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Abstract—In this paper we consider the capacity of a single user �����
MIMO wireless system in a Rayleigh or Ricean fading environment. It
is known that a certain central limit theorem exists which states (under
certain conditions) that the distribution of the standardized capacity is as-
ymptotically Gaussian as �	��

������
 and ��������� for some constant� . However we demonstrate the surprising accuracy of a Gaussian ap-
proximation to the capacity for virtually all values of � and � . In order to
investigate the accuracy of the Gaussian fit we derive the variance of the
capacity in the Rayleigh fading case.

I. I NTRODUCTION

Multiple Input Multiple Output (MIMO) systems have re-
cently been a subject of intense research activity [1–3] since
the fundamental information-theoretic work of Foschini [1] and
Telatar [2]. In this paper we consider the capacity of a single
user����� MIMO wireless system in a Rayleigh or Ricean fad-
ing environment. Throughout we will adhere to the notation,�
= no. of receive branches,� = no. of sources,�������! #"$�&%'�)(
and *+�,�.-0/1"��&%2�0( . In paricular we are interested in the capac-
ity distribution since several authors [1,3] use simulated capac-
ity outage curves in their analyses. The exact distribution of
the capacity in a Rayleigh fading environment can be found in
principle (ie., the exact characteristic function is derived in [4]).
However, the results are probably too complex to be of practi-
cal use. Now it is known that a certain central limit theorem
exists [5] which states that the distribution of the standardized
capacity is asymptotically Gaussian as�3�546%2�7�54 and�98)�:�<; for some constant; . The standardized capacity is
simply the capacity shifted and scaled to have zero mean and
unit variance. In other words if= is the capacity variable with
mean> and standard deviation? then the standardized capacity
is "@=3AB>#('8)? . The conditions required for this convergence are
discussed below but assuming iid fading on all�.CD� paths we
can use this result for both Rayleigh and Ricean fading chan-
nels. However to compute the Gaussian approximation we re-
quire the mean and variance of the capacity. For the Rayleigh
case Telatar [2] has derived an exact expression for the mean
and Rapajic and Popescu [6] computed the limiting value of
the mean in the above sense. Neither Telatar, nor Rapajic eval-
uate the variance of channel capacity and so this is done in the
Appendix. For the Ricean case no results are available and we
simply obtain simulated estimates of the mean and variance to
scope out the accuracy of the Gaussian approximation.

In this paper we show that:

1) the channel capacity in both types of fading can be accu-
rately modelled by a Gaussian distribution. For the Rayleigh
fading case the exact mean and variance of the capacity are
given for any numbers of transmit and receive antennas.

2) The variance of the channel capacity is not sensitive to the
number of antennas and is mainly influenced by theEGFIH . A
closed form formula for the variance is developed in the Ap-
pendix.

In summary, the Gaussian approximation to channel capacity
is a simple and powerful tool to enable engineering estimates
of system capacity, total throughput and capacity outage prob-
ability. The rest of the paper is laid out as below. In Section
II we review the relevant results in the literature. In Section III
we discuss central limit theorems for the capacity and provide
the methodology for the Gaussian approximation. In Section
IV results are given and in Section V some conclusions are
presented.

II. BACKGROUND

Consider a transmission system where each user transmits
simultaneously via� antennas and reception is via� antennas.
The total power of the complex transmitted signalJK"$�2( is con-
strained toL regardless of the number of antennas. The re-
ceived signalMN"��2( is given by:MO"��2(P�RQDJK"$�2(TS3UV"$�2( (1)

where Q is a "��WCX�2( complex channel gain matrix. For
Rayleigh fading, the entries inQ are Y[Z Y[Z \ , complex, zero mean
Gaussians with unit magnitude variance. For Ricean fading
the entries areY[Z Y[Z \ , complex Gaussians with a non-zero real
mean of > and the real and imaginary components have vari-
ance ?1] . To ensure the total power condition is satisfied we
have > ] S6^0? ] �`_ . In (1), Ua"��2( is a complex� dimensional
AWGN vector, with statistically independent components of
identical power?1]b at each of the� receive branches. We as-
sume?1]b ��_ without loss of generality. The relevant capacity
for such a channel is expressed as=��Rcedgf ] "�hNikjml n�oPSp"�Lq8)�2(rQDQ �2s (utwvyx)8)z+{ (2)

where| denotes transpose conjugate andn b denotes an*}Cq*
identity matrix.
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The calculation of the mean capacity involves rewriting the
expectation in terms of the eigenvalues~y�GZkZ�Z'~�� of � where

� � � QDQ � �����Q � Q ����� (3)

With this approach an exact calculation of the mean capacity
[2] yields :� =��P������ c!d9f�"2_aS3L}~�8m�2( �q�����&� ���1� ~ b �y���g���" � S�*:AW�D( � l � b ���� "@~�( s ] \K~

(4)

where� b ���� "��y( are generalised Laguerre polynomials of or-
der � .Note that Rapajic [6] derives a closed form expression for the
limiting value of the mean capacity as�)%2�P��4 and r/t is held
constant. This work, as well as Foschini’s [1] and Telatar’s [2],
shows that the mean capacity is extremely well approximated
by a linear function of� . Since the mean grows with� and
the variance stabilizes, see below, the coefficient of variation of
the capacity becomes extremely small as� grows.

III. M ETHODOLOGY

In [5] Girko gives a central limit theorem for the capacity
in (2) which requires that the elements ofQ are iid zero-mean
with finite moments up to order��S6  for some  ¢¡¤£ . This
is equally valid for both Rayleigh and Ricean fading and so we
simply require¥7"¦=�( and §}¨K�N"¦=�( to fit the Gaussian approx-
imation. For the Rayleigh case the mean was given exactly
by Telatar [2], see (8), and the limiting value by Rapajic and
Popescu [6]. The exact variance is derived in the Appendix
following Telatar’s approach and is given below:§}¨K�N"¦=�(a�R�©� ��5ª ] "¦~y(«v¬"¦~y(r\O~­A�� ® � � ��¯ � ��° "�Y#AX_±( � "e²�AX_±( �"$Y¬AX_aS�*:AW�D( � "e²�AX_aS�*:AW�D( �@³ C´ � �� ~ b �y� � �1� �¶µ b ���V·® ��� "@~�(2�¸µ b �y�¹·¯ ��� "¦~y( ª "@~�(2\K~�º ]

(5)

where ª "@~�(»�¼c!d9f�"r_¹S�L}~�8m�2(�%'�¸µ o ·® "$��( is a generalised La-
guerre polynomial andvT"@~�(a�,� �1� �� ® � � "$Y#AX_±( �"$YTA�_aS3*:A½�D( � ~ b �y� � ��� �¸µ b ���¹·® �1� "¦~y( ]

(6)

Hence the variance can be found by several single numerical
integrations via (5). Due to the complexity of (5) it would be
desirable to approximate the variance, perhaps by a limiting
approach such as in [2,6]. To date, no such result is available
although the case whereQ is a real Gaussian matrix has been
derived in [7]. For the Ricean case no results are available on
the mean or variance and we simply obtain simulated estimates
to scope out the accuracy of a Gaussian approximation.

IV. RESULTS

Figures 1-3 are for the case of Rayleigh fading and Figure
4 considers the Ricean case. Figure 1 shows the behaviour of
the capacity variance as the number of antennas and SNR vary
for the �.��� case. It appears that the variance stabilises as�
increases for any SNR value although this stabilisation occurs
more rapidly for small SNR. These experimental results sug-
gest that a limiting variance exists as�¾�¿4 . This is proven
for the case of real GaussianQ matrices in [7].
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Fig. 1. Variance of capacity vs antenna number for r=t

Gaussian approximations to the capacity distribution are
now investigated using analytic results for the mean and vari-
ance. Figures 2-3 show the accuracy of a Gaussian approxi-
mation to the reliability function or ccdf"¦L."¦=�(:¡ÁÀ � ( . The
Gaussian approximation does remarkably well over the whole
range of� and � values considering the CLT only offers conver-
gence in the limit. When�Â�,Ã the Gaussian approximation is
virtually indistinguishable from the simulated curve. However
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even the worst fits,�­�Ä�¶��_ in Figure 2 and"$�B��^N%'�q���O(
in Figure 3 are quite respectable. When the SNR is reduced the
fits are even better.
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Fig. 2. Comparison of simulated capacity with normal approximation for r=t

(SNR=15dB)

In Figure 4 we plot the reliability function for Ricean fading
and the Gaussian approximation. The parameters used areL¼�_mÃ0\KÅ and >�]»��^0?1]»�Ä_m89^ . As for the Rayleigh case the fit is
remarkably good over a whole range of antenna numbers.

V. CONCLUSIONS

We have derived the variance of the capacity of a MIMO sys-
tem in Rayleigh fading and hence have allowed an investigation
of the accuracy of a Gaussian approximation to capacity fore-
shadowed by various central limit theorems. It is interesting
that the capacity variance appears to converge to a limit inde-
pendent of absolute antenna numbers but dependent on the ratio�98)� . The Gaussian approximation itself is surprisingly good,
even in the worst cases (high SNR, low� ) giving satisfactory
results. For Ricean fading also the Gaussian approximation is
very good although impractical at this stage since the mean and
variance are unknown.

APPENDIX

In this Appendix a brief derivation of the variance of the ca-
pacity is given. We follow the derivation of the mean capac-
ity given by Telatar [2] and extend this approach to the vari-
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Fig. 3. Comparison of simulated capacity with normal approximation for

n=2m (SNR=15dB)

ance. Let~ � %[~ ] %kZ�ZkZ1%�~ � denote the eigenvalues of� from
(3). Then from (2) we have

=¼� �� ® � � "2_aS L}~ ®� (
The variance of= is given by§�¨K�O"@=�(a�6�
§}¨g�¸"�cedgf�"r_¹S3L}~�8m�2('(�S�½"��ÆA�_m(2=ÈÇmÉÈ"$c!d9fy"r_VS�L}~ � 8m�2(�%2c!d9f�"2_aS3L}~ ] 8m�2(2(

(7)

where ~ is a randomly selected eigenvalue and"¦~ � %�~ ] ( is
a pair of randomly selected (distinct) eigenvalues. Using the
notationª "¦~y(P�6Ê¦Ç±Ë�"2_aS3L}~�8m�2( we have§�¨K�N"¦=�(V�R�¢l ¥­"«Ì ] "@~�('(GA¢¥7"«Ìq"@~�('( ] s S�¢"$�ÆAX_±(kl ¥7"$Ìq"¦~��k(wÌq"¦~ ] ('(	A¢¥7"«Ìq"@~�('( ] s (8)

The main difficulty in (8) is the evaluation of¥7"$Ìq"¦~ � (wÌq"¦~ ] ('(
for which we need the joint density of~ � %�~ ] . Telatar [2] gives
the joint density of~���~ ] ZkZ�Z1%�~�� as
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Fig. 4. Comparison of simulated capacity with normal approximation for

Ricean case (SNR=15dB)

vy�y"@~y��~ ] ZkZkZ#%�~���(��Äl � � s ��� � ÍÏÎ Ð "rA�_m(@Ñ�Ò o µ Í ·�Ó Ñ�Ò o µ Ð · CÔ �® � �kÕ ÍgÖ "¦~ ® ( Õ Ð ® "¦~ ® ('~ b �y�® � ��� Ö (9)

where the sum is over all possible permutations× %2Ø ofÙ _9%[^N%kZ�ZkZ�%2�WÚg%¦v � �N"rÛÜ( denotes the sign of the permutation andÕ � "@~�( is given by

Õ � "¦~y(P� ´ " � AX_±( �" � AX_aS3*BA½�
( � º�ÝÞ � µ b �y�¹·� �1� "¦~y( (10)

where � µ b �y�¹·� ��� "¦~y( is a generalised Laguerre polynomial.
Since ~��m%�~ ] %kZkZ�Z1%�~�� are unordered we can obtain the joint
density of ~ � %[~ ] by integrating (9) over~�ß9%�~�àg%�ZkZkZ1%[~ � and
using the orthogonality relationship of Laguerre polynomials.
This approach gives the joint density of~y�)%�~ ] as

v¬"¦~ � %[~ ] (P�©l �¢"$��AX_±( s ��� �� ® � � � ¯má� ® "¦~ � ~ ] ( b �y� � � µ � Ý Ó#� Þ ·C "$YTA�_m( � "e²�A�_m( �"$Y#AX_aS3*:A½�D( � "e²�A�_aS3*BA½�D( �C3ây� µ b ���¹·® �1� "¦~��k( ] � µ b �y�¹·¯ ��� "¦~ ] ( ] A�¸µ b �y�¹·® �1� "¦~ � (r�¸µ b �y�¹·¯ ��� "¦~ � (2�¸µ b �y�¹·® �1� "¦~ ] (2�¸µ b �y�¹·¯ ��� "¦~ ] (±ã
(11)

With a little rearrangement (11) can be rewritten asvT"@~y�0%�~ ] (a� ���AX_ v¬"¦~��k($vT"¦~ ] (	A _�¢"$��A�_m(0ä "@~y�)%�~ ] ( ]
(12)

wherevT"@~�( is the density of an arbitrary eigenvalue given by
Telatar [2] asv¬"¦~y(P�,� �1� �� ® � � "$YTA�_m( �"�Y#AX_aS�*:A½�
( � ~ b ��� � ��� � µ b �y�¹·® �1� "¦~y( ]

and

ä "¦~ � %�~ ] (P� �� ® � � "$YTA�_m( �"�Y#A,_PS�*
A½�
( � "@~ � ~ ] ( µ b �y�¹·�å ]C � � µ � Ý ÓT� Þ ·�å ] � µ b ���V·® ��� "@~y��(r� µ b ���V·® ��� "@~ ] (
Now we can turn to the calculation of¥7"$Ìq"¦~��k(wÌq"¦~ ] ('( since�½"��ÆAX_±(r¥­"«Ìq"¦~���(æÌq"¦~ ] (2( is given by� ] ¥7"$Ìq"¦~y(2( ] A3���� ���� ä "¦~��m%[~ ] ( ] Ìq"¦~��k(wÌq"¦~ ] (2\K~���\O~ ]

(13)

Substituting (13) in (8) gives§}¨K�N"¦=�(P�6� � �� Ì ] "@~�($vT"¦~y(r\O~C � �� � �� ä "@~ � %�~ ] ( ] Ìq"@~ � (æÌq"@~ ] (r\O~ � \O~ ] (14)

The integrals in (14) appear to be intractable in closed form.
The double integral can also be evaluated numerically or we
can take the summations inä "@~ � %�~ ] (2] outside the integrals to
give
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§}¨K�N"¦=�(a�R� � �� Ì ] "@~�($vT"@~�(2\K~­A�� ® � � ��¯ � ��° "�Y#AX_±( � "e²�AX_±( �"$YTA,_�S3*
AW�D( � "e²�AX_aS�*:AW�D( �¦³C ´ � �� ~ b �y� � ��� �¸µ b �y�¹·® �1� "¦~y(r�¶µ b �y�¹·¯ �1� "@~�(wÌq"¦~y(r\O~Gº ]
(15)
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