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1 Introduction
Arnold and Ng [3] introduced a bivariate second kind beta, or beta(2), distribution involving 8 indepen-
dent random variables with gamma distributions (subsequently such random variables will be referred to
as gamma components). It was identi�ed as the most general bivariate model whose marginals are ratios of
sums of independent gamma variables. The model involves 8 independent components U1, U2, ..., U8 with
Uj ∼ Γ(αj , 1), j = 1, 2, ..., 8. The two-dimensional random vector (X, Y) is then de�ned by

X = U1 + U5 + U7
U3 + U6 + U8

,

(1)

Y = U2 + U5 + U8
U4 + U6 + U7

.

This de�nes an 8-parameter family of bivariate distributions with beta(2) marginal distributions. If (X, Y)
is de�ned as in (1) then we write: (X, Y) ∼ BB(2)(α), to be read as (X, Y) has a bivariate second kind beta
distribution with parameter vector α. Each αi can assume any positive real value, so that the parameter space
of the model is (0,∞)8. A corresponding family of bivariate distributions with beta marginals of the �rst or
usual kind is obtained from (1) by de�ning

(V1, V2) = (X/(1 + X), Y/(1 + Y)).

Why there are 8 Uj’s, and where they are located in the model (1), may require some explanation. There
are four locations where a particular Uj may be placed. (1) In the numerator of X. (2) In the denominator of
X. (3) In the numerator of Y and (4) In the denominator of Y. The variables U1, U2, U3 and U4 appear only
once, and each one of them appears in only one of the four possible locations. A variable Uj cannot appear
in both the numerator and denominator of X, nor of Y, since otherwise the independence of numerators and
denominators, required for beta(2)marginals,would be destroyed.U5 appears in the numerator of both X and
Y. U6 appears in the denominator of both X and Y. U7 appears in the numerator of X and in the denominator
of Y, while U8 appears in the denominator of X and in the numerator of Y No Uj can appear in 3 or in 4 of
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the possible locations, since that would destroy the required independence of at least one numerator and
its corresponding denominator. If an additional independent gamma variable is introduced in one or two
permissible locations in (1) then it can be combined with one of the existing 8 Uj’s and no enrichment of the
model will result. Thus for example, if U9 is added to both numerators, then U5 +U9 will continue to play the
role of U5 with an adjusted shape parameter α5 + α9.

We adopt the convention that a random variable with a Γ(α, 1) distribution with α = 0 will be de�ned to
be a random variable that is degenerate at 0. By setting some of the αj’s in the Arnold-Ng model (1) equal to
zero, simpli�ed submodels (some of which have been discussed in the literature) will be obtained. Note that
after setting certain αj’s equal to zero, we must retain α1 + α5 + α7 > 0, α3 + α6 + α8 > 0, α2 + α5 + α8 > 0, and
α4 + α6 + α7 > 0, in order to continue to have beta(2) marginal distributions.

While this general bivariate beta model, and particularly its submodels, have demonstrated �exibility
and usefulness in practice, the focus of this paper is on a speci�c class of submodels of the beta(1) containing
only copulas, that is, distributions with uniform marginals. This paper is organized as follows. In Section 2,
we construct this speci�c class of copulas by limiting the parameter space and discuss how further limita-
tions of the parameter space can produce several familiar copula models discussed in the literature. In Sec-
tion 3, natural symmetries of the copulas are considered. Section 4 discusses higher-dimensional versions.
We demonstrate some examples of parameter estimation in Section 5, and �nish with concluding remarks in
Section 6.

2 Copulas
Our gamma based copulas are obtained by setting the values of the parameters in the Arnold-Ng(8) bivariate
beta distribution so that the marginals are Uniform(0, 1).

Recall that the Arnold-Ng 8-parameter bivariate beta model is of the form

(V1, V2) =
(

U1 + U5 + U7
U1 + U5 + U7 + U3 + U6 + U8

, U2 + U5 + U8
U2 + U5 + U8 + U4 + U6 + U7

)
, (2)

where U1, U2, U3, ..., U8 are independent random variables with Ui ∼ Γ(αi , 1), i = 1, 2, ..., 8.
In order to have uniform marginals the αi’s must satisfy:

α1 + α5 + α7 = 1, (3)
α3 + α6 + α8 = 1, (4)
α2 + α5 + α8 = 1, (5)

and
α4 + α6 + α7 = 1, (6)

where all the αi’s are non-negative (and necessarily ≤ 1).
We may rewrite these constraints in the following form:

α1 = 1 − α5 − α7;
α2 = 1 − α5 − α8;
α3 = 1 − α6 − α8; (7)
α4 = 1 − α6 − α7;

so that the parameter space, the set of permissible values for (α5, α6, α7, α8), may be de�ned by:

α5 ∈ [0, 1];
α6 ∈ [0, 1];

α7 ∈ [0, 1 − max{α5, α6}]; (8)
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α8 ∈ [0, 1 − max{α5, α6}].

It is convenient to use notation BB(i1, i2, ..., ik) to denote the model obtained from (2) by setting certain
αi’s equal to 0 and retaining only αi1 , αi2 , ..., αik in themodel. So, for α5 = α6 = 1 and α7 = α8 = 0, this model
reduces to the co-monotone copula (BB(5,6)), that is, V1 = V2. Likewise, if α5 = α6 = 0 and α7 = α8 = 1, this
model reduces to the counter-monotone copula (BB(7,8)), that is, V1 = 1 − V2. Also, if α5 = α6 = α7 =
α8 = 0 (BB(1,2,3,4)), then V1 is independent of V2. Therefore, this model encompasses a continuous space
of distributions with the co-monotone and counter-monotone copulas, also known as the Fréchet–Hoe�ding
bounds, and the independent copula as boundary points. Throughout this paper, correlations for this model
or its submodels are expressed in terms of Spearman’s Rank Correlation and are obtained by simulationwhen
they cannot be determined analytically.

Submodels of this family are of particular interest. For example, the simplest is given when α5 = α, and
α6 = α7 = α8 = 0, so that it takes the form:

(V1, V2) =
(

U1 + U5
U1 + U5 + U3

, U2 + U5
U2 + U5 + U4

)
, (9)

This family has positive correlations ranging from 0 to 0.478 (discussed in more detail later in the section),
and the correlation has a monotone relationship with the parameter α. At α = 0, this model reduces to the
independent case. A larger submodel, the Magnussen model, is obtained by setting only α7 = α8 = 0 (see
[5]). It thus is of the form:

(V1, V2) =
(

U1 + U5
U1 + U5 + U3 + U6

, U2 + U5
U2 + U5 + U4 + U6

)
, (10)

where

α1 + α5 = 1, (11)
α3 + α6 = 1, (12)
α2 + α5 = 1, (13)

and
α4 + α6 = 1, (14)

where all the αi’s are non-negative (and necessarily ≤ 1). This is a two parameter family of copulas param-
eterized by α5, α6 ∈ (0, 1). The other four αi’s are determined by (11)-(14). This model exhibits a full range
of positive correlations, with the independent copula and the co-monotone copula appearing at the two ex-
tremes of the parameter space.

The Arnold-Ng 5 parameter model (introduced in [3]) is obtained by setting α3 = α4 = α5 = 0, and is
therefore denoted by BB(1,2,6,7,8). The corresponding family of copulas includes those of the form:

(V1, V2) =
(

U1 + U7
U1 + U7 + U6 + U8

, U2 + U8
U2 + U8 + U6 + U7

)
, (15)

where

α1 + α7 = 1, (16)
α6 + α8 = 1, (17)
α2 + α8 = 1, (18)

and
α6 + α7 = 1, (19)

where all the αi’s are non-negative (and necessarily ≤ 1). This is a one parameter family of copulas parame-
terized by α1 ∈ (0, 1). The other four αi’s are determined by (16)-(19).

Note that if (V1, V2) ∼ BB(1, 2, 6, 7, 8) then
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• (1 − V1, 1 − V2) ∼ BB(3, 4, 5, 7, 8)
• (1 − V1, V2) ∼ BB(2, 3, 5, 6, 7)
• (V1, 1 − V2) ∼ BB(1, 4, 5, 6, 8)
We will denote these models by

AN(5A)=BB(1,2,6,7,8),
AN(5B)=BB(3,4,5,7,8),
AN(5C)=BB(2,3,5,6,7), and
AN(5D)=BB(1,4,5,6,8).
For these to be copulas we must impose the following constraints:
For AN(5A):

α1 + α7 = 1, (20)
α6 + α8 = 1, (21)
α2 + α8 = 1, (22)
α6 + α7 = 1. (23)

For AN(5B)

α5 + α7 = 1, (24)
α3 + α8 = 1, (25)
α5 + α8 = 1, (26)
α4 + α7 = 1. (27)

For AN(5C)

α5 + α7 = 1, (28)
α3 + α6 = 1, (29)
α2 + α5 = 1, (30)
α6 + α7 = 1. (31)

For AN(5D)

α1 + α5 = 1, (32)
α6 + α8 = 1, (33)
α5 + α8 = 1, (34)
α4 + α6 = 1. (35)

So we have four one parameter families of copulas.
But there are 45 more one parameter submodels that can be constructed by setting three of the �ve pa-

rameters to zero and applying the appropriate constraints. Four of the
(8
5
)
= 56 choices must be excluded

as they would produce zeros in one of the numerators or denominators in (1), and four additional choices all
represent the same family as the following example shows. Take the BB(4,5,6,7,8) model for which we need
to impose the following constraints:

α5 + α7 = 1, (36)
α6 + α8 = 1, (37)
α5 + α8 = 1, (38)

α4 + α6 + α7 = 1. (39)

We can take α8 = α ∈ (0, 1). Then α5 = 1 − α, α6 = 1 − α, α7 = α, and, necessarily, α4 = 0, so our model
is equivalent to the BB(5,6,7,8) with constraints. But how can one pick among all these models, and what
properties do they have?
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Let us look at the Olkin-Liu BB [7] model:

(V1, V2) =
(

U1
U1 + U6

, U2
U2 + U6

)
, (40)

For this to be a copula, we need α1 = α2 = α6 = 1. Thus we have a 0-dimensional family of copulas. Three
related copulas are obtainable by re�ection about 1/2. Clearly, when α5 = 1 for the simple family (9), it
reduces to a re�ected version of (40), andwhen theMagnussen parameters satisfy α5 = 1−α6, it also reduces
to (a possibly re�ected version of) this model. As a copula, the Olkin-Liu BB model is also known as the
Ali-Mikhail-Haq copula [1], a distribution that tends to appear in a vast array of copula families, including
many of the Archimedean type (It should be noted thatwhile this paper refers to the “Ali-Mikhail-Haq” copula
multiple times, the copula that is being referenced is only one speci�c member of an entire family of copulas
which is not a subset of the present family.) [6].

Let us return to consider the Arnold-Ng(5A) model of the form:

(V1, V2) =
(

U1 + U7
U1 + U7 + U6 + U8

, U2 + U8
U2 + U8 + U6 + U7

)
, (41)

where

α1 + α7 = 1, (42)
α6 + α8 = 1, (43)
α2 + α8 = 1, and (44)
α6 + α7 = 1, (45)

where all the αi’s are non-negative (and necessarily ≤ 1). This is a one parameter family of copulas parame-
terized by α1 ∈ (0, 1). The other four αi’s are determined by (42)-(45). So we have α1 = α2 = α6 = α ∈ (0, 1)
and α7 = α8 = 1 − α. A plot of the correlation of the AN(5A) model, as a function of α, is given in Figure 1.

One immediate observation about the AN(5A)model is that its range of correlations is not full, that is, it is
a proper subset of [−1, 1].While thismay at �rst thought appear to be a disappointing range of correlations, it
should be noted that this family exhibits a di�erent feature that may be desirable for many applications: it is
a continuous collection of distributions ranging from the counter-monotone copula (having a correlation of
-1) to an Ali-Mikhail-Haq copula, which favors strong upper tail (positive) dependence only, which coincides
with the 0.478 correlation. Contour plots of the densities for various values of α are shown in Figure 2. It is
applicable to phenomena that do not exhibit signi�cant lower tail dependence, but do exhibit a trade-o�
between upper tail dependence and an overall negative correlation. For example, if X1 represents a citizen’s
government entitlements, and X2 represents the same citizen’s overall wealth, then applying the AN(5A) to
V1 = FX1 (X1) and V2 = FX2 (X2), α could be a measure of the government’s plutocratic tendencies, since we
might observe α nearer to 0 for socially democratic governments, while α may be much closer to 1 for highly
plutocratic governments.

Remark Among the 4 avatars of the copula based on the Arnold-Ng 5 parameter bivariate beta model,
two, namely AN(5A) and AN(5B), contain the counter-monotone copula but not the co-monotone copula. In
contrast AN(5C) and AN(5D) contain the co-monotone copula but not the counter-monotone copula.

3 Symmetry considerations
There are three symmetry conditions that are on occasion deemed to be desirable properties for modeling
purposes. It is therefore of interest to identify which members of our general copula family exhibit such sym-
metry features. A copula will be said to be marginally symmetric if V1 d= 1 − V1 and V2 d= 1 − V2, where d=
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Figure 1: AN(5A) (Spearman) correlation as a function of α.

signi�es equality of the distribution functions associated with the random variables. Clearly any BB copula
with parameter vector α satisfying the constraints (3)-(6) will exhibit marginal symmetry since V1 and V2
have Uniform(0, 1) distributions.

Radial symmetry requires more restrictions. In order for a copula to be radially symmetric it must be the
case that (V1, V2) d= (1 − V1, 1 − V2). For this to be true the parameter vector α must be of the form

α = (α, α, α, α, β, β, 1 − α − β, 1 − α − β),

where 0 ≤ α + β ≤ 1. We thus have a two parameter subfamily of radially symmetric copulas.
For joint symmetry, evenmore is required, namely (V1, V2) d= (V1, 1−V2) d= (1−V1, V2) d= (1−V1, 1−V2).

For this to occur we must have a copula with parameter vector of the form

α = (α, α, α, α, (1 − α)/2, (1 − α)/2, (1 − α)/2, (1 − α)/2).

where 0 ≤ α ≤ 1. We thus have a one parameter subfamily of jointly symmetric copulas.

There is another “symmetry” condition that can be considered.Wewill say that a copula is exchangeable
if (V1, V2) d= (V2, V1) . For this to be the case, the parameter vector of the copula must be of the form

(α, α, β, β, γ, γ, 1 − α − γ, 1 − β − γ).

This is a three parameter family of copulas where the parameters satisfy the following constraints

0 ≤ γ ≤ 1, 0 ≤ α ≤ 1 − γ, and 0 ≤ β ≤ 1 − γ.

As examples, the AN(5C) and AN(5D) (among many others) are exchangeable.

4 On multivariate gamma based copulas
k-dimensional versions of the Arnold-Ng beta(2) distribution were mentioned in Arnold and Ghosh [2], in a
context of copula models. First we consider the three dimensional case. It will then be evident how to deal
with higher dimensions.

A three dimensional beta(2) distribution will be one whose structure is of a form which involves 26 in-
dependent gamma distributed Uj’s. Thus, there are a total of 26 parameters in the model where Uj , j =
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Figure 2: AN(5A) densities for various values of α.

1, 2, ..., 26 are independent variables with Uj ∼ Γ(αj , 1) for each j. The model can then be expressed in
the following form.

X = U1 + U7 + U8 + U9 + U10 + U19 + U20 + U21 + U22
U4 + U11 + U12 + U13 + U14 + U23 + U24 + U25 + U26

, (46)

Y =U2 + U7 + U11 + U15 + U16 + U19 + U20 + U23 + U24
U5 + U9 + U13 + U17 + U18 + U21 + U22 + U25 + U26

, (47)

Z = U3 + U8 + U12 + U15 + U17 + U19 + U21 + U23 + U25
U6 + U10 + U14 + U16 + U18 + U20 + U22 + U24 + U26

. (48)

We must then impose 6 constraints to ensure that the associated trivariate beta distribution has uniform
marginals.

The pattern for the dimensions of the parameter spaces of the multivariate copula models can now be
recognized. The univariate model involves 2 U’s with two constraints, i.e., a 31 − 1 − 2 = 0 parameter model.
The bivariatemodel involves 8U’s with 4 constraints, i.e., a 32−1−4 = 4 parametermodel. The trivariate case
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involves 26 U’s with 6 constraints, i.e., a 33 −1−6 = 20 parameter model, and, in general, the k-dimensional
model involves 3k − 1 U’s with 2k constraints.

Use of fully parameterized k-dimensional copulas would almost never be recommended. Instead simpli-
�ed sub-models, obtained by setting many of the α’s equal to zero, can be expected to be adequate for many
data sets.

5 Parameter estimation
In general, densities are not available in analytic form for the gamma-based copulas under discussion, except
for special cases, such as the Ali-Mikhail-Haq case. So, if a sample is available from the bivariate gamma
based copula then maximum likelihood is unavailable for parameter estimation. What we do have available
are relatively simple expressions for mixed moments of the coordinate random variables. In principle, then,
we could choose several sample mixed moments, equate them to their expectations and solve the resulting
equations for the αi parameters. This, in many cases, will prove to be a non-trivial exercise. However, it will
typically be feasible for simpli�ed sub-models involving only a few of the αi’s. With fewer equations to deal
with, the method of moments approach is often not di�cult to implement.

Example 1. As a very simple example consider a model in which α1 = α2 = α3 = α4 = 0. The model is thus of
the form

V1 = (U5 + U7)/(U5 + U7 + U6 + U8), and
V2 = (U5 + U8)/(U5 + U8 + U6 + U7). (49)

In this one parameter family of copulas we can denote α5 by α and then we have α6 = α and α7 = α8 = 1 − α. In
this case, we can verify that

E(V1V2) = (α + 1)/6.
If we de�ne MV1V2 = (1/n)∑n

i=1 V1iV2i, then a moment based estimate of α will be

α̃ = 6MV1iV2i − 1.

Example 2. Suppose that (V1, V2) is of the AN(5A) type. While it may be tempting to make use of the simple
relationship between the Spearman correlation and the parameter α shown in Figure 1 in a method of moments
approach, it is not the case that Spearman is the best option. Figure 3 depicts the threemost well-known correla-
tion measures for the AN(5A) model. In addition to the correlations, the �gure shows 95% con�dence ranges of
values for the correlation measures, given observed samples of the shown sizes. In this light, Kendall’s Tau ap-
pears to be the superior choice (at least among these three choices). But even using Kendall’s Tau, it is clear that
samples would need to be large in order to obtain reasonably accurate estimates of α. For example, at n = 50,
a 95% con�dence interval for α would have a width of about 0.4, while for n = 250, that width would reduce to
about 0.15, depending on the actual value of α.

Examples in whichmore of the α’s are non-zero will generally require iterative solutions of themoment equa-
tions, but except for that, they can be expected to yield reasonable estimates of the parameters provided that
sample sizes are adequate, and enough moments are included in the estimation procedure. More complex
examples exist for which a simple method of moments approach may be inadequate.

Example 3. Consider the two-parameter case where α, β ∈ [0, 1], α5 = αβ, α6 = α, and α7 = (1 − α)β, and
α8 = (1−αβ)(1−α), anda sample, v, of size n, is available. This is a two-parameter subfamilywhich contains both
the co-monotone copula and the counter-monotone copula, and therefore can exhibit the full range of correla-
tions. It also, unsurprisingly, includes two rotated versions of the Ali-Mikhail-Haq copula. Approximate Bayesian
Computation, or ABC, can be applied, where the assumed prior for (α, β) can be any distribution deemed ap-
propriate. Here, we will assume it to be a bivariate distribution with independent Uniform(0, 1) marginals.
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Figure 3: AN(5A) correlations, Pearson, Kendall’s Tau, and Spearman, as a function of α, with 95% con�dence bounds, obtained
from simulation.

Now, given the behavior of this particular subfamily of distributions based on (α, β), we choose eight speci�c
measures. The �rst four are simply proportions; partitioning the unit square into four equally-sized squares, we
record the total number of observations in each, and divide by n. For the other four, we compute the four rotated
Ali-Mikhail-Haq log-liklihood functions on the data contained in the same four regions (normalized).

S1(v) =
n11
n , where n11 =

n∑
k=1

I
{
v1k ≤

1
2&v2k ≤

1
2

}
,

S2(v) =
n12
n , where n12 =

n∑
k=1

I
{
v1k ≤

1
2&v2k >

1
2

}
,

S3(v) =
n21
n , where n21 =

n∑
k=1

I
{
v1k >

1
2&v2k ≤

1
2

}
,
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Figure 4: Comparisons of actual values of α and β with the predicted values by the ABC procedure. The three rows of plots rep-
resent sample sizes of 100, 250, and 1000, respectively.

S4(v) =
n22
n , where n22 =

n∑
k=1

I
{
v1k >

1
2&v2k >

1
2

}
, (50)

S5(v) =
1
n11

∑
k:v1k≤ 12&v2k≤ 12

log
[
(1 + v1k)(1 + v2k) − 2 + (1 − v1k)(1 − v2k)

(1 − (1 − v1k)(1 − v2k))3
]
,
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S6(v) =
1
n12

∑
k:v1k≤ 12&v2k> 1

2

log
[
(1 + v1k)(2 − v2k) − 2 + (1 − v1k)v2k

(1 − (1 − v1k)v2k)3
]
,

S7(v) =
1
n21

∑
k:v1k> 1

2&v2k≤ 12

log
[
(2 − v1k)(1 + v2k) − 2 + v1k(1 − v2k)

(1 − v1k(1 − v2k))3
]
,

S8(v) =
1
n22

∑
k:v1k> 1

2&v2k> 1
2

log
[
(2 − v1k)(2 − v2k) − 2 + v1kv2k

(1 − v1kv2k)3
]
,

We tested the ABC procedure for this family by arbitrarily selecting 100 values of (α, β) from a
Uniform

(
(0, 1) × (0, 1)

)
distribution, simulating a sample for each, and applying the ABC procedure, repeating

for three di�erent sample sizes: 100, 250, and 1000. Figure 4 depicts the results. It can be observed that there
is much more di�culty in estimating β than α. This is a common issue, and oftentimes with various subfamilies
such as this, reasonable estimation may be assured with only very large sample sizes [4].

6 Concluding Remarks
The present paper has provided an introduction to a broad spectrum of gamma based copula models and
sub-models which can potentially be useful additions to the modeler’s tool kit. These new �exible copula
models can be expected to �nd application in cases in which the simpler well-known copula models prove
to be inadequate to adapt to particular data sets, or where “big” data is encountered. It will be unlikely that
use of the full 4 parameter model will be frequently deemed appropriate.
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