ⊆ G iff µF (u) ≤ µG(u), ∀u ∈ U .

The complement of F , denoted by F c, is defined by

µF c(u) = 1− µF (u). Furthermore, F ∩G (resp. F ∪G) is

defined the following way: µF∩G(u) = min(µF (u), µG(u))
(resp. µF∪G(u) = max(µF (u), µG(u))). As usual, the

logical counterparts of the theoretical set operators ∩, ∪
and complementation operator correspond respectively to the

conjunction ∧, disjunction ∨ and negation ¬. See [18] for

more details.

A graph is a pair (V, R), where V is a set and R is a

relation on V . The elements of V (resp. R) correspond to

the vertices (resp. edges) of the graph. Similarly, any fuzzy

relation ρ on a set V can be regarded as defining a weighted

graph, or fuzzy graph [19], [20], where the edge (x, y) ∈
V × V has weight or strength ρ(x, y) ∈ [0, 1]. This degree

may express the “intensity” of any kind of gradual relation

between two nodes.

Remark 1: The graph may be fuzzy from the start —

relation ρ is given — or be made fuzzy. It may also involve

a dynamical aspect. For instance, in a Twitter-like network,

ρ(x, y) may be defined as a function of the number of posts

by y that x has forwarded.

As noted in [21], the fuzzy relation ρ may be viewed as

a fuzzy subset on V × V , which allows us to use much of

the formalism of fuzzy sets. For example, we can say that

ρ1 ⊆ ρ2 if ∀(x, y), ρ1(x, y) ≤ ρ2(x, y). Some notable

properties that can be associated with fuzzy relations are re-

flexivity (ρ(x, x) = 1, ∀x), symmetry (ρ(x, y) = ρ(y, x)),
transitivity (ρ(x, z) ≥ maxy min(ρ(x, y), ρ(y, z))).

An important operation on fuzzy relations is composition.

Assume ρ1 and ρ2 are two fuzzy relations on V . Thus,

composition ρ = ρ1 ◦ ρ2 is also a fuzzy relation on V s. t.

ρ(x, z) = maxy min(ρ1(x, y), ρ2(y, z)). The composition

operation can be shown to be associative: (ρ1 ◦ ρ2) ◦ ρ3 =
ρ1 ◦(ρ2 ◦ρ3). The associativity property allows us to use the

notation ρk = ρ ◦ ρ ◦ . . . ◦ ρ for the composition of ρ with

itself k− 1 times. In addition, following [21], we define ρ0

to be s. t. ρ0(x, y) = 0, ∀(x, y).

If ρ is reflexive then ρk2 ⊇ ρk1 for k2 > k1. On the other

hand, if ρ is transitive, it can be shown that ρk2 ⊆ ρk1 if

k2 > k1. From this, we see that if ρ is reflexive and transitive

then ρk2 = ρk1 for all k1 and k2 6= 0.

Remark 2: Fuzzy graphs as defined above may be gener-

alized to the case where a fuzzy set of vertices is considered.

Then, denoting by F the fuzzy subset of V considered,

the corresponding fuzzy graph is defined as (V, F, ρF).
In this case, we let ρF be a relation on V defined as

ρF (x, y) = min(ρ(x, y), µF (x), µF (y)) where µF denotes

the membership function attached to F . In the following,

we only consider the simple case of a crisp set of vertices.

If ρ is symmetric, we shall say that (V, ρ) is an undirected

graph. Otherwise, we shall refer to (V, ρ) as a directed

graph.Without loss of generality, we consider directed graphs

in the following.

III. FUZZY PREFERENCES ON GRAPH DBS

In this section, we describe the main elements that may

appear in a fuzzy query addressed to a graph database. Two

types of preferences have to be considered: those on content

and those on structure.

1) Preferences on the node contents: The idea is to

express flexible conditions about the attributes associated

with nodes and/or vertices of the graph. An example is:

“find the people who are young, highly educated, and

live in Eastern Europe” (assuming that each node contains

information about the age, education level, address, etc., of

the person it corresponds to). Compound conditions may

also be expressed using a large range of fuzzy connectives.

We do not get into more detail as this aspect has been

thoroughly studied in a relational context [2].

2) Preferences on the graph structure : Hereafter, we

describe the concepts of fuzzy graph theory that appear the

most useful in a perspective of graph database querying. We

denote a fuzzy graph by G = (V, ρ).

Strength of a path. — A path p in G is a sequence x0 →
x1 → . . . → xn (n ≥ 0) s. t. ρ(xi−1, xi) > 0, 1 ≤ i ≤ n
and where n is the number of links in the path. The strength

of the path is defined as

ST (p) = min
i=1..n

ρ(xi−1, xi). (1)

In other words, the strength of a path is defined to be the

weight of the weakest edge of the path. Two nodes for which

there exists a path p with ST (p) > 0 between them are

called connected. We call p a cycle if n ≥ 2 and x0 = xn.

It is possible to show that ρk(x, y) is the strength of the

strongest path from x to y containing at most k links. Thus,

the strength of the strongest path joining any two vertices

x and y (using any number of links) may be denoted by

ρ∞(x, y). An algorithm to compute ρ∞ is given in [22].

Length and distance. — The length of a path p = x0 →
x1 → . . . → xn in the sense of ρ is a concept defined by

Rosenfeld [19] as follows:

Length(p) =
n∑

i=1

1

ρ(xi−1, xi)
. (2)

Clearly Length(p) ≥ n (it is equal to n if ρ is Boolean, i.e.,

if G is a nonfuzzy graph). We can then define the distance

between two nodes x and y in G as

δ(x, y) = min
all paths x to y

Length(p). (3)

It is the length of the shortest path from x to y. It can

be shown that δ is a metric [19], i.e., δ(x, x) = 0,

δ(x, y) = δ(y, x), and δ(x, z) ≤ δ(x, y) + δ(y, z).

α-cut of a relation. — It is defined as follows: ρα =
{(x, y) | ρ(x, y) ≥ α} where α ∈ [0+, 1]. Note that ρα

is a crisp relation.

3) Preference combination: Different types of aggrega-

tion may be considered for combining conditions about the

content or the structure of the graph: “flat” (min, max,

arithmetic mean, etc.), weighted (weighted mean, OWA,

quantified proposition, etc, see [23]), or hierarchical.

IV. FUZZY GRAPH DATABASES AND FUZZY ALGEBRA

In this section, we define an algebra suited to the flexible

handling of fuzzy or crisp graph databases. We first intro-

duce the data model, then the algebra.

A. Data model

In the following, we are interested in fuzzy graph

databases where nodes and edges can carry data (e.g. key-

value pairs in attributed graphs, see Section II-A). So, we

first propose an extension of the definition of a fuzzy graph

into that of a fuzzy data graph.

Definition 1 (Fuzzy data graph): Let E be a set of labels.

A fuzzy data graph G is a quadruple (V, R, κ, ζ), where V
is a finite set of nodes (each node n is identified by an id,

also denoted by n.id), R =
⋃

e∈E{ρe : V × V → [0, 1]}
is a set of labeled fuzzy edges between nodes of V , and κ
(resp. ζ) is a function assigning a data value, e.g. a set of

key-value pairs, to nodes (resp. edges) of G.

A fuzzy data graph may contain both fuzzy edges and

crisp edges as a fuzzy edge with a degree of 0 or 1 can

be considered as crisp. Along the same line, a crisp data

graph is simply a special case of fuzzy data graph (where

ρe : V ×V → {0, 1} for all e ∈ E). We then only deal with

fuzzy edges and data graph in the following.

In the following, a graph database is meant to be a fuzzy

data graph. The following example illustrates this notion.

Example 1: Fig. 2 is an example of fuzzy data graph

inspired of data stemming from DBLP1, with some fuzzy

edges (with a corresponding degree in brackets), and crisp

ones (equivalent to a corresponding degree of 1). In this

1http://www.informatik.uni-trier.de/∼ley/db/

example, the degree associated with A -contributor-> B

is the proportion of journal papers co-written by A and B,

over the total number of journal papers written by B. In this

example, the degree is based on a simple statistical notion,

which can be made subtler by fuzzy operations or by the

integration of expert knowledge. ⋄

WWW

Pods

WWW12

Pods13

{where: NY, USA,

when: June, 2013}

Tods

WWW_ASV12

{title: The ...,

year: 2012,

issue: 2}

Pods_AV13

{year: 2013, ...}

Pods_B13

{year: 2013, ...}

Tods_S81

Pierre

Serge

Victor

Pablo

Michel

SophieYael

series

series

part of

part of

part of

journal

creator

creator

creator

creator

creator

creator

creator

contributor
(0.3)

contributor
(0.04)

contributor
(0.25) contributor

(0.25)

contributor
(0.01)

contributor
(0.06)

contributor
(0.58)

contributor
(1)

Figure 2. A fuzzy data graph DB inspired of an excerpt of DBLP data

Nodes are assumed to be typed, as many existing systems

offer this facility. If n is a node of V , then Type(n) denotes

its type. In DB (Fig 2), the nodes WWW12 and Pods13 are of

type Conference, the nodes Pods_AV13, Pods_B13, Tods_S81,

and WWW_ASV12 are of type Article, the nodes Pods, Tods, and

WWW are of type Serie and the other nodes are of type Author.

B. Algebra

We now move to the definition of a graph algebra allowing

the definition of flexible queries, for handling fuzzy or crisp

graph databases. Along the lines of relational algebra, the

algebra could be the core of a practical language and serve

as a basis for describing and optimizing underlying query

execution plans. The algebra is partly inspired from graph

pattern queries of [24] and from the crisp algebra proposed

in [5]. The basic unit of information is the graph.

The first operator is the selection, which is based on the

concept of fuzzy graph pattern, an extension of the crisp

graph pattern notion defined in [24] shown to have good

properties for a practical implementation. We first introduce

the notion of a fuzzy regular expression subsequently used

for defining a fuzzy graph pattern.

Definition 2 (Fuzzy regular expression): A fuzzy regular

expression is an expression of the form

F ::= e |F ·F |F ∪ F |F ∗ |FCond

where

• e ∈ E ∪ { } denotes an edge labeled by e, with the

wildcard symbol denoting any label in E;

• F ·F denotes a concatenation of expressions;

• F ∪ F denotes alternative expressions;

• F ∗ denotes the classical repetition of an expression;

• FCond denotes paths p satisfying F and the condition

Cond where Cond is a boolean combination of atomic

formulas of the form: Prop IS Fterm where Prop is a

property defined on p and Fterm denotes a predefined

or user-defined fuzzy term like short (see Fig. 3,

which proposes a representation (membership function)

associated with the fuzzy term short).

In the following, we limit properties to {ST, Length} de-

noting resp. ST (p) (See Equation 1) and Length(p) (See

Equation 2). Examples of conditions of this form are

Length IS short and ST IS strong. Notice that Boolean

conditions of the form Property op a where Property is

a property on p, a is a constant and op is a comparison

operator (<,=, ...) are a special case of fuzzy conditions.

We use the following shortcut notations: giving a fuzzy

regular expression f , f+ is a shortcut for f ·f∗, fk is a

shortcut for f ·f · · · ·f with k occurrences of f and fn,m is

a shortcut for
⋃m

i=n f
i.

A fuzzy regular expression is said to be simple if it is of

the form e where e ∈ E ∪ { } meaning that it explicitly

denotes a single edge.

δ = 3 γ = 5
0

1

µshort

path length

Figure 3. Representation of the fuzzy term short

Remark 3: Even if one considers only crisp graphs, the

concepts presented above can still be used as arguments of

fuzzy conditions (for instance, short length) since these con-

cepts are still valid on classical graphs (when ρ(x) ∈ {0, 1}).

Definition 3 (Fuzzy regular expression matching): Given

a path p and a fuzzy regular expression exp, p matches exp
with a satisfaction degree of µexp(p) defined as follows,

according to the form of exp (in the following, f , f1 and

f2 are fuzzy regular expressions):

• If exp is of the form e with e ∈ E (resp. “ ”). If p

is of the form v1
e′

−→ v′1 where e′ = e (resp. where

e′ ∈ E) then µexp(p) = 1 else µexp(p) = 0.

• If exp is of the form f1·f2. Let P be the set of all

pairs of paths (p1, p2) s.t. p is of the form p1p2. One

has µexp(p) = maxP (min(µf1(p1), µf2(p2))).
• If exp is of the form f1 ∪ f2. One has µexp(p) =

max(µf1(p), µf2(p)).
• If exp is of the form f∗. If p is an empty path

then µexp(p) = 1. Otherwise, we denote by P the

set of all tuples of paths (p1, · · · , pn) (n > 0)
s.t. p is of the form p1· · ·pn. One has µexp(p) =
maxP (mini∈[1..n](µf (pi))).

• If exp is of the form fCond where Cond is a (pos-

sibly compound) fuzzy condition. One has µexp(p) =

min(µf (p), µCond(p)) where µCond(p) is the degree

of satisfaction of Cond by p.

Not matching is equivalent to matching with a satisfaction

degree of 0.

Example 2: The paths represented in Fig. 4 are some

paths from the graph database depicted in Fig. 2.

• Expression e1 = creator · contributor+ is a fuzzy

regular expression. All paths pi (i ∈ [1..4]) of Fig. 4

match e1 with a satisfaction degree of µe1(pi) = 1.

• Expression e2 = (creator · contributor+)ST>0.4 is

a fuzzy regular expression. Path p4 is the only one

of Fig. 4 that matches e2 (as strength ST (p1) = 0.3,

ST (p2) = 0.3, ST (p3) = 0.01 and ST (p4) = 0.58),

with µe2(p4) = 1.

• Expression e3 = creator ·
(contributor+)Length IS short, where short is

the fuzzy term of Fig. 3, is a fuzzy regular expression.

Paths p1, p2 and p4 of Fig. 4 match e3 with

µe3(p1) = 0.83 as µshort(1/0.3) = 0.83 (where

1/0.3 is the length of path from Serge to Pierre),

µe3(p2) = 0.67 as µshort(1/0.3 + 1) = 0.67 (where

1/0.67 is the length of the short path from Serge to

Yael) and µe3(p4) = 1 as µshort(1/0.58) = 1. Path p3
does not match e3 as µshort(1/0.01) = 0. ⋄

WWW_ASV12 Serge Pierre

creator contributor (0.3)

Pods_AV13 Serge Pierre Yael

creator contributor (0.3) contributor (1)

(p1) (p2)

Tods_S81 Michel Serge

creator contributor (0.01)

WWW_ASV12 Serge Sophie

creator contributor (0.58)

(p3) (p4)

Figure 4. Fuzzy regular expression matching

We then introduce the notion of a fuzzy graph pattern,

which is a directed crisp graph with conditions on nodes

and edges, types on nodes, and where edges are labeled by

fuzzy regular expressions that denote paths.

Definition 4 (Fuzzy graph pattern): Let F be a set of

fuzzy terms. A fuzzy graph pattern is defined as a sextuple

P = (VP , EP , f
path
e , f cond

n , f cond
e , f type

n) where

• VP is a finite set of nodes;

• EP ⊆ VP × VP is a finite set of edges where (u, u′)
denotes an edge from u to u′;

• fpath
e is a function defined on EP s. t. for each (u, u′)

in EP , fpath
e (u, u′) is a fuzzy regular expression;

• f cond
n is a function defined on VP s. t. for each node

u, f cond
n (u) is a condition on attributes of u, defined

as a combination of atomic formulas of the form

A IS Fterm where A denotes an attribute and Fterm

denotes a fuzzy term (like eg. year IS recent). Again,

Boolean predicates of the form A op a (where A is

an attribute, a is a constant and op is a comparison

operator, as in year > 2012) are a special case.

• f cond
e is the counterpart of f cond

n for edges. For each

(u, u′) in EP for which fpath
e (u, u′) is simple, f cond

e

is the condition on attributes of (u, u′); and

• f type
n is a function defined on VP s. t. for each node u,

f type
n (u) is the type of u.

In the following, we adopt a syntax à la CYPHER

for graph pattern representation. CYPHER [25] is an in-

tuitive query language inspired from ASCII-art for graph

representation, implemented in the Neo4j (crisp) graph

database management system [15]. A fuzzy graph pat-

tern expressed à la CYPHER consists of a set of ex-

pressions of the form (n1:Type1)-[exp]->(n2:Type2)

or (n1:Type1)-[e:label]->(n2:Type2) where n1, n2 are

node variables, e is an edge variable, label is a label of E,

exp is a fuzzy regular expression, and Type1 and Type2 are

node types. Such an expression denotes a path satisfying a

fuzzy regular expression (that is simple in the second form)

going from a node of type Type1 to a node of type Type2. All

its arguments are individually optional, so the merest form

of an expression is ()-[]->() denoting a path made of two

nodes connected by any edge. Conditions on attributes are

expressed on node and edges variables in a WHERE clause.

Example 3: We denote by P the following fuzzy graph

pattern:
1 (ar1:Article)-[part_of.series]->(s1),

2 (ar2:Article)-[part_of.series]->(s2),

3 (ar1)-[:creator]->(au1:Author),

4 (ar2)-[:creator]->(au1:Author),

5 (au1)-[(contributor+)|Length IS short]->(au2:Author)

6 WHERE

7 s1.id=WWW, s2.id=Pods,

8 ar2.year IS recent.

The graph of Fig. 5 is a graphical

Author

Author

Article Article

where year is re-

cent

id=WWW id=Pods

creator creator

part of part of

series series

”short” path of the
form (contributor+)

Figure 5. Pattern P

representation of pattern P where

the dashed edge denotes a path

and information in italics denotes

a node type or an additional con-

dition on node or edge attributes.

This pattern “models” informa-

tion concerning authors (au2) who

have, among their close contrib-

utors, an author (au1) who pub-

lished a paper (ar1) in WWW and also published a paper (ar2)

in Pods recently (ar2.year IS recent). ⋄

We now give the definition of fuzzy graph pattern matching.

Definition 5 (Fuzzy graph pattern matching): A (fuzzy)

data graph G = (V,R, κ, ζ) matches a fuzzy graph pattern

P = (VP , EP , f
path
e , f cond

n , f cond
e , f type

n) with a satisfaction

degree denoted by µP(G) if there exists a binary relation

S ⊆ VP × V representing an injective function from VP

to V s. t. (i) (mapping nodes) for each node u ∈ VP , there

exists a node v ∈ V s. t. (u, v) ∈ S; (ii) (mapping edges) for

each edge (u, u′) ∈ EP , there exist two nodes v and v′ of

V s. t. {(u, v), (u′, v′)} ⊆ S and there is a path p in G from

v to v′ s. t. p matches fpath
e (u, u′) (recall that in case of

Serge

Sophie

WWW_

ASV12

Pods_

AV13

WWW12 Pods13

WWW Pods

(g1)

creator creator

part of part of

series series

contributor
(0.58)

Serge

Victor

WWW_

ASV12

Pods_

AV13

WWW12 Pods13

WWW Pods

(g2)

creator creator

part of part of

series series

contributor
(0.25)

Serge

Pierre

Yael

WWW_

ASV12

Pods_

AV13

WWW12 Pods13

WWW Pods

(g3)

creator creator

part of part of

series series

contributor
(0.3)

contributor
(1)

Serge

Pierre

WWW_

ASV12

Pods_

AV13

WWW12 Pods13

WWW Pods

(g4)

creator creator

part of part of

series series

contributor
(0.3)

Victor

Serge

WWW_

ASV12

Pods_

AV13

WWW12 Pods13

WWW Pods

(g5)

creator creator

part of part of

series series

contributor
(0.25)

Figure 6. Subgraphs of DB matching P

matching, a satisfaction degree is associated, cf. Definition

3); (iii) (checking conditions on node attributes and type)

for each pair (u, v) ∈ S, κ(v) ⊢ f cond
n (u) (the semantics of

⊢ is clear from the context here) and f type
n (u) = Type(v)

and (iv) (checking conditions on edge attributes) the same

reasoning is trivially applied to conditions on attributes for

edges labeled with a simple fuzzy regular expression in EP ,

that is to say ζ(v, v′) ⊢ f cond
e (u, u′).

The value of µP(G) is the minimum of the satisfaction

degrees produced by the mappings and conditions from (ii),

(iii) and (iv). If there is no relation S satisfying the previous

conditions, then µP(G) = 0, i.e., G does not match P .

Example 4: Fig. 6 gives the set of subgraphs of DB
matching the pattern P of Example 3. au1 is necessarily

either Serge or Victor who are the only authors of DB
that wrote a paper at WWW and a recent paper in Pods. If

we suppose that µrecent(2013) = 0.75 and that p is the path

going from au1 to au2, then, as the satisfaction degree is

the minimum of satisfaction degrees induced by lines 5, we

have µP (g1) = 0.75 (as µshort(Length(p)) = µshort(1.72) = 1),

µP (g2) = 0.5 (as µshort(Length(p)) = µshort(4) = 0.5), µP (g3) =

0.33 (as µshort(Length(p)) = µshort(4.33) = 0.33), µP (g4) = 0.75

(as µshort(Length(p)) = µshort(3.33) = 0.83) and µP (g5) = 0.5

(as µshort(Length(p)) = µshort(4) = 0.5).

Let us now move to the definition of the fuzzy operators

and expressions of the algebra. Even if the graph database

contains a single graph, a query may return a set of graphs

as several subgraphs may match a pattern as shown in

Example 3. Graphs of a set do not necessarily have the

same structure. A satisfaction degree is associated with each

graph. A set of pairs 〈 graph , degree 〉 is nothing but a

fuzzy set of graphs. Hence, each operator of the algebra

takes one or more (depending on the arity of the operation)

fuzzy set(s) of graphs as an input and generates a fuzzy

set of graphs as an output. All of the operators of the

algebra operate in closed form. Applying an operation to

the whole initial database means applying the operation to

the singleton {〈DB , 1 〉}. Expressions of the algebra are

defined inductively as usual: (i) a (fuzzy) graph database

DB is an expression of the algebra, and (ii) if e1, · · · , en
are expressions and O is an operator of arity n then

O(e1, · · · , en) is an expression of the algebra.

Definition 6 (Selection operator): The selection operator

σ takes as an input a fuzzy graph pattern P and a fuzzy set

G of graphs. It returns a fuzzy set composed of all subgraphs

of G that match the fuzzy graph pattern.

σP(G) = {〈 s , min(d, µP(s)) 〉 |µP(s) > 0}

where s is a subgraph of g s. t. 〈 g , d 〉 ∈ G. In case of

duplicates (a same graph appearing with several satisfaction

degrees), the highest satisfaction degree is kept.⋄
Example 5: Fig. 6 is the answer of σP(DB) where P is

the pattern of Example 3 and DB is the database of Fig. 2.

Definition 7 (Alpha-cut operator): This operation per-

forms an α-cut on a fuzzy relation of a graph (cf. section

III-2). The alpha-cut operator Cut takes as input a fuzzy

set of graphs G, a label e ∈ E and a degree α ∈ [0+, 1]. It

produces a fuzzy set of graphs defined as follows:

Cute,α(G) = {〈 (V, R′, κ, ζ) , d 〉 | 〈 (V, R, κ, ζ) , d 〉 ∈ G}

where R′ = {ρl | ρl ∈ R and l 6= e} ∪ {ραe }.⋄
Note that the alpha-cut is seen here as an operation that

“updates” the ρe relation by performing an α-cut on it,

and so makes ρe crisp instead of fuzzy. It keeps the data

embedded in edges labeled by e.

Definition 8 (Projection operators): The projection oper-

ation “on edges”, Πedges, removes relations from a graph.

The projection operator Πedges takes as input a fuzzy set of

graphs G, a set of labels L ⊆ E. It returns a fuzzy set of

graphs defined as follows:

Πedges
L (G) = {〈 (V, R′, κ, ζ) , d 〉 | 〈 (V, R, κ, ζ) , d 〉 ∈ G}

where R′ = {ρe | ρe ∈ R and e ∈ L}.

The projection operation “on nodes”, Πnodes, removes

nodes from a graph. The projection operator Πnodes takes

as input a fuzzy set of graphs G, a set of node types T . It

produces a fuzzy set of graphs defined as follows:

Πnodes
T (G) = {〈 (V ′, R′, κ, ζ) , d 〉 | 〈 (V, R, κ, ζ) , d 〉 ∈ G}

where V ′ = {v | v ∈ V and Type(v) ∈ T } and R′ is the

restriction of R over V ′ × V ′.

For these operators, in case of duplicates (a same graph

appearing with several satisfaction degrees), the highest

satisfaction degree is kept.⋄
Definition 9 (Set operators): Union, intersection and dif-

ference are defined according to fuzzy set classical opera-

tions (see Section II-B for references).

The authors of [5] also define operators for combining,

merging crisp graphs and restructuring the answer obtained

by the query, that could complete the algebra, but this is left

for a future extension.

V. TOWARDS A FLEXIBLE QUERY LANGUAGE

The algebra constitutes the basis of a query language

called FUDGE implementing the selection operator, in which

fuzzy preferences appear. A FUDGE query is composed of:

1) a list of DEFINE clauses for fuzzy term declaration. If a

fuzzy term fterm corresponds to a trapezoidal function

of the general form of Fig. 1 with the four positions

(abscissa) A-a, A, B and B+b then the clause has the

form DEFINE fterm AS (A-a,A,B,B+b). If fterm is a

decreasing function like the term short of Fig. 3 then

the clause has the form DEFINEDESC fterm AS (γ,δ)

(there is the corresponding DEFINEASC clause for in-

creasing functions).

2) a MATCH clause of the form

MATCH pattern WHERE conditions where pattern

is a fuzzy graph motif and conditions is the set of

conditions attached to the pattern.

A FUDGE query example follows:
1 DEFINEDESC short AS (3,5)

2 DEFINEASC recent AS (2010,2014)

3 IN

4 MATCH

5 (ar1:Article)-[part_of.series]->(s1),

6 (ar2:Article)-[part_of.series]->(s2),

7 (ar1)-[:creator]->(au1:Author),

8 (ar2)-[:creator]->(au1:Author),

9 (au1)-[(contributor+)|Length IS short]->(au2:Author)

10 WHERE

11 s1.id=WWW AND s2.id=Pods AND ar2.year IS recent

In this example, the DEFINEDESC clause of line 1 defines the

fuzzy term short of Fig. 3, and the following clause defines

another fuzzy term recent. The pattern in the MATCH/WHERE

clause is the pattern of Example 3.

As a proof-of-concept of our approach, we developed

a software prototype for evaluating FUDGE queries. The

FUDGE prototype, downloadable at www-shaman.irisa.

fr/fudge-prototype, is based on the Neo4j system [15]

that implements the CYPHER (crisp) query language. We

extended then interactive Neo4j REPL Console Rabbithole

[26]. We decided to use a crisp graph database management

system for implementing the FUDGE query evaluator. This

allows not only to access all the functionalities offered by

the query language of the crisp engine, but also not to have

to implement a whole query evaluator engine.

Then two problems arise. The first problem is to model

a fuzzy graph database into a crisp graph database. This

can be done in the crisp property graphs model. In a crisp

property graph, a set of properties, where a property is a key-

value pair, can be bound to a node or an edge. Properties

usually denote embedded data and meta-data for nodes, and

properties of the relation for edges. A relation ρe(x, y) of a

Client (user)

FUDGE query

FUDGE Transcriptor

CYPHER query

Neo4j CYPHER query

evaluator engine

Neo4j answers

FUDGE Score Calculator

Complete answers

FUDGE add-on

Crisp querying

Figure 7. FUDGE query evaluation: prototype architecture

fuzzy graph database can be represented in a crisp property

graph by considering the label of the edge connecting nodes

x and y as being a pair (r, v) where v is the value of ρe(x, y).
Thus, the crisp property graph representation can simulate

the fuzzy one by attaching to each edge of the property

graph a supplementary property called fdegree carrying the

degree value of the relations (supposing that fdegree now

becomes a reserved keyword of the system). If needed, a

similar mechanism allows to turn crisp nodes into fuzzy

ones. The second problem is the evaluation of a FUDGE

query that we dealt with by translating FUDGE queries into

CYPHER crisp ones.

We implemented two modules: a module allowing the

transcription of a FUDGE query into a (crisp) CYPHER one,

which is then sent to the classical Neo4j query evaluation

engine, and another module allowing the calculation of the

satisfaction degree associated with each answer returned by

the engine. Fig. 7 illustrates this architecture. Fig. 8 presents

a screenshot of the software.

Figure 8. Screenshot of the FUDGE prototype

VI. RELATED WORK

As several models have been proposed to represent data

having an implicit or explicit graph structure (see [12]

for an overview of these models), literature includes a

variety of query languages for graphs. Authors of [12], [27]

and [11] propose complementary surveys of graph query

languages defined in the past 25 years, including languages

for querying graph-based object databases, semi-structured

data, social networks and semantic web data. Reference [11]

focuses on theoretical query languages for graph databases,

and emphasizes that graph database management systems

still lack query languages with a clear syntax and semantics.

Our work goes towards filling this gap.

Functionalities that should be offered by a language for

querying the topology of a crisp graph database are exhibited

in [28], [8], [7], [9], [29], [27]. We summarize these (non-

exclusive) functionalities hereafter, focusing on selection

statements of the DML part of the language. Given a graph

data G, Adjacency queries test node adjacency eg. check

whether two nodes are adjacent, list all neighbors of a node;

Given a vertex, Reachability queries search for topologically

related vertices in G, where vertices are reachable by a

fixed-length path, a regular simple path or a shortest path;

Pattern matching queries look for all subgraphs of G that are

isomorphic to a given graph pattern; Data queries specify

conditions on the data embedded in G. Our algebra for

fuzzy graph database expresses some flexible adjacency,

reachability (as a rooted path is a special case of graph

pattern), pattern matching and data queries on fuzzy and

crisp graph databases. As a satisfaction degree is attached

to each answer, rank-ordering them is straightforward.

Concerning flexible querying, [21] discusses different

types of fuzzy preference criteria that appear relevant in the

context of graph databases, without getting into the detail of

how to express them using a formal query language. There

are three main approaches allowing a flexible querying of

graph databases: (i) keyword-based query approaches that

completely ignore the data schema (see eg. [30]), which

lack expressiveness for most querying use cases [31] ; (ii)

approaches that, given a “crisp” query, propose approximate

answers, for instance by the implementation of a query

relaxation or a approximate matching mechanism (see eg.

[32], [33] or [31]); (iii) approaches allowing the user to in-

troduce flexibility when formulating the query. Our approach

belongs to this latter family for which many contributions

concern the flexible extension of XPath [34], [35], [36] for

querying semi-structured data (data trees). Such navigational

languages behave well for querying graph databases [37] but

no flexible extension was proposed in this specific case.

A work somewhat close to ours is [38] where authors

propose a flexible extension of SPARQL allowing to in-

troduce fuzzy terms and relations into the query language.

A proof-of-concept implementation is proposed. This work

only considers crisp graph databases, through.

VII. CONCLUSION

In this paper, we define a notion of fuzzy graph database

and a fuzzy algebra for querying fuzzy and crisp graph

databases in a flexible way. This algebra, based on fuzzy

set theory and the notion of a fuzzy graph, consists of a

data model and a family of operators that make it possible to

express preferences on i) the data embedded in the graph and

ii) the structure of the graph. We also introduce a language

based on the algebra, with a proof-of-concept implemen-

tation of this language. This language could be extended

with new features. Interesting ones based on ordering and

counting capabilities concern the distance, and indegree,

outdegree or centrality of nodes. The other operators of the

algebra could also be implemented.

REFERENCES

[1] D. Dubois and H. Prade, “Using fuzzy sets in database
systems: Why and how?” in Proc. of FQAS, 1996, pp. 89–
103.

[2] O. Pivert and P. Bosc, Fuzzy Preference Queries to Relational
Databases. London, UK: Imperial College Press, 2012.

[3] P. Bosc and O. Pivert, “SQLf: a relational database language
for fuzzy querying,” IEEE Trans. on Fuzzy Systems, vol. 3,
pp. 1–17, 1995.

[4] R. Giugno and D. Shasha, “Graphgrep: A fast and universal
method for querying graphs,” in ICPR (2), 2002, pp. 112–115.

[5] H. He and A. K. Singh, “Graphs-at-a-time: query language
and access methods for graph databases,” in Proc. of SIG-
MOD’08, 2008, pp. 405–418.

[6] D. Dominguez-Sal, P. Urbón-Bayes, A. Giménez-Vañó,
S. Gómez-Villamor, N. Martı́nez-Bazan, and J.-L. Larriba-
Pey, “Survey of Graph Database Performance on the HPC
Scalable Graph Analysis Benchmark,” in Proc. of WAIM’10
Workshops, 2010, pp. 37–48.

[7] C. Vicknair, M. Macias, Z. Zhao, X. Nan, Y. Chen, and
D. Wilkins, “A comparison of a graph database and a re-
lational database: a data provenance perspective,” in ACM
Southeast Regional Conf., 2010, p. 42.

[8] R. Angles, “A comparison of current graph database models,”
in Proc. of ICDE Workshops, 2012, pp. 171–177.

[9] M. Ciglan, A. Averbuch, and L. Hluchý, “Benchmarking
traversal operations over graph databases,” in Proc. of ICDE
Workshops (ICDEW), 2012, pp. 186–189.

[10] S. Batra and C. Tyagi, “Comparative analysis of relational
and graph databases,” Intl. Journal of Soft Computing and
Engineering, vol. 2, no. 2, 2012.

[11] P. Barceló Baeza, “Querying graph databases,” in Proc. of
PODS, 2013, pp. 175–188.

[12] R. Angles and C. Gutierrez, “Survey of graph database
models,” ACM Comput. Surv., vol. 40, no. 1, pp. 1–39, 2008.

[13] “AllegroGraph web site,” franz.com/agraph/allegrograph.

[14] “InfiniteGraph web site,” www.objectivity.com/infinitegraph.

[15] “Neo4j web site,” www.neo4j.org.

[16] “Sparksee web site,” sparsity-technologies.com.

[17] L.A. Zadeh, “Fuzzy sets,” Information and control, vol. 8,
no. 3, pp. 338–353, 1965.

[18] D. Dubois and H. Prade, Fundamentals of fuzzy sets, ser. The
Handbooks of Fuzzy Sets. Kluwer Academic, 2000, vol. 7.

[19] A. Rosenfeld, “Fuzzy graphs,” in Fuzzy Sets and their Ap-
plications to Cognitive and Decision Processes. Academic
Press, 1975, pp. 77–97.

[20] J. N. Mordeson and P. S. Nair, Fuzzy Graphs and Fuzzy
Hypergraphs, ser. Studies in Fuzziness and Soft Computing.
Springer, 2000, vol. 46.

[21] R. Yager, “Social network database querying based on com-
puting with words,” in Flexible Approaches in Data, Infor-
mation and Knowledge Management, ser. Studies in Compu-
tational Intelligence. Springer, 2013.

[22] P. Bhattacharya and F. Suraweera, “An algorithm to compute
the supremum of max-min powers and a property of fuzzy
graphs,” Pattern Recognition Letters, vol. 12, no. 7, pp. 413–
420, 1991.

[23] J. Fodor and R. Yager, “Fuzzy-set theoretic operators and
quantifiers,” in The Handbooks of Fuzzy Sets Series, vol. 1:
Fundamentals of Fuzzy Sets. Kluwer Academic Publishers,
2000, pp. 125–193.

[24] W. Fan, J. Li, S. Ma, N. Tang, and Y. Wu, “Adding regular ex-
pressions to graph reachability and pattern queries,” Frontiers
of Computer Science, vol. 6, no. 3, pp. 313–338, 2012.

[25] Neo Technology, “The Neo4j Manual v2.0.0,” 2013, part III.

[26] “RabbitHole,” neo4j.com/blog/rabbithole-the-neo4j-repl-console/.

[27] P. T. Wood, “Query languages for graph databases,” SIGMOD
Record, vol. 41, no. 1, pp. 50–60, 2012.

[28] R. Angles and C. Gutiérrez, “Querying RDF Data from a
Graph Database Perspective,” in Proc. of European Semantic
Web Conf. (ESWC), 2005, pp. 346–360.

[29] R. Angles, A. Prat-Pérez, D. Dominguez-Sal, and J.-L.
Larriba-Pey, “Benchmarking database systems for social net-
work applications,” in Proc. of the Intl. Workshop on Graph
Data Management Experiences and Systems, 2013.

[30] H. He, H. Wang, J. Yang, and P. S. Yu, “Blinks: Ranked
keyword searches on graphs,” in Proc. of SIGMOD, 2007,
pp. 305–316.

[31] F. Mandreoli, R. Martoglia, G. Villani, and W. Penzo, “Flex-
ible query answering on graph-modeled data,” in Proc. of
EDBT, 2009, pp. 216–227.

[32] Y. Kanza and Y. Sagiv, “Flexible queries over semistructured
data,” in Proc. of PODS, 2001, pp. 40–51.

[33] P. Buche, J. Dibie-Barthélemy, and G. Hignette, “Flexible
Querying of Fuzzy RDF Annotations Using Fuzzy Concep-
tual Graphs,” in Proc. of ICCS, 2008, pp. 133–146.

[34] E. Damiani, S. Marrara, and G. Pasi, “FuzzyXPath: Using
Fuzzy Logic an IR Features to Approximately Query XML
Documents,” in Foundations of Fuzzy Logic and Soft Com-
puting, ser. LNCS. Springer, 2007, pp. 199–208.

[35] A. Campi, E. Damiani, S. Guinea, S. Marrara, G. Pasi,
and P. Spoletini, “A Fuzzy Extension of the XPath Query
Language,” J. Intell. Inf. Syst., vol. 33, no. 3, pp. 285–305,
2009.

[36] J. M. Almendros-Jiménez, A. Luna, and G. Moreno, “A Flex-
ible XPath-based Query Language Implemented with Fuzzy
Logic Programming,” in Proc. of the RuleML. Springer-
Verlag, 2011, pp. 186–193.

[37] L. Libkin, W. Martens, and D. Vrgoč, “Querying Graph
Databases with XPath,” in Proc. of ICDT, 2013, pp. 129–
140.

[38] J. Cheng, Z. M. Ma, and L. Yan, “f-SPARQL: A flexible
extension of SPARQL,” in Proc. of DEXA, 2010, pp. 487–
494.

