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1. Introduction

Blaschke’s Rolling Theorem gives necessary and sufficient conditions for a ball to

roll freely inside a convex body S in �� or ��; see [2]. Extensions of this theorem to

higher dimensions and non-compact convex sets were treated by Koutroufiotis [7]

and Delgado [4]. Firey [5], Goodey [6] and Weil [14] considered the case when

a convex body ¸ rolls freely in S and obtained results without differentiability

assumptions on the boundaries of ¸ and S. Brooks and Strantzen (1989) give a very

general result of this kind. Their monograph is dedicated to a very thorough treatment

of Blaschke’s Rolling Theorem in ��.

In section 2 Blaschke’s Rolling Theorem is generalized in a different way as

a stepping stone towards solving various problems in image analysis in section 3: We

consider the case where a ball rolls freely inside and outside a compact set S, which we

will not require any more to be convex. It will be shown that this condition

characterizes the smoothness of �S via a Lipschitz condition on the normal vectors of



�S and is closely connected to a generalized notion of convexity and various concepts

of mathematical morphology and image processing. In particular, the generalized

rolling theorem gives an exact geometric characterization of Serra’s regular model

from mathematical morphology.

In section 3, the theorem is then used to analyse Sternberg’s [12] rolling ball

algorithm. This algorithm was introduced as a morphological image processing tool

to filter and smooth a grey-level function. Various conditions are given for this

algorithm to successfully smooth surfaces. In particular, it is shown how modifications

of the algorithm can be applied to an arbitrary bounded set S to generate a spectrum

(not necessarily convex) sets with smooth boundaries that represent the shape of S to

varying degrees of detail. The convex hull of S is obtained as a limiting case of this

smoothing procedure.

All proofs are deferred to section 4.

2. Notation and the generalized rolling theorem

The setting throughout in �� be equipped with the standard inner product �) , )� and

Euclidean norm � ) �. For x3����0� write e(x) :"x/�x �. B
�
(x) denotes the closed ball

with radius r centered at x, and B :"B
�
(0). If AL�� then A�, AM , intA, �A and convA

denote the complement, closure, interior, boundary and convex hull of A, respectively.

Further we define diamA :"sup
�����

�x!y �, the diameter of A, and r (A) :"sup�r:
B
�
(a)LA for some a�, the inradius of A. For A, CL�� and �3� write

�A :"��a : a3A� and denote by

A� C"�a#c : a3A, c3C�

the Minkowski addition of A and C, and by

A� C"�x: x#CLA�

the Minkowski difference, where we write x#C for �x�#C. One then checks that

A� C"(A�� (!1)C)�. (1)

Further, (1—5—9) of Matheron [9] gives

conv(A�C)"convA � convC. (CON)

For 	3� write

A�"�
A � 	B
A � �	 �B

if 	*0,

if 	(0,

and denote by d
�
(A,C) :"inf�	'0: ALC� and CLA�� the Hausdorff distance

between A and C. Minkowski addition and subtraction have become common tools

in mathematical morphology and image processing. In particular, for some mor-

phological problems it is helpful to restrict attention to compact sets A that satisfy

A"(A� �B)� �B"(A� �B) � �B for some �'0. The class consisting of these

sets is called Serra’s regular model, see [13, p. 144]. The use of this model is attractive
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in morphological problems because it avoids difficulties with the digitalization of sets

and images, and it is particularly helpful when studying connectivity questions, see

[13]. A more easily interpretable characterization of this model will be given in

Theorem 1.

In a different context, Matheron [9, p. 24] defines for any AL�� and �*0


� (A) :"(A � �B)� �B" �
����	L�

B�(x) (2)

and calls the mapping �P
�(A) the granulometry of the set A with respect to the

structuring element B. The granulometry represents the ‘size distribution’ of the set

A in the sense that the mapping �PLeb(
� (A)), where Leb denotes Lebesgue

measure on ��, gives the volume occupied by the translates of �B that are included in

A. It is helpful in this paper to extend the definition of the granulometry to the whole

line by setting




� (A) :"(A � �B)� �B (�'0). (3)

Then (1) shows that for all �3�




� (A)"(
� (A�))�"
*

� (A) , (4)

where 
*
� is the so-called dual mapping of 
� , see p. 187 of [9].

The following properties of granulometries follow from Matheron [9, p. 24]

together with (4):

� ) �*0 and ���*��� implies 
� (
� (A))"
�(
� (A))"
�(A). (ID)

�, �3� and �)� implies 
� (A)M
� (A), where 

�
(A)"A. (MON)

One also sees readily that

�3� and ALC implies A�LC� , hence also 
� (A)L
� (C). (MON II)

We will use the following notion of generalized convexity, for which Mani-Levitska

[8] cites Perkal [9] as a reference: The set AL�� is called r-convex (r'0) if

A"C
�
(A), where C

�
(A)"


�������	���� (intB
�
(x) )� is called the r-convex hull of A. To

see why this is a generalized notion of convexity, note that C
�
(A)LC

	
(A) for r)s,

C
�
(A)�AM as rP0, and, under certain conditions of A (e.g. int(convA)O� is sufficient),

C
�
(A)�C as rPR with CM "convA. (The corresponding statement in Mani-Levitska

[8] is erroneous; on the other hand, the assumptions on A made by Perkal [10] are

clearly too strong).

Finally, if A and C are convex and compact, then C is said to roll freely in A if for

each boundary point a3�A and each rotation �3SO(d) there exists x3�� such that

a3x#� (C)LA, see Schneider [11]. We will be interested only in the case where C is

a ball of radius r, so that the rolling condition then becomes a3B
�
(x)LA for some x.

If A is only closed, then for rB to roll freely in A we require in addition that A � rB be

path-connected in order to preserve the physical meaning of rolling freely.
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All these notions are linked together in the following generalization of Blaschke’s

Rolling Theorem:

Theorem 1. ¸et SO� be a compact and path-connected subset of �� and r
�
'0. ¹hen

the following are equivalent:

(i) 
� (S)"S for �3 (!r
�
, r

�
].

(ii) S and S� are r
�
-convex and int SO�.

(iii) A ball of radius r rolls freely inside S and inside S� for all 0)r)r
�
.

(iv) For every r
�
3[0, r

�
], r

�
3[0, r

�
) there exist A, DL�� with S"A � r

�
B"

D� r
�
B.

(v) �S is a (d!1)-dimensional C� submanifold in �� with the outward pointing unit
normal vector n (s) at s3�S satisfying the ¸ipschitz condition

�n(s)!n (t) �)1

r
�

�s!t � for all s, t3�S.

Moreover, for some r
�
'0 above is equivalent to

(vi) S belongs to Serra’s regular model.

Remark.

1. The theorem shows that the smoothness of �S is linked to the behaviour at the

origin of the granulometry 
� (S).

2. (iv) generalizes a well-known characterization of ‘rolling freely’ in the case where

S is convex: Then r
�
B rolls freely in S iff r

�
B is a summand of S, i.e. there exists

a convex, compact set A with S"A � r
�
B; see Theorem 3.2.2 in [11].

3. One readily checks that if S is not assumed to be path-connected, then the

theorem remains true if one requires in (ii) int(S


)O� for each path-connected

component S


LS and in (iii) one restricts ‘rolling freely’ to each path-connected

component of S and S�.

4. Using notation from mathematical morphology gives a formal way of writing

down how r-convexity generalizes convexity: The set AL�� is said to be closed
with respect to int(rB) if A"(A� int(rB))� int (rB). Then one has for r'0:

C
�
(A)" 


�M�
� ����	
 �
�
�
 ������	

C,

and, provided int(convA)O�,

convA" 

�M�

� ����	
 
�
 ����	�

C" 

�M�

� ����	
 �
�
�
 ������	 ��� 
�� ���

C.

This follows upon proving that C is closed w.r.t. int(rB) iff C is r-convex, and that if

int(convC)O�, then C is closed and convex iff C is closed w.r.t. int(rB) for all r'0.

The first statement is readily verified, the second can be proved e.g. with the help of

Lemma D below.
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3. Applications to image analysis and smoothing

Sternberg [12] popularized the idea of filtering and smoothing a grey-scale image

by applying 
� and 


� , possibly iteratively, to the epigraph of the corresponding

grey-level function. It follows from (2) that employing 
� can be visualized by rolling

a ball with radius � on the grey-level surface. As the ball cannot enter narrow pits, the

smoothed image will be free of the corresponding small, dark details. Likewise,




� can be visualized by rolling the ball along the underside of the grey-level surface.

This depiction explains the name ‘rolling ball algorithm’ for this procedure. Figures

4 and 5 in Sternberg [12] show the algorithm in action, and an example of a grey-scale

image before and after smoothing with the rolling ball algorithm.

This section analyses the rolling ball algorithm in terms of its properties as

a smoothing operator, i.e. as a transformation that constructs a smooth surface which

approximates the original (not necessarily smooth) surface given by the boundary of

a set.

An important first smoothing property of this algorithm follows from the generaliz-

ed Rolling Theorem established in section 2: The boundary of a set S is smooth in the

sense described there if and only if the rolling ball algorithms 
� and 


� leave

S invariant for some �'0. On the other hand, even repeated applications of these

rolling ball algorithms may produce surfaces that are not smooth. As an example,

consider the set SL�� given by S :"B��B��B�, where B�"B
�
( (0, 0)),

B�"B
�
((1, 0)) and B�"B

�
( (4.5, 0)). Then �S has cusps where �B� and �B� meet.

Rolling B inside S leaves S invariant, rolling B along the outside of S smoothes these

cusps but also introduces new cusps by enlarging B� and B�. Rolling B again inside

this set brings back S. This counterexample is easily generalized to connected sets and

arbitrary dimension.

A naturally arising question is then under what conditions the rolling ball algo-

rithm will smooth successfully and produce a smooth surface in the sense of Theorem

1. Furthermore, in view of the application to the filtering of images described above, it

is of particular interest to obtain quantitative results concerning the smoothness in

terms of the Lipschitz constant in Theorem 1(v). Such results will be given in

Theorems 2 and 3 below.

Theorem 2. ¸et S, ¹L�� with ¹

�LSL¹� and 





(¹)"¹"




�
(¹) for some

R


, R

�
'	'0. Consider the sets

S

�

:"


��

(

�

(S)) and S

�

:"


�

(



��
(S))

with 0(r


(R



!	 and 0(r

�
(R

�
!	.

¹hen

¹

�LS


�
L¹� , ¹


�LS
�


L¹� (5)

and, independently of the dimension d, there exists some universal function

f (r


, r

�
,R

�
, 	)*(r



#r

�
)�1! 8R

�
	

(R
�
!r

�
#	)r

�
�
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such that

S

�
"


�
(S


�
) for r3[!r

�
, ( f


�
!r

�
)�), (6)

where f

�
"f (r



, r

�
, R

�
, 	). Also,

S
�

"


�
(S

�

) for r3 (!( f

�

!r



)�, r



], (7)

where f
�

"f (r

�
, r



, R



, 	).

Equation (7) remains true if instead of ¹

�LSL¹� one requires d

�
(S, ¹)(	(r

�
.

Note that (5) and assertion 1(c) of Lemma B below imply that d
�
(S


�
,¹))	 and

d
�
(S

�

,¹))	. Further, (ID) shows that the assertion of the theorem concerning

S

�

remains true if one has only ¹

�L


�

(S)L¹� instead of ¹


�LSL¹�; analog-

ously for S
�


and 


��

(S). Finally, observe that as 	�0 the endpoints of the intervals in

(6) and (7) converge to !r
�
and r



as expected.

By employing a proper choice of the smoothing parameters r


and r

�
one can ensure

that some versions of these smoothing procedures work for any bounded set in ��.

One way to achieve this is to exploit the well-known ‘convexifying effect’ of Min-

kowski addition. A quantitative statement of this effect is given by the theorem of

Shapley, Folkman and Starr, see e.g. [11, p. 130]. However, in the cases under

consideration here stronger statements are needed. Specifically, Lemma D below will

derive a rate of convergence for the statement of the Corollary to Proposition 1—5—7

in Matheron [9]. Note that the latter proposition is false, as the counterexample

F"�a, b� with aOb and K"B shows.

Theorem 3. ¸et SL�� be bounded and for r


, r

�
'0 consider the set S


�
as defined in

¹heorem 2 and S
�
�

:"


��

(

�

(



��
(S) )). If r

�
'diamS then, independently of the

dimension d, there exists some universal function

f"f (r


, r

�
, diamS)*(r



#r

�
) �1!4(r

�
!�r�

�
!(diamS)�)

r
�

�
such that

S

�
"


�
(S


�
) and S

�
�
"


�
(S

�
�
) for r3[!r

�
, ( f!r

�
)� ) (8)

and

(conv

�

(S))����
�
�
��	�
��

LS

�
Lconv


�

(S) , (9)

(convS)����
�
�
� �	�
��
�

LS

�
�
LconvS . (10)

Moreover,

d
�
(S

�
�
, convS))(r

�
!�r�

�
!(diamS)�#r



)
diamS!r (convS)

r(convS)
(11)

if r


and r

�
are chosen so that r

�
!�r�

�
!(diamS)�#r



(r (convS).
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Remark.

1. Note that r
�
!�r�

�
!(diamS)�"O(r
�

�
) as r

�
increases. Hence proper choice of

r


and r

�
ensures that S


�
and S

�
�
are smooth in the sense of Theorem 1 if S is

closed. In particular, S
�
�

gives a smooth approximation to S that represents the

shape of S in decreasing detail as r


P0 and r

�
PR and that converges to convS

from inside at the rate O (max(r


, r
�

�
) ) as follows from (11).

2. Equation (10) and (11) can be refined further: In a similar way as in Lemma

F below one can prove that if AL�� is bounded and convex and r


3[0, r (A)),

then A

�L


�

(A), provided 	'g (diamA, r(A), r



), where

g (p, r, r


) :"p!r

2
!��

p!r

2 �
�!(p!2r)r



.

This bound is the best possible in that if p*2r'0 and r


3[0, r), then by setting

	 :"g (p, r, r


) and A :"conv(int B

�
(0)�B�( (p!r!	)e) ) for some unit vector

e one obtains r (A)"r, diamA"p and A

�L/ 


�

(A). Employing this and



�

( (convS)����
�
�
� �	�
��

)LS
�
�

in the proof instead of (45) yields better but

more unwieldy estimates for (10) and hence also (11).

4. Proofs

The results of sections 2 and 3 will be proved with the help of several lemmata. The

first one is a simple geometric fact whose proof is omitted:

Lemma A. ¸et SL�� and r
�
, r

�
'0. Suppose there exist s, x3�� and sequences

�s
�
�, �x

�
�L�� with s

�
Ps such that s

�
3B

��
(x

�
)LS for all n and s3B

��
(x)LS�. ¹hen

x
�
Ps#(r

�
/r

�
)(s!x). ¹his continues to hold if the roles of S and S� are switched.

Lemma B.

1. ¸et SL�� satisfy S"

�

(S)"



��
(S) for some r



, r

�
'0.

(a) If 	*!r


then S�"


�
(S�) for r3[0, r



#	].

(b) If 	)r
�
then S�"


�
(S�) for r3[	!r

�
, 0].

(c) If !r


)r

�
)r

�
and r

�
3�, then (S

��
)
��

"S
�����

.

2. If SL�� satisfies the conditions of ¹heorem 1 for some r
�
'0, then for �	�(r

�
,

S� satisfies the conditions of ¹heorem 1 with r� :"r
�
!�	 �.

Proof of ¸emma B. Part 1(a). The assertion is true if S"�, so assume SO�. We will

show

S�L

�
�� (S�) . (12)

Then (MON) gives for r3[0, r


#	]: S�L


�
��(S�)L

�
(S�)LS� , proving part (a). In

the case 	*0, (12) follows by using (2) to see that S�"� (B
�

(x) : B

�

(x)LS)

� 	BL� (B
�
��(x) : B

�
��(x)LS�).
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In the case !r


)	(0 let s3S�"S


��� . We need only look at the case where

SO��, so there exists t3�S such that �s!t�"min
����

�s!y �.
If �s!t �'r



then SMB

�

(s)"B

�
��(s) � �	 �B, whence s3

�
�� (S�) by (2).

If �s!t �)r


we have

intB�	
��
(s)LS. (13)

S"


��

(S), (2) and (1) show S�"�(B
��
(x) : B

��
(x)LS�). By considering a sequence

�t
�
�LS� converging to t one hence obtains

t3B
��
(x

�
)LS� for some x

�
. (14)

First consider the case t3S�. Then �t!s �'�	�, because otherwise s�S

��� . Let

�t
�
�LS be a sequence converging to t. Then S"


�

(S) and (2) show that

t
�
3B

�

(y

�
)LS for some �y

�
�. (15)

Lemma A, (13)—(15) yield y
�
Px

�
for some x

�
and (x

�
!t)/r



"

(t!x
�
)/r

�
"(s!t)/�s!t �, which together with �x

�
!t �"r



*�s!t � implies

�s!x
�
�"r



!�s!t �(r



!�	�. Together with y

�
Px

�
we obtain for n large enough

s3B
�

�� �(y�). Further, B

�

��� (y�) � �	�B"B
�

(y

�
)LS, whence s3B

�

���(y�)LS

��� ,

so (12) follows by (2).

The case t3S can be treated quite similarity.

(b) Using the duality relation (4) and (S�)�"(S�)

� , which is a consequence of (1),

one sees that under the assumptions made in 1, (b) is equivalent to (a).

(c) It is an immediate consequence of the definition of ‘� ’ and ‘�’ that in the case

r
�
, r

�
*0 for any set SI , (SI

��
)
��

"SI
�����

. Using this, one obtains in the case

(!r
�
)(r

�
#r

�
)*0: (S

��
)
��

"(S
��
)

���������	

"((S
��
)

��

)
�����

"(


��

(S) )
�����

"S
�����

by parts (a) and (b) with 	"0.

In the case (!r
�
)(r

�
#r

�
)*0, (S

��
)
��
"(S

������	
��
)
��
"((S

�����
)

��

)
��

"

��
(S

�����
)"

S
�����

by parts (a) and (b), as r
�
3[(r

�
#r

�
)!r

�
, r



#(r

�
#r

�
)] and !r



)r

�
#r

�
)

r
�
follow from !r



)r

�
)r

�
and min(0, r

�
))r

�
#r

�
)max(0, r

�
) which is a conse-

quence of (!r
�
) (r

�
#r

�
)*0.

Part 2: As S is compact and path-connected, it is easily checked that S� is compact

for 	3� and path-connected if 	*0. For !r
�
(	(0 the path-connectedness of

S�"S � �	 �B follows directly form Theorem 1(iii) and S�O� by Theorem 1(i). The

assertion follows then form (a), (b) of part 1. 	

Lemma C. ¸et A, SL�� be non-empty. Assume:

(i) 

�����

(A)"A for some r
�
, r

�
'0,

(ii) 





(S)"S for some R'0,

(iii) S

�

LALS for some h'0.

¹hen there exists a universal function

fJ"fJ (r, r
�
,R, h)*(r#r

�
)
Rr!4Rh!3rh!2h�

(R#h)r

such that b3�A�B
�
(c) for some c with intB

�
(c)LA implies intB

�
J (b#fJe(c!b) )LA.
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Proof of ¸emma C. A standard computation shows that if p, x, y3��, then

(intB


(x))�(intB

�
(y))"�, p3�B

�
(y) and �p!x �)R#h imply

�e(p!x), e (y!p)�*2Rr!2Rh!h�

2(R#h)r
. (16)

Now let b3�A�B
�
(c) for some c with int B

�
(c)LA. (2), (4) and (ii) show

S�"�(B


(x): B



(x)LS�). S


�
LA implies the existence of some �s

�
�LS� with

�b!s
�
�)h#1/n. Hence there exists some �x

�
� with s

�
3B



(x

�
)LS�, and so

�b!x
�
�)R#h#1/n. As A�S�"� implies intB

�
(c)�B



(x

�
)"�, and necessarily

b3�B
�
(c), we can apply (16) with p :"b and y :"c to find

�e(b!x
�
), e(c!b)�*2Rr!2R(h#1/n)!(h#1/n)�

2(R#h#1/n)r
for all n. (17)

Write Y
�
:"�y : intB

����
(y)LA, b3B

����
(y)�. Equation (20) below will show that Y

�
is not empty. Using B

����
(y) with y3Y

�
instead of B

�
(c) in the argument leading to

(17) we obtain

�e(b!x
�
), e(y!b)�*2R(r#r

�
)!2(h#1/n)!(h#1/n)�

2(R#h#1/n)(r#r
�
)

(18)

for any y3Y
�

and all n. Employing the fact that �u
�
, u

�
�*4min

(�u
�
, u

�
�,�u

�
, u

�
�)!3 for any unit vectors u

�
, u

�
and u

�
, one deduces from (17) and (18)

�e(y!b), e (c!b)�*Rr!4Rh!3rh!2h�

(R#h)r
":

fJ

r#r
�

(19)

for all y3Y
�
. Next, we show

If n satisfies �n, c!b�"0 then there exists yJ 3Y
�
with (yJ !b, n)*0. (20)

It is enough to prove (20) for the case where n is a unit vector. For k*1 define

p
�
:"�

�
(b#c)#�(r�/4!1/k�)e (b!c)#(1/k)n3 intB

�
(c)LA. Using (i) and (2) one

obtains p
�
3B

����
(c

�
)LA for k*1 and some �c

�
�. Hence for all k*1:

(r#r
�
)�*�p

�
!c

�
��*1/k�#(r#r

�
)�#2�p

�
!b, b!c

�
�, as b3�A implies

�b!c
�
�*r#r

�
. It follows that lim sup

���
�c

�
!b, e (b!p

�
)�)0. Further,

lim
���

�n#e (b!p
�
) �"0 as can be verified by computation, more quickly, by

drawing a picture in the (n, e(b!c))-plane and observing that p
�
3�B

���
(�
�
(b#c)),

p
�
Pb and that n is a tangent vector to �B

���
(�
�
(b#c)) at b. Hence

lim inf

���

�c
�
!b, n�"!lim sup(�c

�
!b, e(b!p

�
)�!�c

�
!b, n#e (b!p

�
)� )

*0!lim sup �c
�
!b � ) �n#e (b!p

�
) �

*0 as �c
�
!b � is bounded. (21)

Boundedness of �c
�
!b � also implies the existence of a subsequence �k�� such that

lim
����

c
��
"yJ for some yJ . Then intB

����
(yJ )LA, and b3B

����
(yJ ) as p

�
Pb and

�p
�
!c

�
�)r#r

�
. So yJ 3Y

�
and �yJ !b, n�*0 follows from (21). This proves (20).
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Now let x3 int B
�

J (b#fJe(c!b)) and set n :"x!b!�x!b, e(c!b)�e (c!b).

Then �n, e (c!b)�"0, so (20) gives a yJ with

�yJ !b, n�*0 and yJ 3Y
�
, hence �yJ !b �"r#r

�
. (22)

We will show �x!yJ �(�b!yJ �, i.e. x3 intB
����

(yJ )LA, proving the lemma. From the

definition of n, �x!b, b!yJ �"�x!b, e(c!b)��e(c!b), b!yJ �#�n, b!y� �)
�x!b, e(c!b)�(!fJ ) by (19) and (22) and because one easily verifies �x!b,

e(c!b)�*0. Hence,

�x!yJ ��"�x!b��#�b!yJ ��#2�x!b, b!yJ �

)�b!yJ ��#�x!b ��!2fJ�x!b, e (c!b)�

(�b!yJ �� as x3 intB
�
J (b#fJe (c!b) ). 	

Lemma D. ¸et AL�� and r'0. ¹hen

d
�
(conv(A � rB),A� rB))(diamA)�/2r.

Moreover, if r'diamA then conv(A��r�!(diamA)�B)LA � rB.

Proof of ¸emma D. Let x3conv(A� rB). (CON) shows x"y#rN e where y3convA,

rN 3[0, r] and e3�B. Consider the closed half-space H
�

:"�z :�z!y, e�*0�. Then

there exists a
�
3A�H

�
as otherwise convALH�

�
, contradicting y3convA�H

�
.

Now �y!a
�
�)diamA. To see this in the case yOa

�
consider the closed half-space

H
�

:"�x :�z!y, y!a
�
�*0� and observe as above that y3convA�H

�
implies the

existence of some a
�
3A�H

�
. But then �y!a

�
��)�a

�
!a

�
��)(diamA)�. Now,

�x!a
�
��"�x!y ��#�y!a

�
��#2�x!y, y!a

�
�)r�#(diamA)� as x!y"rN e

and a
�
3A

�
. Together with �[r�#(diamA)�]!r)(diamA)�/2r one obtains

x3 (a
�
� rB) � [(diamA)�/2r]B, proving the first assertion. If instead

x3conv(A ��[r�!(diamA)�]B) and r'diamA, then replacing r by

�[r�!(diamA)�] in above proof shows that there exists a
�
3A with

�x!a
�
��)�[r�!(diamA)�]�#(diamA)�"r�, so x3a

�
� rB, proving the

second assertion. 	

Lemma E. ¸et AL�� and R*0.

(a) 0)r)R implies (convA �RB)

�

"conv(A � (R!r)B).

(b) A"



(A) implies convA"


�
(convA) for r3 (!R,R].

Proof of ¸emma E. (a) The proof of Proposition 1—5—3 in [9] can readily be modified

to show that

convA"


�

(convA) (23)

for arbitrary, not necessarily closed AL��. If x�convA then Theorem 1.3.4

in Schneider (1993) yields a closed half-space HMconvA with x3H���H, so it is

still possible to find a y with x3B
�
(y)L(convA)�. (23) then follows from (2) and (4).
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Now (CON) shows that (convA�RB))

�

"(conv(A � (R!r)B)� rB)

�

"


�

(conv(A� (R!r)B) )"conv(A� (R!r)B).

(b) Part (a) shows the assertion for r)0. For the case 0(r)R let x3convA.

Then x"��

��

�


a


, where �



�


"1, �



*0 and a



3A for all i. 




(A)"A together

with (2) shows that for all i, a


3B



(x



)LA for some x



3A. Then x� :"

�


�


x


3convA and �x!x� �)�



�


�a



!x



�)R, so x3B



(x�). Further B



(x� )L

convA : y3B


(x�) implies y"x�#rN e with rN 3[0, R] and e3�B. B



(x



)LA shows

x


#rN e3A for all i, hence y"x�#rN e"�



�


(x



#rN e)LconvA.

Now the assertion in the case 0(r)R follows from x3B


(x�)LconvA together

with (2) and (MON). 	

Lemma F. ¸et AL�� be bounded and convex. ¹hen

d
�
(A,A


�))	
diamA!r (A)

r (A)
for 	3[0, r (A)).

The inequality is tight as can be seen by considering the set A :"conv(�a��B
�
(0))

for various �a� and r.

Proof of ¸emma F. We may assume r (A)'0. Let 0(r(r (A). Then there exists

b with B
�
(b)LA. Now let a3A. Then C

�
:"conv(�a��B

�
(b))LA as A is convex.

One readily checks that if �3[0, 1] and a� :"a#� (b!a), then B��(a�)LC
�
. So if

	3[0, r] then by setting � :"	/r one obtains inf
���
�

�a!x �)�a!a��� �"
(	/r) �b!a �)(	/r)(diamA!r) as B

�
(b)LA. Hence the assertion of the lemma is true

with any r3 (0, r(A)) in place of r(A), and thus also for r (A). 	

Proof of ¹heorem 1. (i)N(iv): Set A :"S� r
�
B and D :"S � r

�
B.

(iv)N(v): We will successively prove (24)—(29):

For every s3�S there exists a unique unit vector n (s) such

that B
��
(s!r

�
n (s))LS and int B

��
(s#r

�
n (s))LS�.

(24)

For every s, u3�S, �n (s)!n(u) �)1

r
�

�s!u � . (25)

Now fix s3�S and define the hyperplane H
	
:"s#(n(s))�, where � denotes the

orthogonal complement, the (d!1)-dimensional neighbourhood º�
	
:"�x3H

	
:

�x!s �(r
�
/4�, and the neighbourhood º

	
of s by º

	
:"�x : x"u�#�n(s), u�3º�

	
,

�3�, ���(r
�
/4�.

For every u3º
	
��S, �n (s), n(u)�*��

��
. (26)

Let u3�S�º
	
. Then the line g

�
(�) :"

u#�n (s), �3�, meets �S�º
	

in u only.
(27)

If x3º�
	
, then g

�
( ) )��S�º

	
O�. (28)
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Equations (27) and (28) show that in º
	
, �S is the graph of some real-valued function

f
	
defined on º�

	
LH

	
and graphed with the ordinate axis in direction n(s): f

	
is given at

x3º�
	
as the unique �3 (!r

�
/4, r

�
/4) that satisfies g

�
(�)3�S.

Let u�3º�
	
, so u :"u�#f

	
(u�)n (s)3º

	
��S. Then for any x3º�

	

f
	
(x)"f

	
(u� )! ����		����	�

�n(u),x!u��#O( �x!u� ��).
(29)

Thus f
	

is a C� function on º�
	

provided the map u�>(1/�n (s), n (u)�)n (u) is

continuous. But this a consequence of (25) and (26), once continuity of the map u�>u
is established. That in turn is a consequence of the continuity of f

	
which follows form

(29). Using theorem 2.1.2 in Berger and Gostiaux [1] one then concludes that �S is

a (d!1)-dimensional C� submanifold in ��. Hence at each s3�S there exists a unique

outward pointing unit normal vector, which is given by n (s) as can be computed from

(29) or directly deduced from (24). The asserted Lipschitz condition for n (s) is given by

(25).

It remains to prove (24)—(29). Equation (24) follows from (iv) with a standard

argument involving Lemma A.

To see (25) observe that the inclusions in (24) imply for s, u3�S:

� (s!r
�
n(s))!(u#r

�
n (u)) �*2r

�
and �(u!r

�
n(u))!(s#r

�
n (s)) �*2r

�
. The first in-

equality is equivalent to �s!u ��#r�
�
�n (s)#n(u) ��!2r

�
�s!u, n(s)#n (u)�*4r�

�
,

the second to �s!u ��#r�
�
�n(s)#n (u) ��#2r

�
�s!u, n�s)#n (u)�*4r�

�
. Adding

both inequalities and using �n (s)#n (u) ��"4!�n (s)!n(u) �� gives (25).

Equation (26) follows from (25), using �s!u ��)r�
�
/8 for u3º

	
.

To prove (27), let u3º
	
��S and denote by u�3º�

	
the orthogonal projection of

u onto H
	
. For an arbitrary x3º�

	
an elementary calculation together with (24) and

(26) shows that

g
�
(�)3 int B

��
(u#r

�
n(u))LS� for �N (x)(�(r

�
/4,

g
�
(�)3 int B

��
(u!r

�
n (u))LintS for !r

�
/4(�(�

�
(x),

(30)

with �N (x)"�n(s), u!u��#r
�
�n(s), n(u)�!�[r�

�
�n(s), n(u)��#2r

�
�n(u),x!u��!

�x!u� ��] and �
�
(x)"�n (s), u!u��!r

�
�n (s), n (u)�#�[r�

�
�n(s), n(u)��!2r

�
�n(u), x!u��!�x!u� ��]. To prove (27) now, set x"u�. Then

�
�
(x)"�N (x)"�n(s), u!u��, so g

��
( )) meets �S�º

	
only in g

��
(�n (s), u!u�� )"u, and

hence so does g
�
( )).

To prove (28), set u"s. Then u�"s and thus for x3º�
	
, !r

�
/4(�

�
(x) and

�N (x)(r
�
/4 imply that g

�
(�)3º

	
��S for some �3 (!r

�
/4, r

�
/4).

As for (29), let u� and u as given there. Then u� is the projection of u onto H
	
,

f
	
(u� )"�n (s), u!u�� and for x3º�

	
, �

�
(x))f

	
(x))�N (x) by (30). But the Taylor series

expansions �(1#x)"1#�
�
x#O( �x ��) shows that

�
�
(x)"�n(s), u!u��! 1

�n (s), n (u)�
�n (u),x!u��#O( �x!u� ��)

and the same expansion holds for �N (x), so (29) entails. 	
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(v)N(iii): Let s3�S. We will show below:

There exists some 0(rJ (lJ)r
�
with conv(�s��B

��
(s!l�n(s)) )LS. (31)

If 0(r(l)r
�
and conv(�s��B

�
(s!ln(s) ) )LS, then B

�
(s!ln(s))LS.

(32)

Now take rJ , lJ as given by (31). If lJ(r
�
then (32) shows that for any lJ �3 (lJ , 2lJ ) there

exists 0(rJ �(lJ � so that (31) remains true for rJ � and lJ �. Iterating this way if necessary

one sees that (31) holds for lJ"r
�

and some 0(rJ (lJ . Then (32) shows that

B
�
(s!rn(s) )LS for all 0(r)r

�
. To prove that S� rB is connected for 0(r)r

�
,

let a, b3S � rB. Write r
�
for the maximal rJ such that B

��
(a)LS, so r

�
*r, and pick

a point s
�
3�S�B

��
(a). The tangent hyperplane of �S at s

�
must necessarily be

a tangent hyperplane to B
��
(a) at s

�
, so a"s!r

�
n(s

�
). As r

�
*r, the map

�
�
: t3[0, r

�
!r]>s

�
!(r

�
!t)n(s

�
) is a path in S � rB connecting a and s

�
!rn(s

�
).

Let �
�

be an analogous path for b, and �L�S a path connecting s
�

to s
�
. Then

�
��

:"�s!rn(s), s3�� is a subset of S� rB as B
�
(s!rn(s))LS. Further, n(s) is

a continuous function of s by the Lipschitz condition, so �
��

is a path connecting

s
�
!rn(s

�
) to s

�
!rn(s

�
). Hence a ball of radius r)r

�
rolls freely in S. That such a ball

rolls also freely in S� can be shown in a similar way using �S�L�S. It remains to

prove (31) and (32).

Theorem 2.1.2 in Berger and Gostiaux [1] and a standard differentiability argu-

ment show that for every choice of 0(r(l, there exists a neighborhood N
�� �

of s with

conv(�s��B
�
(s!ln(s)))�N

�� �
LS. Equation (31) is a direct consequence of this. To

prove (32) let r and l as given there and set C
�� �

:"conv(�s��B
�
(s!ln(s)) ). It follows

from the compactness of S that there exists a maximal rN )l with C
�� � �

LS. Suppose

rN (l. Then �C
�� � �

must meet �S in some point tOs because otherwise rN cannot be

maximal as C
�����	��� �

�N
��� ��	��� �

LS and (rN #l )/2'rN .
Now C

�� � �
LS implies that the tangent hyperplane of �S at t must coincide with

some supporting hyperplane of the convex set C
�� � �

at t. Thus �n(t), t!s�*0. By

definition of C
�� � �

and as tOs we can write t"�s#(1!�)(s!ln(s)#re) for some

�3[0, 1) and some e3�B
�
(0). Standard arguments of convex geometry readily show

that one can take e"n(t), hence t!s"(1!�)(rN n(t)!ln(s)) for some �3[0, 1).

This identity and the Lipschitz condition give (1!rN /l )�n (s), n (t)�"�
�
(2!�n (s)!

n (t) �� )!rN /l�n (s), n (t)�*�
�
(2!(1/r�

�
) �s!t �� )!(rN /l )�n (s), n (t)�*�

�
(2!(1/r�

�
) (rN �#

l�!2rN l�n(s), n(t)� ))!rN /l�n (s), n (t)�. Now r
�
*l shows that the last term is at least

�
�
(1!rN �/l�)'(1!rN /l)rN /l*(1!rN /l )(rN /l![1/(1!�) l]�t!s, n (t)� ) as rN (l and

�n(t), t!s�*0. But the last term equals (1!rN /l)�n (s), n (t)� by the identity for t!s
above. This contradiction shows that we must have in fact rN *l. 	

(iii)N(ii): One readily checks that (iii) and the fact that S� is open imply

�S�"�S and int S�"S�. (33)

We will show first:

s3 int S implies s3 int B
��
(x)LintS for some x3��. (34)
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As �S is compact there exists t3�S such that r
	
:"�s!t �"inf

����
�s!y �'0. If

r
	
(r

�
, then it follows from (iii), (33) and Lemma A that there exists x3�� with

t3B
�	
(s)LB

��
(x)LS, proving (34).

Proceeding in the same way with the closed set S� and using (33) shows that (34)

holds with intS replaced by S�. These two versions of (34) yield intS"
�

��������	L����
intB

��
(x) and S�"�

��������	L�� int B
��

(x). (iii) implies intSO�. So (ii)

follows from the general fact that intS"(S� )�. 	

(ii)N(i). Is S is r
�
-convex then one has for all 0(�(r

�
: S�"�

��������	L�� int

B
��

(x)L�
����	L��B�(x)LS�, and thus 
� (S)"S for �3 (!r

�
, 0) follows.

r
�
-convexity of S� together with intS"(S�)� and closedness of S gives

intS" �
��������	L��� �

int B
��
(x)L �

�����	L�

B
��
(x). (35)

Let s3�S. We will show in a moment that

inf

�� ��� �

�s!y �"0. (36)

Together with (35) one sees that there exists a sequence �s
�
�Lint S converging to

s and a sequence �x
�
� such that s

�
Lint B

��
(x

�
)LintS. Let xN be a cluster point of

the bounded sequence �x
�
�. One concludes s3B

��
(xN )LS because S is closed, whence

�SL�
�����	L�

B
��
(x). Together with (35) one obtains for 0)�)r

�
:

SL�
�����	L�

B
��
(x)L�

����	L�
B�(x)LS and thus 
� (S)"S for �3[0, r

�
] follows.

It remains to prove (36). Suppose it were not true. As intSO� and S is path-

connected it is possible to find a t3�S such that d :"inf
������

�t!y � satisfies

0(d(r
�
/10. Together with (35) this yields the existence of a x with

0(�x!t �)r
�
#d and intB

��
(x)Lint S. (37)

Set b :"t#[d/2 �x!t �](x!t) and observe inf
����� �

�b!y �'0, so there exists a se-

quence �b
�
�LS� with lim

���
b
�
"b and a sequence �c

�
� with

b
�
3 intB

��
(c

�
)LS�. (38)

Now t3S shows that for all n, �c
�
!t ��*r�

�
'�c

�
!b

�
��"�c

�
!t ��#�t!b

�
��#

2�c
�
!t, t!b

�
�, which together with the definition of b and the boundedness of

�c
�
!t� implies lim sup

�
�c

�
!t, t!x�"lim sup

�
�c

�
!t, t!b�2 �x!t �/d"

lim sup
�
�c

�
!t, t!b

�
�2 �x!t �/d)!lim sup

�
� t!b

�
��/2 ) 2 �x!t �/d"!�t!b ��

�x!t �/d)0.

Together with (37) and (38) this shown lim sup
�
�c

�
!x ��)lim sup

�
( �c

�
!b

�
�#

�b
�
!b �#�b!t �)�#�t!x ��)(r

�
#d/2)�#(r

�
#d )�(3r�

�
as d(r

�
/10, contra-

dicting �c
�
!x �*2r

�
for all n as implied by (37) and (38). This proves (36). 	

Proof of ¹heorem 2. Lemma B 1(a), (b) give ¹

�"


�

(¹


�)"


��

(¹

�) and

¹�"

�

(¹�)"



��
(¹�). So by (MON II)

¹

�L


�

(S)L¹� and ¹


�LS

�

L¹� as well as ¹

�LS

�

L¹� . (39)

314 G. Walther

Math. Meth. Appl. Sci., 22, 301—316 (1999)Copyright � 1999 John Wiley & Sons, Ltd.



Now consider first S

�
. (ID) shows 



��
(S


�
)"S


�
whence (MON) yields S


�
"


�
(S


�
)

for r3[!r
�
, 0]. (6) is proved once it is shown that for f


�
'r

�
and r3 (0, f


�
!r

�
)

s3S

�

implies s3B
�
(x)LS


�
for some x, (40)

because (40) is equivalent to S

�
"


�
(S


�
) by (2). We need only consider the case where

S

�
O��. Then there exists c3�S


�
such that �s!c �"min

����
�
�s!y �. If �s!c �'r,

then B
�
(s)LS


�
and (40) follows. If �s!c �)r then set A :"


�

(S)� r

�
B. Then

S

�
"A � r

�
B, so c3� (A� r

�
B). It is readily checked that this implies

intB
��
(c)LA and int B

��
(b)L(S


�
)� for some b with �b!c �"r

�
. (41)

Next, we will show

intB
�
�
��

(c#( f

�
!r

�
)e(c!b))LS


�
. (42)

Set Z :"¹����
. By the definition of A we can write A"(S


�

)� (r



#r

�
)B. We get



�
���

(A)"A by (MON),




�
�
��
�	 (Z)"Z by Lemma B 1(b) as 	#r

�
(R

�
, (43)

Z

��LALZ by (39) and as Lemma B 1(c) yields (¹


�)��"Z

��.

s3S

�

implies A, ZO�, so (41), (43) and Lemma C show B
�
� (b#fJe(c!b))LA, where

fJ"fJ (r
�
, r



, R

�
!r

�
!	, 2	)"(r



#r

�
)�1! 8R

�
	

(R
�
!r

�
#	)r

�
�"f


�
.

Hence int B
�
�
��

(c#( f

�
!r

�
)e(c!b))"int B

�
�
(b#f


�
e(c!b))� r

�
BLA� r.B"S


�
,

proving (42).

Now we can finish the proof of (40) for the case �s!c �)r(f

�
!r

�
. By the

definition of c, if �s!c �'0, then intB�	
� �
(s)LS


�
, which together with (41) implies

e(s!c)"!e (b!c). Hence �s!(c#( f

�
!r

�
)e (c!b)) �(f


�
!r

�
, which together

with (42) and r(f

�

!r
�
yields (40). In the case �s!c �"0 we have c"s3S


�
, whence

(42) gives s3B
�
(c#re (c!b))LintB

�
�
��
(c#( f


�
!r

�
)e(c!b) )��c�LS


�
, com-

pleting the proof of (40) and of (6).

As for (7), (1) and (4) show that SI :"S� and ¹I :"¹� satisfy ¹I

�LSI L¹I � and








(¹I )"¹I "


�

(¹I ). Then the already proven assertion (6) shows that the set

SII :"


�


(

��
(SI )) satisfies SII "


�
(SII ) for r3[r



, ( f

�

#r



)�). But using (4) one obtains

SII "


�


( (


��

(S) )�)"(

�

(



��
(S) ) )�"(S

�

)�, so (4) gives S

�

"


�
(S

�

) for

r3 (!(f
�

!r



)�, r



].

Finally, observe that d
�
(S, ¹)(	 gives ¹LS�L¹

�� (it is enough to require

d
�
(S, ¹))	 if S and ¹ are both closed), so the inclusions in the following statement

result from (MON II); the equalities follow from Lemma B 1(c) and 0(r
�
!	(R

�
,

2	(R
�
and 	#r

�
(R

�
, respectively:

¹

�"(¹

��
�)
��
L( (S�)��
�)
��

L( (¹
��)��
�)
��

L(¹����
)

��

"¹� .

Further, r
�
!	'0 shows (S�)��
�"(S� 	B)� (r

�
!	)B"S

��
, whence SI :"



��
(S)"

( (S�)��
�)
��
. We thus have ¹


�LSI L¹� , so Theorem 2 applies for SI . But

(SI )
�


"

�

(



��
(SI ) )"


�

(



��
(S) )"S

�

by (ID). 	
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Proof of ¹heorem 3. First consider S

�
. 


�
(S


�
)"S


�
for r3[!r

�
, 0] follows from (ID)

and (MON). To prove the case r3 (0, ( f!r
�
)�) we will show as in the proof of (6) of

Theorem 2 that f'r
�
and r3 (0, ( f!r

�
) imply (40). The proof of (40) follows that for

Theorem 2 except that we set here Z :"(conv

�

(S)) )� r

�
B. (CON) and Lemma E(a)

show 



�

(Z)"Z for every R
�
'0, and Lemma D shows

conv(

�

(S)�� (r�

�
!(diamS)�B))L


�

(S) � r

�
B": A (44)

(note diamS*diam

�

(S) ). Whence Lemma E(a) and (CON) give

Z

���
�����
�
�
��	��	

LALZ. As in the proof of (6) one hence finds that for every

R
�
'0, (40) holds for r3 (0, ( fJ (r

�
, r



, R

�
, r

�
!�[r�

�
!(diam S)�]!r

�
)�), and hence

for 0(r(lim

���

( fJ (r
�
, r



,R

�
, r

�
!�[r�

�
!(diam S)�]!r

�
)�"( f!r

�
)�.

Finally, the first inclusion in (9) follows by applying � r
�
B in (44) and using (CON)

and Lemma E(a); further (MON II) and Lemma E(b) show that for any set CL��,




��

(C)L


��

(convC)"convC, so the second inclusion in (9) follows by setting

C :"

�

(S).

Concerning S
�
�

, we just saw that SL


��

(S)LconvS, but then it follows that

diam


��

(S)"diamS. So applying the already proved part of (8) concerning S

�

to

the set 


��

(S) instead of S shows the assertion concerning S
�
�

in (8). Further,

Lemmas D and E(a) yield (convS)

���
�����
�
�
� �	��

L


��

(S), hence

(convS)�����
�
�
� �	��
��
�

L(



��
(S))


�

L


�

(



��
(S) )LS

�
�
L



��
(S) , (45)

using (MON) and (ID) for the last two inclusions. We already saw 


��

(S)LconvS,

so (10) follows. Equation (11) is a consequence of (10) and Lemma F. 	
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