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1. Introduction. In this article we consider boundary eigenvalue problems of the
form

`(y) = y(n) +
n

X

⌫=1

p⌫(x)y(n�⌫) = �y, x 2 [0, 1], (1.1)

U⌫(y) = U⌫0(y) + U⌫1(y) = 0, 1  ⌫  n. (1.2)

We assume that p⌫ 2 L[0, 1], 1  ⌫  n, and that the boundary conditions (1.2) are
normalized; this means that

U⌫0(y) = ↵⌫y(kν)(0)+

kν�1
X

j=0

↵⌫jy
(j)(0), U⌫1(y) = �⌫y(kν)(1)+

kν�1
X

j=0

�⌫jy
(j)(1), (1.3)

where ↵⌫j ,�⌫j 2 C,

|↵⌫ | + |�⌫ | > 0 for 1  ⌫  n,

n � 1 � k1 � k2 � · · · � kn � 0 with k⌫+2 < k⌫ for 1  ⌫  n � 2, and where

k0 :=
n
P

⌫=1
k⌫ is minimal with respect to all equivalent boundary conditions. k⌫ is

called the order of U⌫ .

The study of nonself-adjoint eigenvalue problems generated by nth-order differen-
tial expressions (1.1) with smooth coefficients p⌫ and by two-point boundary condi-
tions (1.2) was originated by Birkhoff. In [2] Birkhoff proved asymptotic estimates
for a fundamental system of solutions of (1.1), then, in [3], he introduced the class
of (Birkhoff-)regular boundary conditions and he obtained sufficient conditions for
the pointwise convergence of the expansion of a function f into a series of eigen-
and associated functions (e.a.f.’s) of (1.1), (1.2). The corresponding series are called
Birkhoff-series.

Some years later Tamarkin ([16]) and Stone ([15]) found under more general hy-
potheses that the expansion of a function f 2 L[0, 1] into a series of e.a.f.’s of regular
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eigenvalue problems (1.1), (1.2) with p1 ⌘ 0 is for each interval [a, b] ⇢ (0, 1) uni-
formly equiconvergent with the trigonometric Fourier expansion of f . Afterwards,
continuing up to the present time, various questions concerning the spectral theory
of differential operators generated by (1.1), (1.2) were studied very intensively, since
there are many applications for regular problems (1.1), (1.2). In addition it has been
shown by Salaff ([14]) and Minkin ([9]) that the boundary conditions of an arbitrary
nonsingular self-adjoint eigenvalue problem (1.1), (1.2) are regular in the sense of
Birkhoff. For further information and references on regular eigenvalue problems we
refer the reader to the papers of Benzinger ([1]), Wermuth ([17]) and Kaufmann ([7])
(see also [5], [6]), who obtained interesting results more recently on the norm conver-
gence, summability and pointwise convergence of Birkhoff-series which supplement
and complete the classical investigations of Birkhoff, Tamarkin and Stone.

It is worthwhile to note that in all the papers mentioned above it is assumed that
p1 ⌘ 0 or that p1 is sufficiently smooth. The expansion problem for (1.1), (1.2) be-
comes more complicated if p1 is not smooth, since the estimates for a fundamental
system of solutions of (1.1) depend essentially on p1—cf. [11], [13] where the equicon-
vergence theorem is generalized. Since the coefficients pj are only integrable, the
adjoint of `(y) is only defined as quasi-differential expression (cf. [10, Section 15.2]
and formula (2.4)).

Our main goal lies in the completion of the study of regular eigenvalue problems
by investigating the norm convergence, pointwise convergence and summability of
Birkhoff-series in the case p1 6⌘ 0. For this purpose we start from the asymptotic
estimates for a fundamental system of solutions of (1.1) proved by Rykhlov ([11],
[12]) and then we apply the techniques developed in [1], [13], [17], [7], [5] and [6]. We
note that the methods used here can also be applied for the investigation of more
general eigenvalue problems (cf. Remark 4.14). For convenience we confine ourselves
in this article to the most important special case.

2. Preliminaries. In the following we confine ourselves to the case of even-order
problems, n = 2µ; in the case n = 2µ � 1 we can obtain an analogous result by the
same method.

We substitute � = ⇢n and consider the sectors

Sk = {⇢ 2 C :
k⇡

n
 arg ⇢ 

(k + 1)⇡

n
}, 0  k  2n � 1.

Let S 2 {S0, . . . , S2n�1} be one of these sectors; then we can enumerate the nth roots
!1, . . . ,!n of 1 such that

Re(⇢!1)  · · ·  Re(⇢!µ)  0  Re(⇢!µ+1)  · · ·  Re(⇢!n) for ⇢ 2 S.

The following theorem was proved in [11], [12].

Theorem 2.1. Let p1 2 Lr[0, 1] for some r 2 [1,1]. In any sector S, equation (1.1)
has n linearly independent solutions y1(·, ⇢), . . . , yn(·, ⇢) which are holomorphic for
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⇢ 2 S with |⇢| > R0, where R0 is a sufficiently large number, and which satisfy the

asymptotic relations

y
(m)
j (x, ⇢) := (

@

@x
)myj(x, ⇢) = (⇢!j)

mv(x)e⇢!jx{1 + O(⌘(⇢))} (2.1)

for 0  m  n � 1, 1  j  n, where

v(x) = e�
1
n

R
x

0
p1(⌧)d⌧ , ⌘(⇢) = max

x2[0,1]
⌘(x, ⇢),

⌘(x, ⇢) =
X

1k<sn

{|fks(x, ⇢)| + |gks(x, ⇢)| + kfks(·, ⇢)kq + kgks(·, ⇢)kq} +
1

|⇢|
, (2.2)

k · kq = k · kLq[0,1],
1

q
+

1

r
= 1,

fks(x, ⇢) =

Z x

0

e⇢(!k�!s)(x�t)p1(t) dt, gks(x, ⇢) =

Z 1

x

e⇢(!s�!k)(x�t)p1(t) dt.

We will need the following classes of functions, with ↵ � 0 and 1  r  1:

H↵
r [0, 1] =

n

f 2 Lr[0, 1]|!(f, �)r =

⇢

O(ln�↵ 1
�
) for ↵ > 0,

o(1) for ↵ = 0,

�

� ! 0 +
o

,

where
!(f ; �)1 = sup

0<h�

sup
t2[0,1�h]

|f(t + h) � f(t)|;

!(f ; �)r = sup
0<h�

⇣

Z 1�h

0

|f(t + h) � f(t)|r dt
⌘1/r

, 1  r < 1.

In order to simplify the formulation of the results we set in this paper L1[0, 1] :=
C[0, 1] and H0

r [0, 1] := Lr[0, 1]. For ⇠ 2 [0, 1] and ⇢ 2 S let w(⇠, ⇢) be the Wronskian
of y1(⇠, ⇢), . . . , yn(⇠, ⇢) and let wnk(⇠, ⇢), 1  k  n, be the algebraic complement of

y
(n�1)
k (⇠, ⇢) with respect to w(⇠, ⇢). Further, we set

zk(⇠, ⇢) =
wnk(⇠, ⇢)

w(⇠, ⇢)
, ⇠ 2 [0, 1], ⇢ 2 S, 1  k  n. (2.3)

In the sequel we use the abbreviation

[a] := a + O(⌘(x, ⇢)) (a 2 C, ⇢ 2 S),

and the following quasi derivatives, which are closely related to the differential ex-
pression (1.1):

z{0} := z, z{k} := �
d

d⇠
z{k�1} + pkz{0}, k = 1, . . . , n. (2.4)
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Using formula (2.1), Lemma 5.1 and Lemma 5.4 we easily obtain the following esti-
mates:

z
{m}
k (⇠, ⇢) = (⇢!k)m [!k]

n⇢n�1

1

v(⇠)
e�⇢!k⇠ (2.5)

for ⇠ 2 [0, 1], 1  k  n, 0  m  n � 1, ⇢ 2 S.

It is well known ([10, page 15], [11]) that ⇢n with ⇢ 2 S is an eigenvalue of (1.1)
and (1.2) if and only if ⇢ is a zero of the characteristic determinant

D(⇢) :=

2

4

U1(y1) · · · U1(yn)
. . . . . . . . .

Un(y1) . . . Un(yn)

3

5 , ∆(⇢) := detD(⇢). (2.6)

For the formulation of the asymptotic estimates for ∆(⇢) we introduce the following
notation:

✓ij :=

�

�

�

�

�

�

�

↵1!
k1
1 · · · ↵1!

k1
µ�1 �i

1!
k1
µ �

j
1!

k1
µ+1 · · · �1!

k1
n

...
...

...
...

...
↵n!

kn

1 · · · ↵n!
kn

µ�1 �i
n!

kn
µ �j

n!
kn

µ+1 · · · �n!
kn
n

�

�

�

�

�

�

�

with

�`
⌫ :=

⇢

↵⌫ , ` = 0

�⌫ , ` = 1
(1  ⌫  n).

If we substitute the estimates (2.1) into the boundary forms (1.2) we obtain

U⌫(yj) = (⇢!j)
kν [↵⌫ ] for j  µ � 1,

U⌫(yµ) = (⇢!µ)kν{[↵⌫ ] + e⇢!µv(1)[�⌫ ]}, (2.7)

U⌫(yµ+1) = (⇢!µ+1)
kν{[↵⌫ ] + e⇢!µ+1v(1)[�⌫ ]} = (⇢!µ+1)

kν{[↵⌫ ] + e�⇢!µv(1)[�⌫ ]},

U⌫(yj) = (⇢!j)
kν v(1)e⇢!j [�⌫ ] for j � µ + 2.

Now we insert these estimates into (2.6), and then we transform ∆(⇢) as follows:
(T1) for 1  ⌫  n we divide the ⌫th row of ∆(⇢) by ⇢kν ,

(T2) for µ + 1  j  n we divide the jth column of ∆(⇢) by e⇢!j v(1).
These transformations yield

∆(⇢) = ⇢k0e

nP

j=µ+1
!j

{v(1)}µ{[✓01] + (
1

v(1)
[✓00] + v(1)[✓11])e

⇢!µ + [✓10]e
2⇢!µ},

k0 =
Pn

⌫=1k⌫ . In this article we assume that (1.1), (1.2) is (Birkhoff-)regular; this
means that ✓01 6= 0 6= ✓10. We note that |✓01| = |✓10| (which is proved as with [10,
Section 4.8]). Hence,

∆(⇢) = ⇢k0e
⇢

nP

j=µ+1
!j

{v(1)}µ✓01(1 + T (⇢))[1], ⇢ 2 S, (2.8)
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where T (⇢) has the form

T (⇢) =
k

X

i=1

[ci]e
⇢di (2.9)

with k 2 N, ci 2 C, di 2 C \ {0} for 1  i  k and with Re(⇢di)  0 for ⇢ 2 S and
1  i  k.

On account of the special form of the exponential sum T (⇢), an application of [16,
Lemma, page 26] yields:

Remark 2.1. Let � = {⇢ 2 C : ⇢n is eigenvalue of (1.1), (1.2)} and let � > 0. Then
there exist constants c(�) > 0 and R� > 0 with

|1 + T (⇢)| � c(�) for ⇢ 2 S(�) := {⇢ 2 S : dist(⇢,�) � �} (2.10)

with |⇢| > R�. If T (⇢) has the form (2.9) and if a 2 C, we write in the sequel

[[a]] := (a + T (⇢))[1].

Remark 2.2. (i) On account of (2.8) we have

∆(⇢) = ⇢k0e
⇢

nP

j=µ+1
!j

{v(1)}µ✓01[[1]] for ⇢ 2 S. (2.11)

(ii) If T (⇢) is a function of the form (2.9) which satisfies (2.10), then we have

1

1 + T (⇢)
� 1 =

�T (⇢)

1 + T (⇢)
= [[0]] for ⇢ 2 S(�), |⇢| > R�.

Hence,

1

∆(⇢)
= ⇢�k0e

�⇢
nP

j=µ+1
!j

{v(1)}�µ [[1]]

✓01
for ⇢ 2 S(�), |⇢| > R�. (2.12)

3. Green’s function. In this section we assume that ⇢ 2 S(�), � > 0, and
f 2 L[0, 1]. Using the solutions (2.1) of equation (1.1) we obtain by variation of
constants (see [10, Section 3.7]). The general solution of the inhomogeneous equation

`(y) = �y + f(x) (3.1)

has the form

y(x, ⇢) =
n

X

j=1

cjyj(x, ⇢) +

Z 1

0

g(x, ⇠, ⇢)f(⇠) d⇠, (3.2)

where

g(x, ⇠, ⇢) =

⇢

Pµ
k=1 yk(x, ⇢)zk(⇠, ⇢) if x � ⇠,

�
Pn

k=µ+1 yk(x, ⇢)zk(⇠, ⇢) if x < ⇠.
(3.3)
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Now we choose the functions cj(= cj(⇢)) such that y(·, ⇢) satisfies the boundary
conditions (1.2). First we substitute (3.2) into (1.2), then we solve the equations for
the functions cj by Cramer’s rule, and finally we insert these solutions into (3.2). This
procedure yields (see [10, page 37])

y(x, ⇢) =

Z 1

0

G(x, ⇠, ⇢)f(⇠) d⇠, (3.4)

where the Green’s function G is defined by

G(x, ⇠, ⇢) =
1

∆(⇢)
H(x, ⇠, ⇢), x, ⇠ 2 [0, 1], ⇢ 2 S(�) (3.5)

with

H(x, ⇠, ⇢) =

�

�

�

�

�

�

�

�

y1(x, ⇢) . . . yn(x, ⇢) g(x, ⇠, ⇢)
U1(g)(⇠, ⇢)

D(⇢)
...

Un(g)(⇠, ⇢)

�

�

�

�

�

�

�

�

. (3.6)

Substituting (2.1) into (3.3) we get

g(x, ⇠, ⇢) = v(x)

⇢

Pµ
k=1 e⇢!kx[1]zk(⇠, ⇢) for x � ⇠,

�
Pn

k=µ+1 e⇢!kx[1]zk(⇠, ⇢) for x < ⇠.
(3.7)

Applying the boundary conditions (1.2) we infer

U⌫(g)(⇠, ⇢) = �
n

X

k=µ+1

(⇢!k)kν [↵⌫ ]zk(⇠, ⇢) + v(1)

µ
X

k=1

(⇢!k)kν [�⌫ ]zk(⇠, ⇢) (3.8)

for 1  ⌫  n, ⇠ 2 [0, 1] and ⇢ 2 S.

For the formulation of the asymptotic estimates of G(x, ⇠, ⇢) we introduce some
further abbreviations.

For 1  j  n let ✓j⇤k(⇢), µ + 1  k  n, and ✓j⇤k(⇢), 1  k  µ, be the
determinants of the matrices, obtained by replacing the jth column of the matrix

2

6

4

↵1!
k1
1 . . . ↵1!

k1
µ �1!

k1
µ+1 . . . �1!

k1
n

...
...

...
...

↵n!
kn

1 . . . ↵n!
kn
µ �n!

kn

µ+1 . . . �n!
kn
n

3

7

5

by
ak = (↵1!

k1

k , . . . ,↵n!
kn

k )T and bk = (�1!
k1

k , . . . ,�n!
kn

k )T ,

respectively.
Combining the preceding results we get the following estimates for the Green’s

function G of (1.1), (1.2), which are fundamental for the proof of expansion theorems.
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Theorem 3.1. Let � > 0; then the Green’s function G of a regular boundary eigen-

value problem (1.1), (1.2) has for ⇢ 2 S(�) and x, ⇠ 2 [0, 1] the representation

G(x, ⇠, ⇢) = g(x, ⇠, ⇢) +
n

X

j=1

'j(x, ⇢) j(x, ⇢). (3.9)

g(x, ⇠, ⇢) satisfies (3.3) and (3.7),

'j(x, ⇢) =

(

yj(x, ⇢) for 1  j  µ,

yj(x, ⇢)e�⇢!j 1
v(1) for µ + 1  j  n,

(3.10)

and

 j(⇠, ⇢) =
1

✓01

⇣

n
X

k=µ+1

Ajk(⇢)zk(⇠, ⇢) � v(1)

µ
X

k=1

Ajk(⇢)e⇢!kzk(⇠, ⇢)
⌘

, (3.11)

where

Ajk(⇢) = [[✓j⇤k]]. (3.12)

Proof. According to (3.6) G(x, ⇠, ⇢) = 1
∆(⇢)H(x, ⇠, ⇢), where ∆(⇢) satisfies (2.11)

and where all the entries of H(x, ⇠, ⇢) have been estimated previously. We substitute
these estimates into H(x, ⇠, ⇢) and then we transform the (⌫ + 1)st row, 1  ⌫  n,

and the jth column, 1  j  n of H(x, ⇠, ⇢) in the same way that we have transformed
the ⌫th row and the jth column of ∆(⇢) (see also §2, (T1), (T2)).

Expanding the resulting determinant with respect to the first row we obtain with
the preceding abbreviations the assertions (3.9)–(3.11). We omit details since the
proof is similar to the proof for the case p1 = 0.

4. Expansion theorems. For the proof of the expansion theorems we use the
contour integration method (see also [10, Chapter II]). Let

Ŝ := S0

[

S2n�1 = {⇢ 2 C : �
⇡

n
 arg ⇢ 

⇡

n
}

and let �m be a circular arc in Ŝ of radius Rm > 0, centered at the origin. On account
of the distribution of the eigenvalues of (1.1), (1.2) (see [13]) we can choose � > 0
and a strictly increasing sequence (Rm)m2N such that the corresponding sequence

(�m)m2N of arcs is contained in Ŝ(�) = S0(�) [ S2n�1(�). Then for any summable
function f,

IRm
(f)(x) :=

�1

2⇡i

Z

�m

Z 1

0

G(x, ⇠, ⇢)f(⇠) d⇠ n⇢n�1 d⇢ (4.1)

is a partial sum of the expansion of f in eigenfunctions and (possibly in the case of
multiple eigenvalues) associated functions of (1.1), (1.2).
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Using the asymptotic estimates of Section 3 we shall derive a precise representation
for

I
j
Rm

(f)(x) :=
�1

2⇡i

Z

�
j
m

Z 1

0

g(x, ⇠, ⇢)f(⇠) d⇠ n⇢n�1 d⇢

+
�1

2⇡i

Z

�
j
m

Z 1

0

(G � g)(x, ⇠, ⇢)f(⇠) d⇠ n⇢n�1 d⇢

=: I
j,0
Rm

(f)(x) + I
j,1
Rm

(f)(x), j 2 {0, 2n � 1}, m 2 N.

Here �j
m := �m \ Sj . In the following we choose S = S0.

Since I0
Rm

(f) and I2n�1
Rm

(f) have an analogous form, it will be sufficient to give a

detailed description of I0
Rm

(f).

With the preceding abbreviations and the estimates (3.12) we infer from Theorem
3.1:

Theorem 4.1. Let f 2 L[0, 1]. For x 2 [0, 1]

I
0,1
Rm

(f)(x) = �
v(x)

2⇡i

µ
X

j=1

n
X

k=µ+1

Z

�0
m

[[✓j⇤k]]

✓01
e⇢!jx

Z 1

0

zk(⇠, ⇢)f(⇠) d⇠ n⇢n�1 d⇢

+
v(x)

2⇡i
v(1)

µ
X

j=1

µ
X

k=1

Z

�0
m

[[✓j⇤k]]

✓01
e⇢!jx

Z 1

0

e⇢!kzk(⇠, ⇢)f(⇠) d⇠ n⇢n�1 d⇢

�
v(x)

2⇡i

1

v(1)

n
X

j=µ+1

n
X

k=µ+1

Z

�0
m

[[✓j⇤k]]

✓01
e⇢!j(x�1)

Z 1

0

zk(⇠, ⇢)f(⇠) d⇠ n⇢n�1 d⇢

+
v(x)

2⇡i

n
X

j=µ+1

µ
X

k=1

Z

�0
m

[[✓j⇤k]]

✓01
e⇢!j(x�1)

Z 1

0

e⇢!kzk(⇠, ⇢)f(⇠) d⇠ n⇢n�1 d⇢.

The analogous estimates are valid for the sector S2n�1.

Let us denote by J
0,1
Rm

(f)(x) the expression obtained from the right-hand sides of the
formulae in Theorem 4.1 by deleting the double square brackets and by substituting

instead of zk(⇠, ⇢) the function !k

n⇢n−1
1

v(⇠)e
�⇢!k⇠; similarly we define J

↵,�
Rm

for ↵ 2

{0, 2n � 1} and � 2 {0, 1}. Then we infer from [15, Lemmas IV’,. . . ,VI’, page 754]
and Lemma 5.9:

Lemma 4.2. If p1 2 H↵
q [0, 1], f 2 H�

r [0, 1], 1
q + 1

r = 1,↵+ � > 1, then

lim
m!1

(Ij,1
Rm

(f) � J
j,1
Rm

(f))(x) = 0, j 2 {0, 2n � 1},

uniformly for x 2 [0, 1].

Combining [15, Lemmas IV’ and V’] with Theorem 4.1 we get
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Lemma 4.3. For f 2 L[0, 1], p1 2 L[0, 1],

lim
m!1

I
j,1
Rm

(f)(x) = 0, j 2 {0, 2n � 1},

uniformly on each compact set K ⇢ (0, 1).

Let us denote by g0(x, ⇠, ⇢) the expression obtained from g(x, ⇠, ⇢) (cf. formula
(3.7)) by replacing zk(⇠, ⇢) therein by !k

n⇢n−1
1

v(⇠)e
�⇢!k⇠ and by deleting the square

bracket. Then we infer from Lemma 5.10 by elementary calculations

Lemma 4.4. If p1 2 H↵
q [0, 1], f 2 H�

r [0, 1], 1
q + 1

r = 1, ↵+ � > 1, then for x 2 [0, 1]

and j 2 {0, 2n � 1}

I
j,0
Rm

(f) � J
j,0
Rm

(f) =
�1

2⇡i

Z

�
j
m

Z 1

0

(g � g0)(x, ⇠, ⇢)f(⇠) d⇠ n⇢n�1 d⇢ = o(1), (4.2)

where o(1) tends to zero uniformly for x 2 [0, 1] as m ! 1.

Remark 4.5. (i) Let p1 2 H↵
q [0, 1], f 2 H�

r [0, 1], 1
q + 1

r = 1, ↵ + � > 1, then for

x 2 [0, 1] we easily obtain (see also [17, Satz 2])

J
0,0
Rm

(f) + J
2n�1,0
Rm

(f) = �
1

2⇡i

Z

�m

Z 1

0

g0(x, ⇠, ⇢)f(⇠) d⇠ n⇢n�1 d⇢

=

Z 1

0

v(x)

v(⇠)
f(⇠)

sin(Rm(x � ⇠))

⇡(x � ⇠)
d⇠.

(4.3)

From Lemmas 4.3 and 4.4 we deduce that IRm
(f) and the generalized Dirichlet in-

tegral in (4.3) (and hence, according to [15], IRm
(f) and the corresponding partial

sums of the trigonometric Fourier series of f) are uniformly equiconvergent on every
compact set K ⇢ (0, 1) (see also [13] for details).

(ii) If a 2 (0, 1), f and p1 satisfy the conditions of Lemma 4.4 and if f
v satisfies

hypothesis H(a) (cf. Notation 4.8), then we infer from Lemmas 4.3, 4.4 and 5.3 the
following result on the pointwise convergence of IRm

(f) :

lim
m!1

IRm
(f)(a) =

1

2
{f(a+) + f(a�)}.

The object of the next part of this section is to evaluate

lim
m!1

IRm
(f)(x) for x 2 {0, 1}.

For this purpose we use Lemma 4.2 and the methods of [5, Section 4].
Using Theorem 4.1 and Lemma 4.2 we get (cf. [5, page 1192]).
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Theorem 4.6. If p1 2 H↵
q [0, 1], f 2 H�

r [0, 1], 1
q + 1

r = 1, ↵ + � > 1 and m ! 1,

then

I
0,1
Rm

(f)(0) = o(1) �
1

2⇡i

µ
X

j=1

n
X

k=µ+1

✓j⇤k

✓01

Z 1

0

f(⇠)

�⇠v(⇠)
e�⇢!k⇠

�

�

�

⇢=Rme
iπ
n

⇢=Rm

d⇠

+
1

2⇡i

µ
X

j=1

µ
X

k=1

v(1)✓j⇤k

✓01

Z 1

0

f(⇠)

(1 � ⇠)v(⇠)
e⇢!k(1�⇠)

�

�

�

⇢=Rme
iπ
n

⇢=Rm

d⇠

(4.4)

and

I
0,1
Rm

(f)(1) = o(1) �
1

2⇡i

n
X

j=µ+1

n
X

k=µ+1

✓j⇤k

✓01

Z 1

0

f(⇠)

�⇠v(⇠)
e�⇢!k⇠

�

�

�

⇢=Rme
iπ
n

⇢=Rm

d⇠

+
1

2⇡i

n
X

j=µ+1

µ
X

k=1

v(1)✓j⇤k

✓01

Z 1

0

f(⇠)

(1 � ⇠)v(⇠)
e⇢!k(1�⇠)

�

�

�

⇢=Rme
iπ
n

⇢=Rm

d⇠.

(4.5)

The analogous estimates are valid for I
2n�1,1
Rm

(f).

The following result of Wermuth is the key for the evaluation of the pointwise
limits lim

m!1
IRm

(f)(a).

Theorem 4.7 (Wermuth ([18])). Let f 2 L[0, 1], ↵ 2 C \ {0}, Im ↵ � 0, A 2 C and

x0 2 (0, 1). If

(i) lim
x!0+

1

x

Z x

0

f(⇠) d⇠ = A

and

(ii) lim
x!0+

Z x0

x

|f(⇠) � f(⇠ + x)|

⇠
d⇠ = 0,

then

lim
R!1

Z 1

0

f(x)
eiRx � e↵iRx

x
dx = A ln↵,

where 0  Im ln↵  ⇡.

This theorem generalizes the well-known convergence criterion of Lebesgue for
trigonometric Fourier series (cf. [19,b), I, page 65]) which is known to include the
criteria of Dini, Dirichlet-Jordan, de la Vallée Poussin and W.H. Young (cf. [19, a),
page 29 ff.]).

Notation 4.8. Let f 2 L[0, 1] and 0  a  1. We say that f satisfies the hypothesis
H(a) if

f1 : [0, 1] ! R, x 7!

⇢

f(x + a) for 0  x  1 � a

0 for 1 � a < x  1
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f satisfies hypotheses (i) and (ii) of Theorem 4.7 with

A = lim
x!0+

1

x

Z x

0

f(a + ⇠) d⇠ (=: f(a+) if a < 1 and f(a+) is not yet defined)

and if

f2 : [0, 1] ! R, x 7!

⇢

f(a � x) for 0  x  a

0 for 1 � a < x  1

satisfies hypotheses (i) and (ii) of Theorem 4.7 with

A = lim
x!0+

1

x

Z x

0

f(a � ⇠) d⇠ (=: f(a�)).

The following theorem reveals the behaviour of the expansion of f at the boundary
of [0, 1].

Theorem 4.9. If p1 2 H↵
q [0, 1], f 2 H�

r [0, 1], 1
q + 1

r = 1, ↵+ � > 1, and f
v satisfies

hypotheses H(0) and H(1), then

lim
m!1

IRm
(f)(0)=f(0+)+�kn,0

1

2
(
B0

n

✓01
+

B̃0
n

✓̃01
)Un(f)+�kn−1,0

1

2
(
B0

n�1

✓01
+

B̃0
n�1

✓̃01
)Un�1(f)

and

lim
m!1

IRm
(f)(1)=f(1�)+�kn,0

1

2
(
B1

n

✓01
+

B̃1
n

✓̃01
)Un(f)+�kn−1,0

1

2
(
B1

n�1

✓01
+

B̃1
n�1

✓̃01
)Un�1(f),

where �ij is the Kronecker symbol and

B
j :=

�

�

�

�

�

�

�

�

�

�

�

1 � �1 . . . 1 � �1 �1 . . . �1 0
↵1!

k1
1 . . . ↵1!

k1
µ �1!

k1
µ+1 . . . �1!

k1
n 0

...
...

...
...

...

↵n�1!
kn−1

1 . . . ↵n�1!
kn−1
µ �n�1!

kn−1

µ+1 . . . �n�1!
kn−1
n �jn�1

↵n!
kn

1 . . . ↵n!
kn
µ �n!

kn

µ+1 . . . �n!
kn−1
n �jn

�

�

�

�

�

�

�

�

�

�

�

for j 2 {n � 1, n} and  2 {0, 1}. B̃
j and ✓̃01 are the determinants corresponding to

B
j and ✓01, respectively, for the sector S2n�1.

Proof. From Lemma 4.2, Lemma 4.4 and the definition of J
k,j
Rm

(f) (see the sentence
following Theorem 4.1) we infer that under the hypothesis of Lemma 4.2

lim
m!1

{IRm
(f) � (J2n�1,0

Rm
(f) + J

2n�1,1
Rm

(f) + J
0,0
Rm

(f) + J
0,1
Rm

(f))}(x) = 0 (4.6)

uniformly for x 2 [0, 1].
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Starting from the detailed representation of the terms J
k,j
Rm

(f)(x) proved in (4.3)
and Theorem 4.6 we can apply Theorem 4.6, Lemma 5.2 and Lemma 5.3 to evaluate

lim
m!1

J
k,j
Rm

(f)(x) for x 2 {0, 1}, k 2 {2n�1, 0} and j 2 {0, 1}; we omit details since the

remaining part of the proof is a word-by-word repetition of the proof of [5, Theorem
4.10].

Notation 4.10. (i) We say that f and p1 satisfy Hypothesis A if

p1 2 H↵
q [0, 1], f 2 H�

r [0, 1],
1

q
+

1

r
= 1 and ↵+ � > 1,

where q, r 2 [1,1] (and L1[0, 1] := C[0, 1], H0
r [0, 1] := Lr[0, 1]).

(ii) Let

ln+ a =

⇢

ln a for a > 1

0 for 0  a  1.

We say that f satisfies Hypothesis B if either 1 < r < 1 and f 2 Lr[0, 1] or
r = 1, f 2 L[0, 1] and f ln+ |f | 2 L[0, 1].
Combining the estimates obtained here with the results obtained in [6, Sections 3, 4
and 5] we can state the following theorems on norm convergence, uniform convergence
and summability of Birkhoff series. The assertions of the two following theorems are
an immediate consequence of formula (4.6) and of the proofs of [6, Theorem 3.2 and
Theorem 4.2].

Theorem 4.11. If f and p1 satisfy Hypothesis A and if f satisfies Hypothesis B,

then

lim
m!1

kf � IRm
(f)kr = 0.

Theorem 4.12. If f 2 C[0, 1]\BV [0, 1] and p1 satisfy Hypothesis A and f satisfies

the boundary conditions of order zero of a regular problem (1.1), (1.2), then for m !
1, IRm

(f) tends to f uniformly on the interval [0, 1].

According to Stone ([15]) the Riesz typical means of order ` > 0 of the partial
sums of the expansion of f into a series of e.a.f’s of (1.1), (1.2) take on the form

SRm
(f)(x) = �

Z 1

0

⇣ 1

2⇡i

Z

�m

⇣

1 � (
⇢

Rm
)4n

⌘`

G(x, ⇠, ⇢)n⇢n�1 d⇢
⌘

f(⇠) d⇠. (4.7)

The following theorem generalizes the theorem of M. Riesz and Chapman in the
theory of Fourier series.

Theorem 4.13. Let f 2 C[0, 1] and p1 satisfy Hypothesis A and let f satisfy the

boundary conditions of order zero of a regular problem (1.1), (1.2). Then the expansion

(4.7) formed for ` > 0 tends to f uniformly on the interval [0, 1].

Since SRm
(f)(x) and IRm

(f)(x) do only differ by the bounded factor (1�( ⇢
Rm

)4n)`,

we can use Lemma 5.9 and Lemma 5.10 to show all error terms are tending uniformly
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to zero—this means that the limit of (4.7) does not change if we remove in our
estimates for G(x, ⇠, ⇢) all square and double square brackets. Consequently the
assertion of Theorem 4.13 is obtained as with the proof of [6, Lemma 5.1].

Remark 4.14. (i) The methods of this paper can be used for the investigation of
more general types of problems. For example:

(a) we can replace the boundary conditions (1.2) by regular two-point or multi-
point boundary conditions where the coefficients are polynomials in �,

(b) we can replace the differential equation (1.1) by a differential equation with a
weight function r which is a nonzero step function (cf. [5], [6]),

(c) it is possible to generalize the methods of this paper for the investigation of
eigenvalue problems for bundles or for first-order systems of equations; the
corresponding results will be published elsewhere.

(ii) Using the results of [13] we get an estimate on the order of convergence of (4.6).

5. Auxiliary results. Let Ω be the Vandermonde determinant of !1,!2, . . . ,!n

and let Ωsj , 1  j  n, 1  s  n, be the algebraic complement of !s�1
j with respect

to Ω.

Lemma 5.1 ([10, page 86]; [5, Lemma 5.1]).

Ωsj

Ω
=

1

n
!n�s+1

j , 1  j  n, 1  s  n. (5.1)

Proof. Let 1  s  n be fixed. The system of equations

n
X

j=1

!k
j

Ωsj

Ω
= �k,s�1, 0  k  n � 1,

has a unique solution since the determinant of its coefficients is Ω 6= 0. In consequence
of

n
X

j=1

!k
j

!n�s+1
j

n
= �k,s�1, 0  k  n � 1, 1  s  n

this solution is defined by (5.1).

For the evaluation of the limits of the integrals in Theorem 4.6 we use Wermuth’s
criterion (cf. also [5, Lemma 5.3]) and the notation introduced in Section 2.

Lemma 5.2. Let f 2 L[0, 1] and ↵ = ei⇡/n.

(i) If f satisfies hypothesis H(1) (compare Notation 4.8), then for 1  k  µ

lim
R!1

Z 1

0

eR↵!k(1�⇠) � eR!k(1�⇠)

1 � ⇠
f(⇠) d⇠ = �

i⇡

n
f(1�).

(ii) If f satisfies hypothesis H(0), then for µ + 1  k  n

lim
R!1

Z 1

0

eR↵!k(�⇠) � eR!k(�⇠)

�⇠
f(⇠) d⇠ =

i⇡

n
f(0+).
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Proof. Substituting 1 � ⇠ = t and applying Theorem 4.7 we get (i) from

lim
R!1

Z 1

0

eR↵!k(1�⇠) � eR!k(1�⇠)

1 � ⇠
f(⇠) d⇠

= lim
R!1

Z 1

0

1

t
(eiR(

αωk
i

)t � eiRt + eiRt � eiR(
ωk
i

)t)f(1 � t) dt

=f(1�)(� ln(↵
!k

i
) + ln

!k

i
) = �f(1�) ln↵ =

i⇡

n
f(1�).

We note that Re!k  0 and Re(↵!k)  0 for 1  k  µ; hence Im!k

i � 0 and
Im(↵!k

i ) � 0 for 1  k  µ, and Theorem 4.7 can be applied.

The following lemma is used to determine lim
m!1

I
j,0
Rm

(f)(x) (cf. [5, Lemma 5.4]).

Lemma 5.3. Let j 2 {0, 2n � 1} and f 2 L[0, 1].

(i) If f
v satisfies hypothesis H(1), then

lim
m!1

J
j,0
Rm

(f)(1) = lim
m!1

�
1

2⇡i

Z 1

0

Z

�
j
m

g0(1, ⇠, ⇢)f(⇠)n⇢n�1 d⇢ d⇠ =
1

4
f(1�).

(ii) If f
v satisfies hypothesis H(0), then

lim
m!1

J
j,0
Rm

(f)(0) = lim
m!1

�
1

2⇡i

Z 1

0

Z

�
j
m

g0(0, ⇠, ⇢)f(⇠)n⇢n�1 d⇢ d⇠ =
1

4
f(0+).

(iii) If a 2 (0, 1) and if f
v satisfies hypothesis H(a), then

lim
m!1

J
j,0
Rm

(f)(a) = lim
m!1

�
1

2⇡i

Z 1

0

Z

�
j
m

g0(a, ⇠, ⇢)f(⇠)n⇢n�1 d⇢ d⇠

=
1

4
{f(a�) + f(a+)}.

Proof of (i). Because

g0(x, ⇠, ⇢) =
1

n⇢n�1

v(x)

v(⇠)

8

>

>

<

>

>

:

µ
P

k=1

!ke⇢!k(x�⇠) for x � ⇠,

�
n
P

k=µ+1

!ke⇢!k(x�⇠) for x < ⇠,

we get

I : = lim
m!1

�
1

2⇡i

Z 1

0

Z

�0
m

g0(1, ⇠, ⇢)f(⇠)n⇢n�1 d⇠

= lim
m!1

�
1

2⇡i

µ
X

k=1

Z 1

0

Z

�0
m

v(1)

v(⇠)
!ke⇢!k(1�⇠)f(⇠) d⇢ d⇠.

Integrating with respect to ⇢ and applying Lemma 5.2 (i), we obtain from µ = n
2

I = �
1

2⇡i
µ(�

i⇡

n
f(1 � 0)

v(1)

v(1)
) =

1

4
f(1�).

(ii) and (iii) are proved in the same way.
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Lemma 5.4. For the functions zk(⇠, ⇢), 1  k  n, defined by (2.3), the following

formulae are valid:

z
{⌫}
k (⇠, ⇢) =

wn�⌫,k(⇠, ⇢)

w(⇠, ⇢)
, ⌫ = 0, 1, . . . , n � 1,

z
{n}
k (⇠, ⇢) = �zk(⇠, ⇢),

(5.2)

k = 1, 2, . . . , n, ⇠ 2 [0, 1], ⇢ 2 S; where wsk(⇠, ⇢) is the algebraic complement of

y
(s�1)
k (⇠, ⇢) with respect to w(⇠, ⇢).

Proof. Using the definition (2.3) of the functions zk(⇠, ⇢), the definition of the quasi
derivatives (2.4), the rule of differentiating of determinants, and taking into consid-
eration that the functions yj(⇠, ⇢), j = 1, 2, . . . , n, are solutions of equation (1.1), we
easily obtain the statement of Lemma 5.4 (cf. [13, Lemma 1.1]).

In the sequel we shall need some results from [4, 8], which are stated below as
lemmas.

Lemma 5.5. If f(x) 2 Lp[0, 1] (1  p  1), then ([4])

E⌫(f)p  C!(f ;
1

⌫
)p,

where E⌫(f)p is the best approximation to f(x) in the metric of Lp[0, 1] by algebraic

polynomials of degree `  ⌫ 2 N.

Lemma 5.6. If Q⌫ is an arbitrary algebraic polynomial of degree ⌫, 1  p < q  1,

s is a natural number, then there exist a constant C(p, q), depending only on p and

q, and a constant C(s), depending only on s, such that ([8])

a) kQ⌫kq  C(p, q)⌫2( 1
p
� 1

q
)kQ⌫kp;

b) kQ
(s)
⌫ kp  C(s)⌫2skQ⌫kp.

Using Lemmas 5.5 and 5.6 we obtain

Lemma 5.7 ([13, Lemma 1.5]). If p1 2 H↵
q [0, 1], then for sufficiently large |⇢| and

any ` 2 N

⌘(⇢) = O
⇣

(Ψ0(`) +
`2

|⇢|
)

X

1j<sn

�js(⇢, r) +
`

2
q

|⇢|

⌘

,

where

Ψ0(`) =
1

ln↵ `
for ↵ > 0, Ψ0(`) = o(1) for ↵ = 0

and

�js(⇢, r) =

✓

1 � exp(r Re ⇢(!j � !s))

Re ⇢(!s � !j)

◆
1
r

.
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Lemma 5.8 ([13, Lemma 1.6]). If ↵1,↵2 � 1, �1 and �2 are nonzero complex num-

bers, ⇣R = {z 2 C : z = R exp(i'),'1  '  '2}, R > 0, Re �1z � 0 and Re �2z � 0
for z 2 ⇣R, then the integral

JR =

Z

⇣R

2
Y

s=1

✓

1 � exp(�↵s Re �sz)

Re �sz

◆
1

αs

|dz|

satisfies the following estimates for sufficiently large R:

1) JR  C, when 1
↵1

+ 1
↵2

> 1;

2) JR  C lnR, when 1
↵1

+ 1
↵2

= 1;

3) JR  C R
1�( 1

α1
+ 1

α2) , when 1
↵1

+ 1
↵2

< 1.

The following lemmas are central for evaluating the error terms in Section 4. For
the formulation of these lemmas we set �R = {⇢ 2 S| |⇢| = R}.

Lemma 5.9. Let p1 2 H↵
q [0, 1], f 2 H�

r [0, 1], 1
q + 1

r = 1, ↵ + � > 1. If M(x, ⇢) is

uniformly bounded for x 2 [0, 1], ⇢ 2 S and if N(x, ⇢) = O(⌘(⇢)) for x 2 [0, 1], ⇢ 2 S,

then the following asymptotics formulae are valid as R ! 1 uniformly with respect

to x :

(i)
R

�R
M(x, ⇢)

R 1

0
(zk(⇠, ⇢) � !k

n⇢n−1
1

v(⇠)e
�⇢!k⇠)f(⇠) d⇠ n⇢n�1 d⇢ = o(1) for k =

µ + 1, . . . , n;

(ii)
R

�R
M(x, ⇢)

R 1

0
e⇢!k(zk(⇠, ⇢) � !k

n⇢n−1
1

v(⇠)e
�⇢!k⇠)f(⇠) d⇠ n⇢n�1 d⇢ = o(1) for

k = 1, . . . , µ;

(iii)
R

�R
N(x, ⇢)

R 1

0
zk(⇠, ⇢)f(⇠) d⇠ n⇢n�1 d⇢ = o(1) k = µ + 1, . . . , n;

(iv) for
R

�R
N(x, ⇢)

R 1

0
e⇢!kzk(⇠, ⇢)f(⇠) d⇠ n⇢n�1 d⇢ = o(1) for k = 1, . . . , µ.

Proof of (i). For simplicity we confine ourselves to the case ↵ > 0,� > 0; the proof
is similar for the case ↵ = 0 or � = 0. Let F`(⇠) be the algebraic polynomial of best
approximation to f(⇠) in the metric of Lr[0, 1] and of degree  `. Obviously,

AR :=

Z

�R

M(x, ⇢)

Z 1

0

(zk(⇠, ⇢) �
!k

n⇢n�1

1

v(⇠)
e�⇢!k⇠)f(⇠) d⇠ n⇢n�1 d⇢

=

Z

�R

M(x, ⇢)

Z 1

0

(zk(⇠, ⇢) �
!k

n⇢n�1

1

v(⇠)
e�⇢!k⇠)f`(⇠) d⇠ n⇢n�1 d⇢

+

Z

�R

M(x, ⇢)

Z 1

0

(zk(⇠, ⇢) �
!k

n⇢n�1

1

v(⇠)
e�⇢!k⇠)F`(⇠) d⇠ n⇢n�1 d⇢

=: A1R + A2R,

where f` = f � F`.

First we consider A1R. Using formula (2.5), Lemma 5.5 and the definition of the
class H�

r [0, 1] we obtain

|A1R|  C

Z

�R

Z 1

0

⌘(⇢)|e�⇢!k⇠ f`(⇠)| d⇠ |d⇢|

 C

Z

�R

⌘(⇢)kf`kr(

Z 1

0

e�qRe(⇢!k⇠)d⇠)
1
q |d⇢|  C

Z

�R

⌘(⇢)
1

ln� `
k(⇢, q) |d⇢|,
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where

k(⇢, q) = (
1 � e�qRe⇢!k

Re ⇢!k
)

1
q .

In view of Lemmas 5.7 and 5.8 we find

|A1R|  C

Z

�R

(
1

ln↵+� `
k(⇢, q)

X

1j<sn

�js(⇢, r)

+
`2

|⇢| ln� `
k(⇢, q)

X

1j<sn

�js(⇢, r) +
`

2
q

|⇢| ln� `
k(⇢, q)) |d⇢|

 C

0

@

lnR

ln↵+� `
+
`2 lnR

R ln� `
+

8

<

:

`2 ln R
R lnβ `

for q = 1

`
2
q

R
1
q lnβ `

for q > 1

1

A .

Because ` is a parameter, we assume ` = int(R
1
4 ), where int(x) denotes the integral

part of x, and obtain
A1R = o(1) as R ! 1. (5.3)

Now we consider A2R. Using formula (5.2), the definition of v(⇠) and the definition
(2.4) of the quasi derivatives, integrating once by parts, and applying formula (2.5)
we infer

BR(⇢) :=

Z 1

0

(zk(⇠, ⇢) �
!k

n⇢n�1

1

v(⇠)
e�⇢!k⇠)F`(⇠) d⇠

=
1

�

Z 1

0

z
{n}
k (⇠, ⇢)F`(⇠) d⇠ �

!k

n⇢n�1

Z 1

0

e�⇢!k⇠ 1

v(⇠)
F`(⇠) d⇠

= �
1

�

Z 1

0

F`(⇠)dz
{n�1}
k (⇠, ⇢) +

1

�

Z 1

0

pn(⇠)z
{0}
k (⇠, ⇢)F`(⇠)d⇠

+
1

n�

Z 1

0

1

v(⇠)
F`(⇠)de�⇢!k⇠

= �
1

�
F`(1)z

{n�1}
k (1, ⇢) +

1

�
F`(0)z

{n�1}
k (0, ⇢) +

1

�

Z 1

0

z
{n�1}
k (⇠, ⇢)F 0

`(⇠) d⇠

+
1

�

Z 1

0

pn(⇠)zk(⇠, ⇢)F`(⇠)d⇠ +
1

n�

1

v(1)
F`(1)e�⇢!k �

1

n�
F`(0)

�
1

n�

Z 1

0

e�⇢!k⇠ F 0
`(⇠)

v(⇠)
d⇠ �

1

n�

Z 1

0

e�⇢!k⇠F`(⇠)
p1(⇠)

nv(⇠)
d⇠

=
1

�
F`(1)(

1

nv(1)
e�⇢!k � z

{n�1}
k (1, ⇢)) �

1

�
F`(0)(

1

n
� z

{n�1}
k (0, ⇢))

�
1

�

Z 1

0

F 0
`(⇠)(

1

nv(⇠)
e�⇢!k⇠ � z

{n�1}
k (⇠, ⇢)) d⇠ +

1

�

Z 1

0

pn(⇠)zk(⇠, ⇢)F`(⇠) d⇠

�
1

n2�

Z 1

0

F`(⇠)
p1(⇠)

v(⇠)
e�⇢!k⇠ d⇠.



2174 G. FREILING AND V. RYKHLOV

Now applying Lemma 5.6 we find

|BR(⇢)|

 C(
1

|⇢|n
|F`(1)|⌘(⇢) +

1

|⇢|n
|F`(0)|⌘(⇢) +

1

|⇢|n

Z 1

0

|F 0
`(⇠)e

�⇢!k⇠|⌘(⇢) d⇠

+
1

|⇢|2n�1

Z 1

0

|pn(⇠)F`(⇠)e
�⇢!k⇠| d⇠ +

1

|⇢|n
|

Z 1

0

F`(⇠)
p1(⇠)

v(⇠)
e�⇢!k⇠ d⇠|)

 C(
1

|⇢|n
(`

2
r ⌘(⇢) + `2⌘(⇢)(

Z 1

0

e�qRe(⇢!k⇠)d⇠)
1
q +

kF`k1
|⇢|n�1

+ |

Z 1

0

F`(⇠)
p1(⇠)

v(⇠)
e�⇢!k⇠d⇠|))

 C(
1

|⇢|n
(`

2
r ⌘(⇢) + `2⌘(⇢)k(⇢, q) +

`
2
r

|⇢|n�1
+ |

Z 1

0

F`(⇠)
p1(⇠)

v(⇠)
e�⇢!k⇠ d⇠|)).

Hence

|A2R| =
�

�

�

Z

�R

M(x, ⇢)BR(⇢)n⇢n�1 d⇢
�

�

� (5.4)

 C

Z

�R

(
1

|⇢|
(`

2
r ⌘(⇢) + `2⌘(⇢)k(⇢, q) +

�

�

�

Z 1

0

F`(⇠)
p1(⇠)

v(⇠)
e�⇢!k⇠ d⇠

�

�

� +
1

|⇢|n�1
)) |d⇢|.

For the evaluation of

E`(⇢) :=

Z 1

0

F`(⇠)
p1(⇠)

v(⇠)
e�⇢!k⇠ d⇠

we use the same method as we have already used for evaluating AR (applying the
best approximation polynomials, integrating by parts and so on). We find (cf. [13,
formula (2.7)])

E`(⇢) = O(
1

ln↵ `
+
`2

|⇢|
).

Substituting this estimate into (5.4), using Lemmas 5.7 and 5.8, choosing the param-

eter ` as int(R
1
4 ) we obtain

A2R = o(1) as R ! 1.

Consequently

AR = A1R + A2R = o(1) as R ! 1.

Formulas (ii), (iii), (iv) are obtained in the same way. Hence Lemma 5.9 has been
proved.

In a similar way to the proof of Lemma 5.9 we can prove
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Lemma 5.10. Let p1 2 H↵
q [0, 1], f 2 H�

r [0, 1], 1
q + 1

r = 1, ↵+ � > 1. If M(x, ⇢) is a

bounded function with respect to x 2 [0, 1], ⇢ 2 S and N(x, ⇢) = O(⌘(⇢)) for x 2 [0, 1],
⇢ 2 S, then the following asymptotic formulae are valid uniformly with respect to x

as R ! 1 :

(i)

Z

�R

M(x, ⇢)

Z x

0

e⇢!kx(zk(⇠, ⇢) �
!k

n⇢n�1

1

v(⇠)
e�⇢!k⇠)f(⇠) d⇠n⇢n�1d⇢ = o(1)

for k = 1, . . . , µ;

(ii)

Z

�R

M(x, ⇢)

Z 1

x

e⇢!kx(zk(⇠, ⇢) �
!k

n⇢n�1

1

v(⇠)
e�⇢!k⇠)f(⇠) d⇠ n⇢n�1 d⇢ = o(1)

for k = µ + 1, . . . , n;

(iii)

Z

�R

N(x, ⇢)

Z x

0

e⇢!kxzk(⇠, ⇢)f(⇠) d⇠ n⇢n�1 d⇢ = o(1)

for k = 1, . . . , µ;

(iv)

Z

�R

N(x, ⇢)

Z 1

x

e⇢!kxzk(⇠, ⇢)f(⇠) d⇠ n⇢n�1 d⇢ = o(1)

for k = µ + 1, . . . , n.
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