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117. On a General Form of the Weyl Criterion in the
Theory of Asymptotic Distribution. I

By Lauwerens KUIPERS® and Aart Johannes STAM**
(Comm. by Zyoiti SUETUNA, M. J. A., Sept. 12, 1969)

I. Introduction. There are a few examples of using probability
theory methods in the theory of asymptotic distribution mod 1, and it
seems quite natural to do so, since the theory in question deals with
the problem of the distribution of the fractional parts of the elements
of a sequence of real numbers and of the values of a realvalued func-
tion defined on [0, c0). In fact, the classical Weyl criterion concerning
sequences of real numbers ([1]) has been viewed from the point of
probability theory ([2]-[4]) and in [5] the method used in [4] is applied
to the case of distributing the values mod 1 of functions defined on
[0, o). In the present paper we apply (Theorem 5) a (classic) result
on the convergence of a class of distribution functions in order to find
a very general form of the Weyl criterion, covering even the case of
the Niven-Uchiyama criterion ([6], [7]) in the theory of the distribu-
tion of sequences of integers modulo m, and also the case of some
summability-procedure distribution of sequences of real numbers, such
as the Borel summability distribution of a sequence of real numbers
(Application 6).

I1. Definitions. Let L denote either the interval [0, o) or the
sequence 1,2, ... .

The function F(x) defined on the extended real line is said to be
a distribution function (abbreviated d.f.) if F(x) is bounded, non-
decreasing and continuous on the left. We have then F(—oco)=1lim F(x)

and F(co0)=lim F(x). o

I

Let for each t ¢ L a d.f. F,(x) be defined.
Now F,(x) is said to converge weakly to a d.f. F(x) as t—oo, or
F )5 F (), it
%im {F(b)—F(0)}=F()—F(a) (1)
for every pair of continuity points e and b of F(x). (See [8], p. 76,
where the notion of vague convergence is defined, slightly different

from the above notion of weak convergence. Also slightly different
is Loeve’s description of weak convergence ([3], p. 178), where
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Fn(x)gF(x) implies that F',(x)—F(x) on the continuity set of F'.)
F,(x) is said to converge completely to a d.f. F(x) as t—oo, or

Ft(x)—c»F(x), if F,(x) converges weakly to F(x) and if in addition
lim {F',(c0) — F',(— c0)} =F(00) — F(— c0). (2)

t >0

Example. Let F(2)=0 (x<0) and =1 (#>0). Then define F,(x)
=F(x+n). We have then lim {F,(0)—F,(a)}=0 for every pair of

n— 0

real numbers ¢ and b. So F,(x) converges weakly to every F(x) that
is identically equal to a constant. This implies that (2) is not satisfied.
Hence F,(x) does not converge completely. See [3], p. 178.
Let F,(x)(t € L) be a class of d.f. with the properties:

F,(&)=0if £<0,

F)=V@®) if £>1, (3)

V(t)<M< oo for all te L.
Suppose F,(z) is weakly convergent as t— oo, and let F(x) be the weak
limit. Then we have obviously F(§)=V if £>1, where V is a constant.
We suppose that F(§)=0 if £ <0, without loss of generality. We may
show that F,(x) is also completely convergent. In fact this is an obvi-
ous conclusion from F(b) — F (a)—F(b)—F(a) as t—oo (<0 and b>1),
and F.,(a)=F(a)=0. Moreover we have the following two theorems
which are mentioned here without proof.

Theorem 1. Ifaclassof d.f. F(x), t e L, satisfies (3), then every
sequence F, (x) (n=1, 2, ---) contains a completely convergent subse-
quence F,nk(x) (k=1,2, --.) (Helly’s theorem) ; in other words: Every
sequence of d.f. is weakly compact (see [3], p. 179).

Second we have

Theorem 2. Let the class of d.f. F(x), te L, satisfy (8). Let K
be the class of all d.f. G(x) such that to any G(x) e K there exists a

sequence t, (m=1,2, ...; t,eL) such that Ftn(x)-iG(x) as n—s oo.
Then we have Ft(x)ﬁ»F(x) as t—oo if and only if K consists of one
element F only. We refer to [3], p. 180. Notice that Loéve’s defini-
tion of complete convergence differs from ours and that his statements
about the variations such as F(co) —F(— o) are set in terms of
theorems.
III. Fourier-Stieltjes coefficients. Let F and G be d.f. with
the properties
Fx)=0if <0, F(x)=V if >1, (4)
Gx)=0if <0, Gx)=W if 2>1, (5)
Define for all integers n:

a, =Lexp 2rinxdF (x), (6)
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b, =Lexp 2rinedG(x). (7

a, and b, are called the Fourier-Stieltjes coefficients of F'(x) and G(x),
resp. and R=(— oo, c0).

Let 4F(£) denote the increase of the d.f. Fi(x) at x=&, or AF(§)
=F(+)—-F(&).

Theorem 3. Let F and G have the properties (4) and (5), resp.
Assume that

anzbn (’}’L:O, 1, “'), (8)

then there is a constant ¢ such that
G@)=F@)+c (0<z<1), (9)
A4G0)+ AG()=4F(0)+ AF(1). (10)

Moreover, if F(x) is continuous at x=0 and x=1, then F(x)=G(x)
(— oo <2< o).
Proof. Since a_,=a, and b_,=Db,, the assumption (8) holds also

for n=—1, —2, .... Evidently a,=b, implies.
V=W. 11
Starting from (6) and (7) we find by integrating by parts:

o,=V—2rin| F(y) exp 2rinydy, (12)

R
b= W—zmj G(y) exp 2rinydy (13)

R
for all integers n. Now (8), (11), (12), and (13) imply that F(y) and
G(y) have the same Fourier coefficients for all n=41, -2, .... This

implies that there is a constant ¢ such that
Gy)=Fw)+c, a.e.on[0,1].
Since F(x) and G(x) are continuous on the left we have therefore (9).
Now we turn to the proof of (10). We have
4G(0)+46G1)=G(0+)—-G0)+GA+)—-GQ)
=W —{G()—GO0+)}
=V —{FQ1)—F(0+)} (because of (9))
=4F(0)+ 4F(1).
Finally, if 4F(0)=4F(1)=0 (or: if F(x) is continuous at =0 and at
x=1), then by (10) we have 4G(0)=4G(1)=0 and so F(1)+¢c¢=GQ)
=GA4+)=W and FQ=FQA4)=V which implies ¢=0 according to
au.
Theorem 4. Let the class of d.f. F,(x), te L, satisfy (3). Let
F(x) be o d.f. with (4) and such that AF(0)=4F(1)=0. Then we have

F2)5F(x), as t—co,
of and only if for n=0,1,2, ...
lim | exp 2rinaxdF ,(x) =j exp 2rinxdF (x). 14)
R R

t—o0

Proof. According to the Helly-Bray theorem (see [3], p. 182) the
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complete convergence of F',(x) to F'(x), as t— oo, implies (14).
Now suppose that (14) is satisfied. Then apply Theorem 1. Let
F..(x) be a sequence of d.f. contained in the class F,(x) which con-

verges completely to a d.f. G(x), say. Again apply the Helly-Bray
theorem :

lim [ exp 2rinzdF, ()= J exp 2minzdG(x)
R R

n—co

and combining this result with (14), we find
_[ exp 2rinxdG(xr) =I exp 2rinxdF(x).
R R

Hence according to Theorem 3 and the assumption on the continuity
of Fi(x) at =0 and =1 we find that F()=G(z). This implies that
the class K of Theorem 2 consists of only one function F, and that
therefore F,(x)—>F(z) as t—oo.

Remark 1. If in Theorem 4 we drop the condition on the con-
tinuity of F'(x) at =0 and =1, then (14) implies that the class X of
Theorem 2 consists of d.f. satisfying (9) and (10), according to the
first part of Theorem 3. We can show however that in this case

lim {F(b)—F(a)}=F(b)—F(a) 15)
for every pair a, b of continuity points of F with
0<a<b<1. 16)

For, let ¢, be a sequence from L with ¢,—co such that
lim{F, (b)—F, (0)}=A.

n—oc0

Now ¢, contains a subsequence 7, such F, (x)—G(x), say, as k—oo.
Then G(x) satisfies (9) according to Theorem 3. Hence
lim (F.,(b)—F.,(@)}=G(b) - G(a), an

for every pair of continuity points ¢ and b of G (definition of complete
convergence), and thus this difference is equal to F(b)—F(a). So
A=F((b)—F(a). As the passage to the limit in (15) holds for some sub-
sequence of any sequence from L, according to the preceding argu-
ment, we have shown (15). We shall see that this statement has an
important application.

IV. The Weyl criterion and its generalizations. Let f(f) be a
realvalued Borel measurable function defined on [0, 0). Let [f ()],
(f(®) denote the integral and the fractional part of f(¢) respectively.
Let B(t) be a nondecreasing function defined on [0, o) and continuous
on the left. Let y; ., () be the characteristic function of the interval
[0, £). Define the following class of d.f.:

_ 1
Fr (&)= B(D) L Xoo,o (FENAB() (0<E<T) (18)
for all T with B(T)>0, and
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Fr(§)=0(<0),
F(5)=1(E>D. (19)
It is easily seen that F (&) is continuous on the left. For,

Fp(&)—Fr(E—0) =§(1T)j Teeoso (FONAB),

and the integral on the right of this equality tends to zero as d—0+
by the Lebesgue bounded convergence theorem.
Let F(&) be a d.f. with
F(&)=0(<0)and F(§)=1(§>1). (20)
Theorem 5 (Weyl criterion). Let the class of d.f. F;(§) and the
d.f. F'(§) be defined as in the first lines of IV. It is assumed that
AF(0)=4F(1)=0. Then we have

Fr(&)SF(E) as T—oo, @1
if and only if for k=1,2, . ..
. 1 (7 . e .
lim s | exp 2rik /(OB = f ‘exp 2rikadF (2) 22)

Proof. According to Theorem 4 we have (21) if and only if for
k: 1, 2, PR

lim | exp 2rikadF,(z) =j exp 2rikadF(x). 23)
R R

T
We show that the first member of (23) is equal to the first member of
(22). Let T be fixed. Consider the measure space (2, B, pr) where

2=I[0, T), B the class of all Borel sets on [0, T), and let for every set
AcP

1
(A) = —B(—T)L dB(t).

Now (f(?)) is Borel measurable on (2, 8, ). Hence (18) implies
Fr(&)=p(E,), where
E={t:te2,0<(f()<E}.
By applying a well-known transformation theorem (see [9], sec. 39,
Theorem C) one finds

. . . 1 (T .
~Lzeicp 2ntkxdF »(x) _jg exp 2rikx f(H)dpu(t) = B ) exp 2rik f(t)dB(t).

(Direct computation gives the same result:

f}e exp 2rikadF ((x) = J:exp Zﬂikxd—ézlﬁjjX[o,x)((f(t)))dB(t)
1 ("([eooni
- _B.mjo erXp 2mikad XEO,w)((f(t)))} dB(t)

—_— 1 7 ;
- f "exp 2rik f(t)dB(t).)

Now letting T— o one finds the conclusion of the theorem.
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Remark 2. If the condition 4F(0)=4F(1)=0 is removed from
Theorem 5, in which case we have 4F(0)+4F(1)>0, then (22) is
necessary and sufficient in order to have

lTirg {Fr(b)—F(@)}=F(b)—F(a) (24)
for every two points of continuity a, b of F(x) with 0<a<b<1,
according to Remark 1.

(To be continued. References will be found at the end of the
second note.)



