84. On a Generalization of Bochner's Tube Theorem for Generic CR-Submanifolds

By Takashi AOKI*) and Shinichi TAJIMA**)

(Communicated by Kôsaku Yosida, M. J. A., Oct. 12, 1987)

The classical Bochner's tube theorem states that every holomorphic function on a connected tube domain $\mathbb{R}^n + i\Omega \subset \mathbb{C}^n$ can be extended holomorphically to the convex hull of the tube $\mathbb{R}^n + ich(\Omega)$.

H. Komatsu [4] has obtained a simple proof of the local version of this theorem by using Cauchy's integral formula. By making use of the theory of Fourier-Bros-Iagolnitzer transform, M. S. Baouendi and F. Treves [1] have generalized the result above. In particular they have obtained the microlocal version of Bochner's tube theorem for generic CR-manifolds.

In this paper we shall give a simple proof of this result. In the section 1, we formulate Bochner's tube theorem for generic CR-submanifolds by employing the notion of specialization of sheaf of holomorphic functions (cf. [5]). In the section 2 we give the new proof of the theorem by reducing the problem to the totally real case.

1. Statement of the result. Let N be a real analytic submanifold of a complex manifold X. For $p \in N$, we denote by $H_p(N)$ the complex tangent space to N at p. The submanifold N is said to be generic, if for all $p \in N$, dim_c $H_p(N) = \dim_c X - \operatorname{codim}_R N$. Let us assume hereafter that N is generic.

Let $S_N X$ be the spherical normal bundle $T_N X - \{0\}/\mathbb{R}^+$ with the projection $\tau: S_N X \to N$. The disjoint union ${}^{N}X = (X - N) \coprod S_N X$ has the structure of real analytic manifold with boundary $S_N X$. It is called the real monoidal transform of X with center N.

Let *i* (resp. \tilde{i}) be the embedding $i: N \to X$ (resp. $\tilde{i}: S_N X \to {}^{\tilde{N}} X$) and *j* (resp. \tilde{j}) be the natural inclusion map $j: X - N \to X$ (resp. $\tilde{j}: X - N \to {}^{\tilde{N}} X$). We set $\tilde{\mathcal{A}}_{N|X} = \tilde{i}^{-1} (\tilde{j}_* (j^{-1} \mathcal{O}_X))$.

Recall that a subset V of $S_N X$ is said to be convex if each fiber of τ is convex. For every subset U in $S_N X$, we denote by ch(U) the smallest convex set containing U.

Theorem (cf. [1]). Let N be a real analytic submanifold of X. We assume that N is a generic CR-submanifold. Let U be an open connected subset of $S_N X$. Then the following assertions hold.

(a) $\Gamma(U; \tilde{\mathcal{A}}_{N|X}) = \Gamma(ch(U); \tilde{\mathcal{A}}_{N|X}).$

(b) If $ch(U) = \tau^{-1}(\tau(U))$, then $\Gamma(U; \tilde{\mathcal{A}}_{N|X}) = \Gamma(\tau(U); \mathcal{O}_{X|N})$.

We note here that the last statement imply the classical Kneser's theorem [3].

^{*)} Dept. of Math. Kinki Univ., Higashi-Osaka 577, Japan.

^{**)} Faculty of General Education, Niigata Univ., Ninomachi 8050, Ikarashi, Niigata 950-21, Japan.

2. Proofs. Let Y be a complexification of N, i.e., Y is a complex manifold in which N can be embedded as a generic totally real submanifold. We denote by $\tilde{\mathcal{A}}_N$ the sheaf $\tilde{\mathcal{A}}_{N|Y}$ which can be defined in the same way as in the section 1. Let $i_c: Y \to X$ be the natural complexification of the embedding $i: N \to X$. Since N is generic, i_c is a submersion in a neighborhood of N. We denote by ϕ the natural mapping $\phi: S_N Y - S_N (i_c^{-1}(N)) \to S_N X$.

Proof of (a). We have the followings :

$$\begin{split} &I'(U; \tilde{\mathcal{A}}_{N|X}) = \Gamma(\phi^{-1}(U); \phi^{-1}\tilde{\mathcal{A}}_{N|X}), \\ &\Gamma(\phi^{-1}(U); \phi^{-1}\tilde{\mathcal{A}}_{N|X}) \subset \Gamma(\phi^{-1}(U); \tilde{\mathcal{A}}_{N}). \end{split}$$

By using the microlocal version of Bochner's tube theorem ([4]), we have $\Gamma(\phi^{-1}(U); \tilde{\mathcal{A}}_N) = \Gamma(ch(\phi^{-1}(U)); \tilde{\mathcal{A}}_N).$

Hence, every section of $\phi^{-1} \tilde{\mathcal{A}}_{N|X}$ on $\phi^{-1}(U)$ can be continued to $ch(\phi^{-1}(U))$ as a section of $\tilde{\mathcal{A}}_N$. By definition, $\phi^{-1}(\tilde{\mathcal{A}}_{N|X})$ is the sheaf of boundary value of holomorphic functions which satisfy the partial de Rham system defined by the submersion i_c . This yields

$$egin{aligned} &\Gamma(\phi^{-1}(U)\,;\,\phi^{-1}(ilde{\mathcal{A}}_{N\mid X})) \!=\! \Gamma(ch(\phi^{-1}(U))\,;\,\phi^{-1}(ilde{\mathcal{A}}_{N\mid X})) \ &=\! \Gamma(\phi^{-1}(ch(U))\,;\,\phi^{-1}(ilde{\mathcal{A}}_{N\mid X})). \end{aligned}$$

Therefore,

$$\Gamma(U; \tilde{\mathcal{A}}_{N|X}) = \Gamma(ch(U); \tilde{\mathcal{A}}_{N|X})$$

which completes the proof of (a).

Proof of (b). From the above arguments we have

$$\Gamma(U; \tilde{\mathcal{A}}_{N|X}) = \Gamma(\tau^{-1}(\tau(U)); \tilde{\mathcal{A}}_{N|X}) = \Gamma(\tau(U); \tau_* \tilde{\mathcal{A}}_{N|X}).$$

Since N is generic the sheaf $\tau_* \tilde{\mathcal{A}}_{N|X}$ is isomorphic to the sheaf $i^{-1}\mathcal{O}_X$ ([6]). We have

$$\Gamma(U; \mathcal{A}_{N|X}) = \Gamma(\tau(U); \mathcal{O}_{X|N}).$$

References

- Baouendi, M. S. and Treves, F.: A microlocal version of Bochner's tube theorem. Indiana Univ. Math. J., 31, 885-895 (1982).
- Bochner, S.: A theorem on analytic continuation of functions in several variables. Ann. of Math., 39, 14-19 (1938).
- [3] Kneser, H.: Die singulären Kanten bei analytischen Funktionen mehrerer Veränderlichen. Math. Ann., 106, 656-660 (1932).
- [4] Komatsu, H.: A local version of Bochner's tube theorem. J. Fac. Sci. Univ. Tokyo IA., 19, 201–214 (1972).
- [5] Sato, M., Kawai, T., and Kashiwara, M.: Microfunctions and pseudo-differential equations. Hyperfunctions and pseudo-differential equations. Lecture Notes in Mathematics, Berlin Heidelberg New York. Springer-Verlag, vol. 287, pp. 265– 529 (1973).
- [6] Tajima, S.: Analyse microlocale sur les variétés de Cauchy-Riemann et problème du prolongement des solutions holomorphes des équations aux dérivées partielles. Publ. RIMS. Kyoto Univ., 18, 911-945 (1982).