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ABSTRACT. A class Tk of analytic functions in the unit disc is defined in which the
concept of close-to-convexity is generalized. A necessary condition for a function f
to belong to Tk’ raduis of convexity problem and a coefficient result are solved in
this paper.
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1. INTRODUCTION.

This paper is directed to mathematical specialists or non-specialists familiar
with multivalent functions [1], and to close~to-convex functions [2].

Let Vk be the class of functions of bounded boundary rotation and K be the class
of close-to-convex functions. We generalize the concept of close-to-convexity in the
following direction.

[

n
Definition. Let f with f(z) = cz + 22 a z be analytic in E = {z:
Zerinition ne

z| <1}, {c|=1 and

£f'(z) # 0. Then feTy, k>2, if there exist a function geVy such that, for zeE

>0. (1.1)
It is clear that T, = K.

Using a method by Kaplan [2], we have

THEOREM 1. Let feTk. Then with z = reie and 8 < 6

¢}
2 (zf'(z))'} k
lRe {———f'(z) de > > (1.2)
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REMARK 1. From theorem 1, we can interpret some geometric meaning for the class Ty-
For simplicity, let us suppose that the image domain is bounded by an analytic curve
C. At a point on C, the outward drawn normal has an angle arg[eief'(eie)]. Then from
(1.2), it follows that the angle of the outward drawn normal turns back at most %ﬂ.
This is a necessary condition for a function f to belong to Tp. It will be inter-
esting to see if this condition is also sufficient,.

REMARK 2. Goodman [3] defines the class K(B) of functions as follows.

™

n
Let f with £(z) = z + 22 az be analytic in E and f'(z) # 0. Then for B>0, feK(B),
n= kd

if for z=reie and 61 < 62

)
(zf'(z))" _
£Re[ 7 (2) ] dg > =B
1

We note that Tk;:K(g).
2. MAIN RESULTS
From remark 2 and results given in [3] for the class K(g8), we have at once

THEOREM 2. Let feTk.
(i) Denote by L(r,f) the length fo the image of the circle |z|= r under f and by
A(r,f) the area of f(}z!=r). Then for O<r<l,

(a) L(r,f) < L(r,F),

(b) A(r,f) < A(r,F),

where Fk is defined by, for zcE,
k+1
P (o) = L ()R
k (k+2) l-z
=z 4+ A&z (2.1)
n=2 n

and clearly Fk € Tk'
(i1) lagl <A (), n=2,3, cooooa... oy k >2

where An(k) is defined by (2.1). This result is sharp for each n > 2.

(iii) For z = re”, 0 <r <1,

Lk Lk
(1-1) ] (1+41r)°
() ET2 <@ | e

These bounds are sharp, equality being attained fotr the function Fk defined by (2.1).



GENERALIZATION OF CLOSE-TO-CONVEXITY

We also need the following result.

Lemma 1 {4]. Let geVy. Then there are two starlike functions s; and s, such that

for zeE 4!
e
(s1(z)/z)
g'(2) = g
(s,(2)/2)
THEOREM 3. feTk if and only if
Lk+s
! ¢
oy < Bk kgek

Lk-%
(k} (2)) 2
2
PROOF: From definition 1, we have

£'(z) = g'(2)h(z), geVy and Re h(z)>0.

Using lemma 1, we know that there are two starlike functions S1 and s

Yike#s
(s](Z)/Z)

bk~

(s,(2)/2)

g' (z)

Thus Lk lek-+s
' (s (z)/z)“k+12 ((Sl(Z)h(Z))/Z)f ’
( k=15 h(z) =

s,(2)/2) ((s,(2)h(2))/2)

[ l/hk'*"/z
(] (2))

1] Lﬁk"Li
(ky(2))

£'(2)

k-3

where kl and k2 are two suitable selected close-to-convex functions.

Lemma 2. Let H be analytic and be defined as

k k 1
H(z)g'(z) = (zg'(z))"', gng and H(z) = (Z + %) hl(z) —(27 - 5) hZ(Z)’

Re hi(z) > 0, i=1,2, h (0)= 1
i

Then
2m .
2 2 2 .
1 1+ (k°-1)r is
> f|H(z)I de < i—r — (z = re™ )
0
and
2n
1 {, k
— | |H"(2)|d8 <
27 | | —'l—rz
0

PROQOF: By the representation formula due to Paatero [5], we can write
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such that zeE,
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g
1 i}ze
H(z) = f Loy du(e),
where 0
2T o7
Idu(t) - 2, and [tdum[ < kn
0 0
Let H(z) =1 + Y ¢ z
n=
Then
2T .
e, = _%-j e —lntdu(t), and so for n>1,
0
om
1
[eyl <7} lau(®)]| <k
Thus
27
1 2 o 2 2n 2 o 2n 1+(k2—l)r2
5}—'|H(z)| de = = !cnl r <(l+k I r ) = 1-1
. n=0 n=1
Also Pl
1 it
H'(z) = — du(t)
WL(l—zelt)z
Thus
am 2T 2% 27
1 fpa A1 - K
. SIH (z)[do < — I 2"1]1—:ei(9+t)|2 de|du(e)| < 22 Troldu(t)l <152
(o]
THEORE! 4: Let feTk. Then for n>1,
- k_g
2
an+l’ - e, < c(k)n s
where c(k) is a constant and depends only on k.
PROOF: Since feTk, we have for zeE,
f'(z) = g'(z)h(z), geVy and Re h(z)>0
Set
F(z) = z(2f'(2))' = =zg'(z)[H(2)h(2) + zh'(2)], (2,2)
where Re h(z) > 0 and H(z)g'(z) = (zg'(z))', with

= = 4+ = - === 0 i= h, (0)=
H(Z) ( )hl(z) ( )112(2), Re hi(z) > s 1,2, i( )

Thus, for £ € E and n>1;
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27w

2 2
O n+l£|z —¢| |F ()] do,

and by using lemma 1 and (2.2), we obtain

2 2 '
| (+1)"€a -n a < — ]H(z)h(z) + zh'(z) |de,

where sl, s2 are starlike functions.

It is well-known [1l] that for starlike function seS,

< |s@]< 5
(l+r) (1-r)
Let O<r<l. Then by a result of Golusin [6,pl62], there exists a 2 with
[zl| = r such that for all z, Iz[ =r,

2r2
-y oy ] < 255

From (2.3)-(2.5), we have
Lk=k 2@

2 2 1 eV 0%\ |
I(n+l) ta -n"a lf_ -—) ( ) f H(z)h(z)+zh'(z)|d6
n+l n 2wrn+l\r 1-r2}\(l—r)2
Now as in [7], we have with z = reie
. 2 \
——flh(z)lzde il—ﬁ—;—
0 1-r
and
27
1 ' 2r where Re h(z) > 0,
P leh (z)|d8 < .2 g
0 r
Also )
2m 2 2%
L [|H(z)h(z) + 20" (2)|d6 < =2— [|H(z)h(z)|do + =1 |zn"
p zh'(z 25 z)h(z o L[ (z)]ds

1 1
el iasn®t | o

- l-r2 1—r2

by using Schwarz's inequality, lemma 2 and (2.7).

Hence from (2.6) and (2.8), we have
1
(1-r)

2 2 Lk 2 2%
| (a+1)%2a oy %2 < n+l 2% [arelnry ] ——
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(2.3)

(2.4)

(2.5)

(2.6)

@.7n

(2.8)
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and so choosing ]gl = r =(;%I) , we obtain for n>1

2_1y,2 2 bkt L+l ket
n2llan+1|-|anll < [kl+(k e+ 1] e? 2K 2(_§)4 1 skl

Thus
k-1
la_l-la || < caon®?
The function Fk defined by (2.1) shows that the index (%-— 1) is best possible.
We now evaluate the radius of convexity for the class Tk'
THEOREM 5: Let feTk. Then the radius R of the circle which f maps onto a convex

R = %{(1&2) - V(K2 +4K) ] .

The function Fk defined by (2.1) shows that this result is best possible. In par-

domain is given by

ticular, when k = 2, R = Zdvﬁj—which is well known. This result also follows from
the remark in [3,p.23].

PROOF: By definition

zf'(z) = ag'(z)h(z) geV. ;3 Re h(z)>0.
Thus
(2£'(2))' _ (zg'(2))'  zh'(z)
£'(2) g'(z) h(z)
and so
(z£'(2))" (zg'(2))' _ zh'(2)
ke U@ 2 R IS |
For ger, it is well known [9] that, for z = reie, O<r<i,
e (ZE'ED' r2—krtl
8" (2) - 1-r°
Hence
re ZE (D' 2kl .2 =r2—(k+2)r+l
£ (2) - l—r2 l—t2 l—r2

This gives the required result.
REMARKS 3.
(i). We also note that the extremal function Fk(z) defined by (2.1) is the same
function as FB(Z) defined by equation (2.6) in [3]. As A. W. Goodman has pointed out

that this function is sometime referred to as the generalized Koebe function.
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(1i). We conjecture that the class Tk is a proper subclass of the class K(B) as

defined in [3], since in the definition of Tk

convex in one direction and all the functions in one direction form a proper subclass

» ger and we know that ger, 2<k<4, 1is

of the class of close-to~-convex functions,

(11i). It remains open whether Tk is a linear in variant family.
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