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Abstract. Recently P. Braam pointed out that Nahm's adaption of the ADHM
procedure to the case of monopoles equally well applies to instantons over flat
tori, relating them to instantons over the first Brillouin zone. We show that this
construction has an inverse. Hence the Nahm transform actually is a duality
transform.

Introduction

It is an enticing thought that Bloch's analysis [1] might be the appropriate means
for studying Yang-Mills fields over flat tori. Due to the non-linear character of the
Yang-Mills equations, however, one may doubt that such a method is expedient.
in this light it is a remarkable observation of Braam [2] that Nahm's
considerations on the construction of monopoles [3] may be translated to
instantons over flat tori. While Braam associates an instanton over the respective
Brillouin zone T (dual torus) to every instanton over a torus T, we shall give a
formulation of his observation which will allow us to prove the invertibility of this
construction: after repeated application of the Nahm transform we recover the
original instanton.

The ideas presented here may also be interpreted as an explicit version of some
ideas of Mukai [4] if one takes into account the theorem of Donaldson, Yau, and
Uhlenbeck [5] relating the stability of vector bundles to the existence of
Hermitian-Einstein connections.

0. Vector Bundles over Flat Tori

We consider a four dimensional flat torus T=R4/y4, defined by a lattice A CM4.
Every vector bundle over T may be described by matrix-multipliers. A matrix-
multiplier e of rank n is defined to be a map e: R4 x Λ-^GL(n, (C), e: (x, λ) K* e(x, λ\
satisfying the condition

e(x9 λ + μ) = e(x + μ, λ)e(x9 μ). (0.1)
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The associated vector bundle is obtained as a quotient of R4 x (P over A, where
the action of A is given by λ: (x, z) i—»(x + λ, e(x, λ)z) for every λ e A. A section S of
this vector bundle may be identified with a function S R4-^" obeying S(x + λ)
= <φc, A)S(x), Ί e yi, whereas connections behave as

A(x + λ) = e(x, λ)A(x, λ)e ~ l(x, λ)-e~ *(*, λ)de(x, λ). (0.2)

Remark. In what follows we restrict ourselves to unitary matrix-multipliers.
The Dirac operators we shall use in the sequel are D:Γ(T,E®S~)

->Γ(T,E®S + ] and D:Γ(T,E®S+)->Γ(T,E®S~). Here S± are the trivial spinor
bundles over T corresponding to the trivial spin structure. Explicitly, the Dirac
operators associated to a covariant derivative V are D\=e\VΛ and D: =eaVa with
β4: = 1 and βj: = iσ p j = 1,2,3, the σ7 being the Pauli matrices.

I. Construction of the Dual Instanton

On the torus T=R4/Λ there exists a group of flat line bundles associated to the
representations of the fundamental group π^T^Λ, which are parametrised by
the dual torus T: =R4//1*. These line bundles {Lk}kef are given by constant matrix
multipliers of the form e(x, λ): = eίkλ.

A connection on a vector bundle E over T induces a connection on the twisted
vector bundle E®Lk, k e f. If the connection on E is self-dual and irreducible in the
sense that the structure group cannot be compressed to U(r) x U(n — r), 0<r<n,
then the same holds for the induced connection on E®Lk. From the irreducibility
it follows that E®Lk has no non-zero covariant constant sections. Next we observe
that for an irreducible self-dual connection the Dirac operator Dk associated to the
induced connection on E®Lk has a trivial cokernel, cokerDfc = 0. To prove this
recall the identities cokerDk = ker£)k, kerDk = kerDk/)k, and upon using self-duality
DkDk = Δk. Here Λk denotes the covariant laplacian operating on the sections of
E®Lk®S +. It is obvious that an element of cokerDk corresponds to a covariant
constant section of E®Lk. According to the above there is no such section besides
the zero section. The Atiyah Singer index theorem [6] now yields that dimkerZ)^ is
in fact constant, i.e. it is independent of fee T: because of index D^^dimkerD^ and
c2(£®Lfc)[T]=c2(£)[T] we obtain -dimkerDk = c2(£)[Γ]. Due to this

E:= (J {/c}xkerD f c

k e f

defines a vector bundle over the dual torus f called the bundle dual to E. In order
to get more explicit formulae it is convenient and completely equivalent to the
preceding description to work with a family of connections on the fixed vector
bundle E. The family of connections is obtained by substituting
A h-» Ak: = A — ikΛdxΛ9 k e R4. We denote the Dirac operator associated to Ak again
by Dk. In terms of sections the change of description is just multiplying the sections
of E®Lk with e~ίkx.

Because the pull-back of the dual bundle E by ρ: R4 t-> R4/Λί* is trivial, it is
possible to find an orthonormalised family of sections {[//x, k)}jej of E forming a
basis of ker Dk and smoothly depending on fc e R4. Note, for fixed k e R4 and μ e A *
the basis {e~ίμxUj{x,k + μ)}jeJ is equivalent to the one given above. In matrix
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notation this equivalence reads

U(x, fc) : = (ί/Λx, fc), . . ., [7v(x, ίc)) , - v : = c2(E) [T] ,

e-iμkU(x,k + μ)=U(x,k)a*(k,μ).

The matrices α(fe, μ) appearing in this formula actually form a unitary matrix
multiplier defining the dual bundle E. Stated differently, eίkxU(x,k) is the
isomorphism that maps the fibre Ek of E over kef to kerDkCΓ(T,E®Lk(S)S~).
Upon using this isomorphism we obtain a canonical connection A on E. This
connection is explicitly given by the formula

AΛ(k) : - f dx U\x, fc)-J- U(x, k] . (1.2)
T GkΛ

The important fact about the canonical connection on E is the following
observation of P. Braam.

Theorem (P. Braam). The canonical connection A on the bundle E dual to E is self-
dual

Proof. Upon using the Greens function of Ak = DkDk,

AkG(x,y;k)=-δ(x,y), (1.3)

and the projection onto the orthogonal space of kerDk,

DkG(x,y;k)Dk= -δ(x,y)+U(x,k)Vi(y,k), (1.4)

it is straightforward to compute the curvature of A,

Faβ(k} = 2i J dxdyV\x,k)ήΛβG(x,y\k)U(y,k), (1.5)

with e^β — δΛβ -f ίήΛβ. The self-duality of F(k) now is a direct consequence of the self-
duality of ήΛβ. Π

Note. The proof requires the commutativity of DkDk with all the eΛ, which is
equivalent to the self-duality of A.

Collecting the results yields the following theorem.

Theorem 1. Let (E, A) be an unitary vector bundle E over a flat four dimensional
torus T endowed with an irreducible self-dual connection A and with c1(£) = 0. Then
the kernel of the associated family of Dirac operators {Dk}kef defines a unitary
vector bundle E over the dual torus f with c1(£) = 0, rank£= — c2(E)[T~\ and
— c2OE)[T] = rank£ if rankE^2. Furthermore there exists a canonical self-dual
connection A on E.

Remark. The relations between the Chern classes follow from the index theorem for
families of operators [6].

Definition. The datum (E, A) is called the Nahm transform of (£, A).

II. The Inversion of the Nahm Transform

This section is devoted to the proof of the following theorem.
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Theorem 2.1. The Nahm Transform is invertible in the sense that it can be applied to
(E, A) leading back to the original datum (E, A).

As a corollary we shall obtain the subsequent corollary.

Corollary 2.2, The Nahm transform maps irreducible self-dual connections to
irreducible self-dual connections.

The first part of the proof of Theorem 2.1 is checking that the kernel of the dual
Dirac operator yields a vector bundle over the original torus T. By dual Dirac
operator we mean the Dirac operator D associated to the connection A on E over
f. Notice that the flat line bundles over T are parametrised by T, so that the family
of operators we now have to dual with is {Dx}xeT.

Lemma 2.3. Let χ(/c, x) be defined by

πχ(k, x) = v(TY/2eίkx J dy U*(y, k)G(y,x\ k) , (2.1)
T

with υ(T) being the volume of T and χ the spinor dual to χ,

(2.2)
\ - 1 U/

Then e~ikxχ(k,x) is an isomorphism that maps the fibre EXCE, xeT to kerD*

Obviously e~ikxχ(k,x) is well defined as an homomorphism from Ex to
Γ(T,E®LX(S)S~). Because of el = — e(4K the claim that its image lies in kerl5x is
equivalent to

;k}e, = Q, (2.3)
T

with V denoting the covariant derivative with respect to A. Upon using
k

J dx %V*(x9 k)φ(x) =~i j dy dx U*(y, k)G(y, x; k)eaD
kφ(x) , (2.4)

and the definition of the Greens function this relation is easily
verified. It remains to prove bijectivity.

Lemma 2.4. The homomorphism defined by e ~ l k x χ ( k , x ) is injective.

Proof. It suffices to show

Sdkχi(k,x)χ(k,x) = idEχ. (2.5)

From the definition of χ(k,x) and Eq. (1.4) we deduce

χf(/c, x)χ(fc, y)=- (2πΓ2v(T)eίk(y~x}dtG(x, y k), (2.6)

with

Recalling the singular behaviour of the Greens function we then find

lim J dkeik(χ-y}dϊG(x,y;k) = 4
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Together with the familiar relation between the volumina of T and T, v(T)v(f)
= (2π)4 this completes the proof. Π

To demonstrate surjectivity is a little more laborious. Once we know that the
laplacian Ax operating on the sections of £(χ)LJC(χ)5'+ is invertible we have the
following simple lemma.

Lemma 2.5. The homomorphism defined by e~lkxχ(k, x) is surjective if Ax is invertible.

Proof. From the preceding lemma we know that the dimension of the image of the
homomorphism is rankE. Due to the self-duality of A the Dirac operator Dx has
coker Dx = 0 if ker Δx = 0. Thus, using the index theorem we find that the dimension
of the target space kerJ9x also equals rank£. Π

The technical part of our reasoning is the construction of the Greens function
of Δx. From (2.6) we can read off how to do this.

Lemma 2.6. The Greens functions

ΔxG(k,p;x)=-δ(k,p) (2.8)

of the laplacian Δx is given by the formula

G(k,P;x)= Σ f^- -. (2.9)V F ; 4π2

 mt>τ y (m + k-p}2 v ;

Proof. With minor modifications the proof follows well-known lines. All we need
are two technical results.

lξ*0(fc,/7;x)|p.fc + t^ (2.10)

and

2xG(k,p;x) = Q if /c-pΦOmod/ί*. (2.11)

To verify the first formula we have to insert the definitions, use (2.4) and

Dk + nU(x,p)= -iet(n + k-p)ΛU(x9p).

The second formula is proved analogously by first deriving

AU\x,k)=-4πv(TΓl/2e-ίkxχ(k,x), (2.12)

which again is a consequence of (2.4). Π

Lemma 2.5 and Lemma 2.6 complete the proof of Lemma 2.3. Now we are in
the position to prove Theorem 2. What we have to show is

AΛ(x) = j dk χt(fc, x) -— χ(fc, x) . (2. 1 3)
T GXa

This is easily done using a formula similar to (2.4),

JdfcC7(x,fe)(? β φ(fc)=-ϊ I dkdyeβrβG(x,y k)elU(y,k)φ(k), (2.14)
T t x r
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with φ(k) e Γ(f, £). Inserting the definition (2.1), applying the formula to
e~ikxl(k> x)ea upon performing the tensor product with respect to the spinor space,
and recalling (2.3) we find

0 = ep^dkelMβ(k,x)ea, (2.15)

with

The identity <^Meα = 2(tr2M)<?4 (with tr2 denoting the trace with respect to the
spinor space) now leads to the desired result,

M D (2.17)

Next we show that the Nahm transform preserves irreducibility.

Proof of Corollary 2.2. Suppose (E9 A) is irreducible and mapped by the Nahm
transform to a reducible (E, A). At least after applying a gauge transformation we
may assume that E decomposes into a direct sum with A restricting to a self-dual
connection on each component. Because of Lemma 2.6 the kernel of the associated
family of Dirac operators defines a vector bundle over T endowed with a self-dual
connection when restricted to one of the components of E. According to
Theorem 2.1 this means that (E,A) is up to a gauge transformation split,
contradicting the assumption of its irreducibility. Π

Finally it follows from Lemma 2.6 that there exists no 't Hooft-like instanton
[7] on a flat torus.

Corollary 2.7. On a vector bundle E over a flat torus with rank£ ̂  2, cl(E) = 0, and
c2(E)\_T'] = —1 there exists no irreducible self-dual connection.

Proof. Suppose there is such a connection A on E. Then the Nahm transform of
(£, A) is a flat line bundle over f endowed with a flat connection. As a consequence
Δx has a one dimensional kernel for a particular x E T. This is incompatible with
Lemma 2.6. Π

Conclusions

The Nahm transform is an invertible map from the space of instantons over a flat
torus to the instantons over the dual torus. It preserves irreducibility and permutes
rank and instanton number. Together with theorem of Taubes [8] this property
proves the existence of c2(E) [T] = — 2 instantons for SU(n) with n^4.

The formulae used to describe the Nahm transform explicitly are very similar
to those of the ADHM construction [7] and in particular to the considerations on
"reciprocity" of Goddard and Corrigan [9].

It is interesting to note that the local version of the index theorem obtained by
the usual ^-function regularization method,



Instantons Over Flat Tori 183

with

Λ5(fc) = τ^r J dx tr ((7 χ*(k, x))χ(k, x)
ιv

leads after some formal manipulation to

This relation seems to be remarkable because it is the regularised version of
"ς*tr [F Λ F] (fe) = δfc (5^ In Det(zl/ί)." Comparison with recent results on elliptic fami-
lies [10] suggests that this relation should admit a geometric interpretation, thus
providing us with a deeper insight into the nature of Nahm's transform.
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