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ON A GENERALIZATION OF MCCOY RINGS

Victor Camillo, Tai Keun Kwak, and Yang Lee

Abstract. Rege-Chhawchharia, and Nielsen introduced the concept of
right McCoy ring, based on the McCoy’s theorem in 1942 for the anni-
hilators in polynomial rings over commutative rings. In the present note
we concentrate on a natural generalization of a right McCoy ring that is
called a right nilpotent coefficient McCoy ring (simply, a right NC-McCoy

ring). The structure and several kinds of extensions of right NC-McCoy
rings are investigated, and the structure of minimal right NC-McCoy rings
is also examined.

Throughout this paper R denotes an associative ring with identity unless
otherwise stated. Let N(R) be the set of all nilpotent elements in R. We use
R[x] to denote the polynomial ring with an indeterminate x over R. Let Cf(x)

denote the set of all coefficients of f(x) ∈ R[x]. Denote the n by n full matrix
ring over R by Matn(R) and the n by n upper triangular matrix ring over R
by Un(R). Use Eij for the matrix with (i, j)-entry 1 and elsewhere 0. By Zn

we mean the ring of integers modulo n.
McCoy [27] showed that if two polynomials annihilate each other over a

commutative ring, then each polynomial has a nonzero annihilator in the base
ring. Weiner [16] showed this fact fails in non-commutative rings. Based on this
result, Nielsen [29] and Rege-Chhawchharia [30] each called a non-commutative
ring R right McCoy (resp., left McCoy) if whenever any nonzero polynomials
f(x), g(x) ∈ R[x] satisfy f(x)g(x) = 0, then f(x)c = 0 (resp., cg(x) = 0) for
some nonzero c ∈ R, and a ring R is called McCoy if it is both left and right
McCoy. Rege-Chhawchharia also called R an Armendariz ring [30, Definition
1.1] if whenever any polynomials f(x), g(x) ∈ R[x] satisfy f(x)g(x) = 0, then
ab = 0 for each a ∈ Cf(x) and b ∈ Cg(x). Any reduced ring (i.e., it has no
nonzero nilpotent elements) is Armendariz by [4, Lemma 1]. Armendariz rings
are clearly McCoy but the converse does not hold by [30, Remark 4.3]. A ring
is called Abelian if every idempotent is central. Armendariz rings are Abelian
by the proof of [2, Theorem 6].
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There exist several generalizations of a reduced ring. Cohn [8] called a ring
R reversible if ab = 0 implies ba = 0 for a, b ∈ R. Due to Narbonne [28], a ring
R is called semicommutative if ab = 0 implies aRb = 0 for a, b ∈ R. Nielsen
developed and extended the concept of a McCoy ring. In particular, he showed
that any reversible ring is McCoy [29, Theorem 2] and gave an example that is a
semicommutative ring but not McCoy [29, Section 3]. The concept of a McCoy
ring is generalized in [10] to a weak McCoy ring, but to have the terminology be
more expressive we will call this ring a nilpotent coefficient McCoy ring, or an
NC-McCoy ring for short. In this paper, we study the structure of NC-McCoy
rings. Several kinds of extensions of NC-McCoy rings are investigated and some
well-known results are extended. The structure of minimal right NC-McCoy
rings is also examined.

LetN∗(R) andN∗(R) denote the prime radical and the upper nilradical (i.e.,
the sum of all nil two-sided ideals) of a ring R, respectively. A generalization of
a semicommutative ring is the 2-primal condition. A ring R (possibly without
identity) is called 2-primal [5] if N∗(R) = N(R). Note that a ring R is 2-primal
if and only if R/N∗(R) is reduced. In [26], a ring R (possibly without identity)
is called NI if N∗(R) = N(R). Note that R is NI if and only if N(R) forms a
two-sided ideal if and only if R/N∗(R) is reduced. It is obvious that 2-primal
rings are NI, but the converse need not hold by Hwang et al. [15, Example
1.2] or Marks [26, Example 2.2]. But if R is an NI ring of bounded index of
nilpotency, then R is 2-primal by [15, Proposition 1.4].

On the other hand, Nielsen gave an example of a semicommutative ring
which is not one-sided McCoy [29, Section 3] and proved that for any f(x) =
a0 + a1x + · · · + amxm and g(x) = b0 + b1x + · · ·+ bnx

n in R[x] over a semi-
commutative ring R, if f(x)g(x) = 0, then aib

i+1
0 = 0 for all i ∈ {0, 1, . . . ,m}

[29, Lemma 1]. Moreover we get 0 = aib0 ∈ N(R) for any i since R/N(R) is
reduced. Now let us add a condition g(x) 6= 0 to [29, Lemma 1]. Then we may
assume that b0 6= 0 and put k be the largest integer among {0, 1, . . . ,m} such

that bk+1
0 6= 0, and thus aib

k+1
0 ∈ N(R) for some bk+1

0 6= 0 since N(R) is a
two-sided ideal of R. This leads us take the following weak McCoy condition
which is a generalization of McCoy condition.

Definition 1. A ringR is called right nilpotent coefficient McCoy (simply, right
NC-McCoy) if for any nonzero polynomials f(x) and g(x) in R[x], f(x)g(x) =
0 implies f(x)c ∈ N(R)[x] for some 0 6= c ∈ R, equivalently, there exists
0 6= c ∈ R such that ac ∈ N(R) for any a ∈ Cf(x). Left NC-McCoy rings are
defined analogously, and a ring R is called NC-McCoy if it is both left and right
NC-McCoy ([10, Definition 2.1]).

It is obvious that every right McCoy ring is right NC-McCoy, but not con-
versely by Example 4 to follow. NI rings are NC-McCoy by [10, Proposition
2.7], but the converse does not hold by Example 4. The concepts of right Mc-
Coy rings and NI rings are independent of each other. Over an NI ring A,
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U2(A) is evidently NI, but not right McCoy by Example 4. While, there exists
an Armendariz (hence McCoy) ring that is not NI by [3, Example 4.8].

Recall that an element u of a ring R is left regular if ru = 0 implies r = 0 for
r ∈ R. The right regular is defined similarly, and regular means both left and
right regular (hence not a zero divisor). NC-McCoy condition is not left-right
symmetric by the following example.

Example 2. (1) Let K be a field and A = K〈a0, b0, a1, b1〉 be the free K-
algebra generated by the noncommuting indeterminates a0, b0, a1, b1. Let I be
the ideal of A generated by

a0b0, a0b1 + a1b0, a1b1, bsbt

for s, t ∈ {0, 1} and let R = A/I. We identify ai and bj with their images in R
for simplicity.

By the construction of R, we have (a0 + a1x)(b0 + b1x) = 0 while a0 + a1x
and b0 + b1x are nonzero polynomials over R. Assume by way of contradiction
that there exists 0 6= α ∈ R such that a0α, a1α ∈ N(R). A computation
using the reduced forms for elements in R shows that a0R and a1R contain no
nonzero idempotents. Thus a0α = 0 = a1α, which quickly implies α = 0, a
contradiction. This yields that R is not right NC-McCoy.

Next we show that R is left NC-McCoy. We will use −a0b1 in place of a1b0
when writing monomials in reduced form. Let f(x) and g(x) be nonzero in
R[x] with f(x)g(x) = 0. Note that f(x), g(x) /∈ K. We can express g(x) by

g(x) = k + a0g1(x) + a1g2(x) + b0g3(x) + b1g4(x),

where k ∈ K and gi(x) ∈ R[x] for all i. Here we claim

g(x) = b0g3(x) + b1g4(x).

To see this, set S be the multiplicative semigroup generated by a0, a1, b0, b1.
Notice that nonzero monomials in S can be embedded into the set of natural
numbers through the corresponding

a0 → 1, a1 → 2, b0 → 3, b1 → 4.

This corresponding is due to a method in [14, Example 14]. Then S is a totally
ordered set with the inequalities a0 < a1 < b0 < b1, only subject to 14 = 23
(since a0b1 = −a1b0). For example,

a0 < a1 < a20 < a0a1 < a0b0 < a0b1(= a1b0) < a1a0 < a21 < a1b1

< b0a0 < · · · < b0b1 < b1a0 < · · · < b21 < a30

because

1 < 2 < 11 < 12 < 13 < 14(= 23) < 21 < 22 < 23

< 31 < · · · < 34 < 41 < · · · < 44 < 111.

So f(x) can be expressed by f(x) =
∑m

i=1 ki(x)hi with 0 6= ki(x) ∈ K[x] and
0 6= hi ∈ S for all i such that h1 < · · · < hm where m is a positive integer.
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But k1(x)h1k = k1(x)kh1 is unique in the expansion of f(x)g(x) since h1 is
smallest in the set

{p ∈ S | p occurs in the coefficients of the expansion of f(x)g(x)},

and so k1(x)h1k must be zero since f(x)g(x) = 0. This entails k = 0, obtaining
g(x) = a0g1(x) + a1g2(x) + b0g3(x) + b1g4(x).

Next we can express gn(x) (for n = 1, 2, 3, 4) by gn(x) =
∑ln

j=1 t(n)j(x)v(n)j
with t(n)j(x) ∈ K[x] and 0 6= v(n)j ∈ S for all j such that v(n)1 < · · · < v(n)ln
where ln’s are positive integers. Note that h1a0v(1)1 is smallest in the set

{q ∈ S | q occurs in the coefficients of the expansion of f(x)a0g1(x)}.

Here letting h1 = v and v(n)j = wnj
for simplicity, we have

h1a0v(1)1 = v1w11 , h1a1v(2)j = v2w2j , h1b0v(3)j = v3w3j , h1b1v(4)j = v4w4j .

But these are distinct of each other, and hence

(k1(x)h1)(a0t(1)1(x)v(1)1) = (k1(x)t(1)1(x))(h1a0v(1)1)

is unique in the expansion of f(x)g(x), and so a0t(1)1(x)v(1)1 must be zero
since (k1(x)h1)(a0t(1)1(x)v(1)1) 6= 0 when a0(t(1)1(x)v(1)1) 6= 0. Inductively
we obtain a0t(1)j(x)v(1)j = 0 for j = 2, . . . , l1, entailing a0g1(x) = 0. We also
get a1g2(x) = 0 through a similar method. These yield

g(x) = b0g3(x) + b1g4(x).

Now we have bjg(x) = 0 ∈ N(R)[x] for j = 0, 1, concluding that R is left
NC-McCoy.

(2) LetK be a field and A = K〈a0, b0, a1, b1〉 be the freeK-algebra generated
by the noncommuting indeterminates a0, b0, a1, b1. Let I be the ideal of A
generated by

a0b0, a0b1 + a1b0, a1b1, asat

for s, t ∈ {0, 1} and R = A/I.
Note (a0+a1x)(b0+b1x) = 0. Assume that 0 6= β ∈ R such that β(b0+b1x) ∈

N(R)[x]. Then we obtain βb0 = 0 and βb1 = 0 through a similar method to
one of (1), noting that βbj is right regular when βbj 6= 0. So β must be zero,
a contradiction. Thus R is not left NC-McCoy.

Let f(x) and g(x) be nonzero in R[x] with f(x)g(x) = 0. Then we have

f(x) = f1(x)a0 + f2(x)a1 for some f1(x), f2(x) ∈ R[x]

by a similar method to one of (1). Thus f(x)ai = 0 ∈ N(R)[x] for i = 0, 1,
concluding that R is right NC-McCoy.

In the following note, we find all cases of f(x) and g(x) with f(x)g(x) = 0
in Example 2.
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Note. (1) We can rewrite f(x) by

f(x) = h+ f1(x)a0 + f2(x)a1 + f3(x)b0 + f4(x)b1,

where h ∈ K and fi(x) ∈ R[x] for all i. Then we have

0 = f(x)g(x) = f(x)(b0g3(x) + b1g4(x))

= h(b0g3(x) + b1g4(x)) + f1(x)a0b1g4(x) + f2(x)a1b0g3(x).

This entails

(hb0 + f2(x)a1b0)g3(x) = −(hb1 + f1(x)a0b1)g4(x).

Assume h 6= 0. If g3(x) = 0, then (hb1 + f1(x)a0b1)g4(x) = 0 and so g4(x) = 0
since hb1+f1(x)a0b1 6= 0. This yields g(x) = 0, a contradiction. Thus we must
have h = 0 and f(x) = f1(x)a0 + f2(x)a1 + f3(x)b0 + f4(x)b1. Then

0 = f(x)g(x) = f1(x)a0b1g4(x) + f2(x)a1b0g3(x).

This equality gives the following cases.
If f1(x)a0 = f2(x)a1 = 0 (i.e., f(x) = f3(x)b0 + f4(x)b1), then f(x)g(x) = 0

obviously.
If f1(x)a0 6= 0 and f2(x)a1 = 0, then we must have g(x) = b0g3(x) since

f(x)g(x) = f1(x)a0b0g3(x) + f1(x)a0b1g4(x) = f1(x)a0b1g4(x).
If f1(x)a0 = 0 and f2(x)a1 6= 0, then we must have g(x) = b1g4(x) since

f(x)g(x) = f2(x)a1b0g3(x) + f2(x)a1b1g4(x) = f2(x)a1b0g3(x).
Suppose f1(x)a0 6= 0 and f2(x)a1 6= 0. Then we must have f1(x) = f2(x)

and g3(x) = g4(x) because the right hand side of the preceding equality must
be of the form

0 = s(x)(a0b1 + a1b0)t(x) = s(x)(a0b1 + a1b0)xt(x)

= s(x)(a0 + a1x)(b0 + b1x)t(x)

or

0 = s(x)(a0b1 + a1b0)t(x) = s(x)(a0 + a1)(b0 + b1)t(x)

for some s(x), t(x) ∈ R[x].
Summarizing, f(x) and g(x) have one of the following cases:

f(x) = c(x)(a0 + a1x) +
1

∑

i=0

hi(x)bi, g(x) = (b0 + b1x)d(x);

f(x) = h(x)(a0 + a1) +

1
∑

i=0

hi(x)bi, g(x) = (b0 + b1)k(x);

f(x) =

1
∑

i=0

hi(x)bi, g(x) =

1
∑

j=0

bjkj(x);

f(x) = r(x)a0 +

1
∑

i=0

hi(x)bi, g(x) = b0s(x);
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f(x) = u(x)a1 +

1
∑

i=0

hi(x)bi, g(x) = b1v(x),

where c(x), d(x), h(x), hi(x), k(x), kj(x), r(x), s(x), u(x), v(x) ∈ R[x].
(2) We have one of the following cases through a similar method to the

preceding one:

f(x) = c(x)(a0 + a1x), g(x) =

1
∑

i=0

hi(x)ai + (b0 + b1x)d(x);

f(x) = h(x)(a0 + a1), g(x) =

1
∑

i=0

hi(x)ai + (b0 + b1)k(x);

f(x) =

1
∑

i=0

hi(x)ai, g(x) =

1
∑

j=0

ajkj(x);

f(x) = r(x)a0, g(x) =

1
∑

i=0

hi(x)ai + b0s(x);

f(x) = u(x)a1, g(x) =
1

∑

i=0

hi(x)ai + b1v(x),

where c(x), d(x), h(x), hi(x), k(x), kj(x), r(x), s(x), u(x), v(x) ∈ R[x].

The following gives us basic examples of NC-McCoy rings.

Proposition 3. For a ring R, we have the following:
(1) If R contains a nonzero nil one-sided ideal, then R is an NC-McCoy

ring.

(2) Every ring R with N∗(R) 6= 0 is a NC-McCoy ring. Hence, every non-

semiprime ring is an NC-McCoy ring.

(3) Let R be a ring with a nonzero central nilpotent element. Then Matn(R)
is an NC-McCoy ring for n ≥ 2.

(4) Un(R) is an NC-McCoy ring for n ≥ 2.

(5) Dn(R) =

















a a12 a13 ··· a1n

0 a a23 ··· a2n

0 0 a ··· a3n

...
...

...
...

...
0 0 0 ··· a






|a, aij ∈ R











is an NC-McCoy ring for

n ≥ 2.

(6) Vn(R) =

















a1 a2 a3 ··· an

0 a1 a2 ··· an−1

0 0 a1 ··· an−2

...
...

... ···

...
0 0 0 ··· a1






| a1, a2, . . . , an ∈ R











∼= R[x]/(xn) is an

NC-McCoy ring for n ≥ 2, where (xn) is a two-sided ideal of R[x] generated by

xn for n ≥ 2.
(7) Let R and S be rings. For a nonzero bimodule RMS, (R M

0 S ) is an NC-

McCoy ring.
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Proof. (1) The hypothesis is left-right symmetric, and if I is a nil left ideal of
R, then c in Definition 1 can be any nonzero element of I. Parts (2) through
(7) are all trivial consequence of part (1). �

Example 4. (1) Let R = U2(A) over any ring A. Then R is NC-McCoy by
Proposition 3(4). For

f(x) =

(

1 0
0 0

)

+

(

0 −1
0 0

)

x, g(x) =

(

0 0
0 1

)

+

(

0 1
0 0

)

x ∈ R[x],

we have f(x)g(x) = 0. But there cannot exist nonzero c ∈ R such that f(x)c =
0, and thus R is not right McCoy.

(2) Let F 〈X,Y 〉 be the free algebra on X , Y over a field F and I denote the
ideal (X2)2 of F 〈X,Y 〉, where (X2) is the two-sided ideal of F 〈X,Y 〉 generated
by X2. Consider the ring R = F 〈X,Y 〉/I. Then 0 6= N∗(R) = N∗(R) ( N(R)
by [13, Example 3], showing that R is not an NI ring. However, R is NC-McCoy
by Proposition 3(2).

(3) Let R be a ring with a nonzero central nilpotent element. Then Matn(R)
(n ≥ 2) is an NC-McCoy ring by Proposition 3(3). However Matn(R) cannot
be an NI ring as can be seen by the two nilpotent matrix units E12 and E21.

From Proposition 3, one may conjecture that the n×n full matrix ring over
any ring is NC-McCoy for n ≥ 2, but the possibility is erased by the following.

Theorem 5. Let R be a reduced ring. Then Matn(R) is neither right nor left

NC-McCoy for n ≥ 2.

Proof. Note that Matn(R)[x] ∼= Matn(R[x]) for n ≥ 2. Consider nonzero poly-
nomials

f(x) =











1 x · · · xn−1

xn xn+1 · · · x2n−1

...
... · · ·

...

xn(n−1) xn(n−1)+1 · · · xn2
−1











= E11+E12x+ · · ·+Ennx
n2

−1

and

g(x) =















x x · · · x
−1 −1 · · · −1
0 0 · · · 0
...

... · · ·
...

0 0 · · · 0















in Matn(R)[x] with f(x)g(x) = 0. Assume to the contrary that Matn(R) is
right NC-McCoy. Then there exists nonzero C = (cij) ∈ Matn(R) such that
f(x)C ∈ N(Matn(R))[x], say (EijC)kij = 0 for any i and j. Put k = max{kij |
1 ≤ i ≤ n, 1 ≤ j ≤ n}. Then (EijC)k = 0, and so cji = 0 for any i and j
by a simple computation, since R is reduced. This implies C = 0; which is a
contradiction. Thus Matn(R) is not right NC-McCoy. Similarly, we can see
that Matn(R) is not left NC-McCoy either. �
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The following example shows that the condition “R is a reduced ring” in
Theorem 5 cannot be weakened to the condition “R is a semiprime ring”.

Example 6. Let S be a reduced ring. For a positive integer n, put Rn be the
2n × 2n upper triangular matrix ring over S. Define a map σ : Rn → Rn+1

by σ(A) = (A 0
0 A ), then Rn can be considered as a subring of Rn+1 via σ (i.e.,

A = σ(A) for A ∈ Rn). Set R = lim
−→

Rn be the direct limit of the direct system

(Rn, σij) over {1, 2, . . .}, where σij = σj−i for i ≤ j. Then it is proved that
R is a semiprime ring, by using the same argument as in [15, Example 1.2].
For a two-sided ideal I = {A ∈ R | the diagonal entries of A are zero} of R, it
can be easily checked that Matn(I) is a nil two-sided ideal of Matn(R). Thus
Matn(R) is NC-McCoy for n ≥ 2 by Proposition 3(1).

Notice that the n × n full matrix ring S = Matn(R) over a reduced ring R
is not one-sided NC-McCoy by Theorem 5, but the ring U2(S) is NC-McCoy
by Proposition 3(4). Moreover, if R is the ring of quaternions with integer
coefficients, then R is a domain, and so NC-McCoy; while for any odd prime
integer q, we have R/qR ∼= Mat2(Zq) by the argument in [11, Exercise 2A],
and thus the factor ring R/qR is not NC-McCoy by Theorem 5.

A ring R is called directly finite if ab = 1 implies ba = 1 for a, b ∈ R. Note
that both NI rings and right McCoy rings are directly finite by [15, Proposition
2.7(1)] and [6, Theorem 5.2], respectively. However, there exists an NC-McCoy
ring which is not directly finite.

Example 7. Let R be the ring of column finite countable matrices over a field
F . Let a ∈ R be the matrix with (i, i + 1)-entry 1 for all i ≥ 1 and zero
elsewhere, and b ∈ R be the (i + 1, i)-entry 1 for all i ≥ 1 and zero elsewhere.
Then ab = 1, but ba 6= 1. Consider the n × n upper triangular matrix ring
Un(R) for n ≥ 2. Then Un(R) is NC-McCoy by Proposition 3(4). But AB = 1
and BA 6= 1 with the help of the computation above, where A,B ∈ Un(R)
are scalar matrices with diagonals a and b, respectively. Hence Un(R) is not
directly finite.

Theorem 8. (1) For a ring R, if R[x] is right NC-McCoy, then so is R.

(2) Assume that N(R)[x] ⊆ N(R[x]) for a ring R. If R is a right NC-McCoy

ring, then so is R[x].

Proof. (1) Suppose that R[x] is right NC-McCoy. Let f(x)g(x) = 0 for nonzero
polynomials f(x) = a0 + a1x + · · · + amxm and g(x) = b0 + b1x + · · · + bnx

n

in R[x]. Then let f(y) = a0 + a1y + · · · + amym, g(y) = b0 + b1y + · · · +
bny

n ∈ (R[x])[y], where (R[x])[y] is the polynomial ring with an indeterminate
y over R[x]. Then f(y) and g(y) are nonzero since f(x) and g(x) are nonzero.
Moreover f(y)g(y) = 0. So there exists a nonzero c(x) = c0+c1x+ · · ·+ckx

k ∈
R[x] such that f(y)c(x) ∈ N(R[x])[y] since R[x] is right NC-McCoy. Then
aic(x) ∈ N(R[x]) for any 0 ≤ i ≤ m. Since c(x) is nonzero, there exists the
smallest positive integer l such that cl 6= 0. Then aicl ∈ N(R) for all 0 ≤ i ≤ m,
and so f(x)cl ∈ N(R)[x]. Therefore R is right NC-McCoy.
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(2) Suppose that R is right NC-McCoy and f(y)g(y) = 0 for nonzero polyno-
mials f(y) = f0+f1y+ · · ·+fmym and g(y) = g0+g1y+ · · ·+gny

n in (R[x])[y].
Take the positive integer k with k =

∑m

i=0 deg(fi) +
∑n

j=0 deg(gj) where the

degree of the zero polynomial is taken to be 0. Then f(xk) and g(xk) are
nonzero polynomials in R[x] and f(xk)g(xk) = 0, since the set of coefficients of
the fi’s and gj’s coincides with the set of coefficients of f(xk) and g(xk). Since
R is right NC-McCoy, there exists a nonzero c ∈ R such that f(xk)c ∈ N(R)[x].
Hence, ac ∈ N(R) for any a ∈ Cfi(x), and so fic ∈ N(R)[x] ⊆ N(R[x]) for each
0 ≤ i ≤ m. Thus R[x] is right NC-McCoy. �

Birkenmeier et al. [5, Proposition 2.6] proved that the polynomial ring R[x]
over a 2-primal ring R is 2-primal. Thus if R is a 2-primal ring, then both R
and R[x] are NC-McCoy, but the polynomial ring over an NI ring need not be
NI with the help of Smoktunowicz [31, Corollary 13].

Corollary 9. (1) If R is a right NC-McCoy ring such that N(R[x]) is a subring

of R[x], then R[x] is right NC-McCoy.

(2) Suppose that an NI ring R satisfies either of the following conditions: (i)
N(R)[x] ⊆ N(R[x]); (ii) R[x] is a nil-Armendariz ring. Then both R and R[x]
are right NC-McCoy rings.

(3) If R0 is a nil algebra over an uncountable field K, then both K+R0 and

(K +R0)[x] are right NC-McCoy rings.

Proof. (1) Assume that N(R[x]) is a subring of R[x]. For any a ∈ N(R) and
nonnegative integer t, axt is nilpotent. Thus axt ∈ N(R[x]), and so N(R)[x] ⊆
N(R[x]) as the latter is closed under addition. The proof is completed by
Theorem 8(2).

(2) Part (i) comes immediately from Theorem 8(2). For part (ii), recall that
a ring R is nil-Armendariz if whenever f(x)g(x) ∈ N(R)[x], then Cf(x)Cg(x) is
nil. If R[x] is nil-Armendariz, then N(R[x]) is a subring of R[x] by [3, Theorem
3.2]. We are done by (1).

(3) It was shown by Amitsur [1] and Krempa [19] that if R0 is a nil algebra
over an uncountable field, then R0[x] is nil as well. Letting R = K + R0, we
have that R is an NI ring with N(R) = R0 and N(R[x]) = R0[x] = N(R)[x].
By Theorem 8(2), we are done. �

Remark 10. (1) If R is an NI ring, then N(R[x]) ⊆ N(R)[x], and so by the
hypothesis in Corollary 9(2)(i) we actually have N(R[x]) = N(R)[x].

(2) There exists an NI ring R with N(R[x]) = N(R)[x], but R is not 2-
primal. Consider the NI ring R in Example 6. Notice N(R) = I = {A ∈ R |
the diagonal entries of A are zero}. So it is obvious that N(R[x]) = N(R)[x],
but R is not 2-primal by [15, Example 1.2].

(3) Let R be a ring with the nonzero nilpotent N∗(R). Then N∗(R) and
N∗(R)[x] are nil ideals of R and R[x], respectively. Thus both R and R[x]
are NC-McCoy by Proposition 3(1). Notice that every ring which satisfies
ascending chain condition on both right and left annihilators, every right Goldie
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ring, and every ring with right Krull dimension (in [12]) imply that N∗(R) is
nilpotent by [7, Theorem 1.34], [23] and [24], respectively.

Proposition 11. If R is a ring of bounded index with a nonzero nil two-sided

ideal of bounded index, then both R and R[x] are NC-McCoy rings.

Proof. Let I be a nonzero nil two-sided ideal of R. Since 0 6= I ⊆ N∗(R),
N∗(R) contains a nonzero two-sided nilpotent ideal N of R by [18, Lemma 5].
Then N [x] is a nonzero two-sided nilpotent ideal of R[x], and thus R and R[x]
are NC-McCoy rings by Proposition 3(1). �

Recall that a ring R is called weak Armendariz [25, Definition 2.1] if whenever
two polynomials f(x), g(x) ∈ R[x] satisfy f(x)g(x) = 0, then ab ∈ N(R) for all
a ∈ Cf(x) and b ∈ Cg(x). Any Armendariz ring is weak Armendariz and every
weak Armendariz ring is NC-McCoy; while the converses do not hold by [25,
Example 2.4] and Example 12(2) to follow. The concepts of weak Armendariz
rings and right McCoy rings are independent of each other by the following.

Example 12. (1) For a field F , U2(F ) is weak Armendariz by [25, Proposition
2.2], but not right McCoy by Example 4(1).

(2) Let K be a field and A = K〈e, a0, a1, b0, b1, y, z〉 be the free K-algebra
generated by noncommuting indeterminates e, a0, a1, b0, b1, y, z. Let I be the
ideal of A generated by the relations e2 = e, a0b0 = 0, a0b1 + a1b0 = 0, a1b1 =
0, eai = aie = ai, ebi = bie = bi, ey = 0, ye = y, ze = 0, ez = z, y2 = yz =
zy = z2 = 0, aiy = yai = biy = ybi = 0, aiz = zai = biz = zbi = 0 and set
R = A/I. Then R is left and right McCoy by [6, Example 10.4]. Consider a
polynomial f(x) = b0a0 + (b0a1 + b1a0)x + b1a1x

2 ∈ R[x]. Then f(x)2 = 0
since a0b0 = 0, a0b1 + a1b0 = 0, a1b1 = 0, but (b0a1 + b1a0)

2 is not nilpotent.
This implies that R is not weak Armendariz.

Recall that a ring R is called (von Neumann) regular if for each a ∈ R there
exists x ∈ R such that a = axa. When R is a regular ring, we have that R is
reduced if and only if R is Abelian if and only if R is Armendariz if and only
if R is weak Armendariz if and only if R is right (left) McCoy by [21, Theorem
19] and [17, Theorem 13]. So one may conjecture that R is Abelian if and only
if R is right NC-McCoy when R is a regular ring. But the following erases the
possibility.

Example 13. Let D be a division ring and Rn = Mat2n(D) for any positive
integer n. Define a map σ : Rn → Rn+1 by σ(A) = (A 0

0 A ), then Rn can
be considered as a subring of Rn+1 via σ (i.e., A = σ(A) for A ∈ Rn). Set
R = lim

−→
Rn be the direct limit of the direct system (Rn, σij) over {1, 2, . . .},

where σij = σj−i for i ≤ j.
Let a ∈ R. Then a ∈ Rn for some n. Since each Rn is regular, there exists

b ∈ Rn ⊂ R such that a = aba. Thus R is regular. Clearly R is non-Abelian.
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Next let f(x) =
∑l

i=0 aix
i be any nonzero polynomial in R[x]. Then f(x) ∈

Rn[x] for some n. But then

(aiE1(2n+1))
2n = 0 for any i,

where ai and E1(2n+1) are considered as elements in Rn+1 = Mat2n+1(D). This
yields f(x)E1(2n+1) ∈ N(R)[x] and so R is right NC-McCoy.

In the following arguments, we characterize the class of minimal right NC-
McCoy rings for the cases of with identity and without identity. Here by
minimal we mean having smallest cardinality.

Proposition 14. Let R be a right NC-McCoy ring with identity. If R is

a minimal right NC-McCoy ring, then R is of order 8 and is isomorphic to

U2(Z2).

Proof. Let R be a minimal right NC-McCoy ring with identity. Then |R| ≥ 23

by [9, Theorem]. If |R| = 23, then R is isomorphic to U2(Z2) by [9, Proposition].
But U2(Z2) is a right NC-McCoy ring by Proposition 3(4). This yields that R
is of order 8 and is isomorphic to U2(Z2). �

Next we observe the structure of minimal right NC-McCoy rings without
identity. The Jacobson radical of a ring R is denoted by J(R).

Example 15. Let A = Z2〈a, b〉 be the free Z2-algebra generated by the non-
commuting indeterminates a, b and B be the subalgebra of polynomials with
zero constant terms in A.

Let I1, I2, and I3 be the ideals of B generated by the subsets

{a2 − a, b2, ba, ab− b}, {a2 − a, b2, ab, ba− b}, and {a2 − a, b2, ab, ba},

respectively. Next set Ri = B/Ii for i = 1, 2, 3. We identify a and b with their
images in Ri for simplicity. Note that every Ri is a ring without identity such
that

Ri = {0, a, b, a+ b}, J(Ri) = {0, b} = N∗(Ri) = N(R) and Ri/J(Ri) ∼= Z2

for all i. Thus every Ri is NI and hence NC-McCoy.

Given a ring R, R+ means the additive Abelian group (R,+). The charac-
teristic of R is denoted by Ch(R).

Proposition 16. Let R be a ring without identity. If R is a minimal right NC-

McCoy ring, then R is of order 4 and is isomorphic to Ri for some i ∈ {1, 2, 3},
where Ri’s are the rings in Example 15.

Proof. Let R be a minimal right NC-McCoy ring without identity. If |R| ≤ 3,
then R must be commutative, and so |R| ≥ 22. Then |R| = 22 by considering
the rings in Example 15. If Ch(R) = 4, then R is commutative, and so Ch(R)
must be 2. So R is an algebra over Z2.

Assume that R is nil. Note that J(R) = N(R) = N∗(R) = N∗(R) = R
and R is nilpotent. If R+ is cyclic, then R is commutative clearly. If R+ is
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non-cyclic, then R is also commutative by [20, Theorem 2.3.3]. Thus R must
be non-nil, entailing that J(R) = 0 or |J(R)| = 2.

Assume J(R) = 0. Since Ch(R) = 2, we can consider an extension ring
E = Z2 + R of R. Then |E| = 8 and Ch(E) = 2. We also get J(E) = 0
since J(R) = 0 and J(E) ⊆ R, entailing that E is semiprimitive Artinian. If
E is non-reduced, then 8 = |E| ≥ 24 by the Wedderburn-Artin theorem, a
contradiction. This yields that E is reduced such that E = Z2 ⊕Z2 ⊕Z2. But
then E (hence R) is commutative, which is also a contradiction. Thus we must
have J(R) 6= 0.

Consequently we reduce to the case when |J(R)| = 2. Say J(R) = {0, b}.
Here J(R)2 = 0 (i.e., b2 = 0) since b2 6= 0 means b2 = b (then b /∈ J(R).) Since
R/J(R) ∼= Z2, there exists an idempotent, say a, by [22, Proposition 3.6.2].
Then R = {0, a, b, a+ b}. Now it suffices to compute ab and ba. Since ab and
ba are contained in J(R), it is obvious that we have one of the following three
cases:

(ab = b, ba = 0), (ab = 0, ba = b), and (ab = 0, ba = 0).

For the first case, R is isomorphic to the ring R1 in Example 15. For the second
case, R is isomorphic to the ring R2 in Example 15. For the last case, R is
isomorphic to the ring R3 in Example 15. �

Note that U2(Z2) and the rings in Example 15 are all NI. So we also obtain
the following by Propositions 14 and 16.

Corollary 17. Let R be a ring (possibly without identity). Then R is a minimal

right NC-McCoy ring if and only if R is a minimal noncommutative NI ring if

and only if R is a minimal left NC-McCoy ring if and only if R is a minimal

noncommutative NC-McCoy ring.
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