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1. Introduction. In the study of differential geometry, the Hopf
fibration is, perhaps, one of the most inspiring and informative objects.
It is not only simple and lucid in its definition, but also intimately re-
lated in its depth to other areas of mathematics in equally fruitful ways.
This paper (and Part II [3]) is devoted to an attempt to extend some
of the characteristics of the Hopf fibration to a certain class of smooth
manifolds.

Let (S*', w, CP"™') be the triple of the Hopf fibration. As is well
known, this fibration is a principal S*-bundle over CP*™, In the language
of group actions, S! acts freely on S*', and its orbit space is CP""..
The latter view can be readily refined to get more general fibrations
(not necessarily fiber bundle). Let V be an irreducible complex analytic
subvariety of €**' and let S be the ellipsoid given by the equation

» b, Z,* = ¢ for positive numbers b, ({ =0, ---, n) and &. Further-
more, assume that V is invariant under a €-action on €"" of the form
UZy vy Z,) = (€0 F,, oo, 65 F ), tel .

Here q,, ---, q, are positive numbers. Then it is shown (Lemma 1) that
Y =8NV is a smooth manifold with the induced S*-action provided that
the origin is either a regular or an isolated singular point of V and that
Qo ***, Q. are rational numbers. This J is called the generalized Brieskorn
manifold. Clearly 3 represents all the original Brieskorn manifolds and
other similar manifolds. In particular, if V=C" and b, = <+« = b, =
e=¢q,= -+ =¢q, =1, ¥ is the total space of the Hopf fibration.

Going back to the Hopf fibration, let us consider the following two
basic properties of the fibration. First, the connection 1-form @ of the
fibration satisfies w A (dw)"™* # 0 everywhere. In other words, @ is a
contact structure on S .. Next, S¥»! x S** admits a complex struc-.
ture, and furthermore the triple (S*!x S* Y, x, CP*' X CP'™") is a
holomorphic principal torus bundle over CP** x CP¢'. This complex
structure is otherwise known as a Calabi-Eckmann structure [7].

* Research partially supported by NSF Grants GP 43980 and MPS74-07184 A01.




336 K. ABE

In this paper, we focus our attention to the contact structure on
S*~! and generalize it on Y. A generalization of the Calabi-Eckmann
strueture is treated in Part II. Throughout Parts I and II, a special
emphasis is placed on the discussion of the inter-relations between the
above two structures from the differential geometric point of view;
therefore, this part should be considered as the preliminary to Part II.
Also emphasized are examples. Some of the proofs are given via typical
examples.

In Chapter 2, we give the fundamental definitions and properties of
generalized Brieskorn manifolds, and some typical examples as well.
These properties and examples are basically well known in such cases
as the original Brieskorn manifolds and the weighted homogeneous mani-
folds [5] [17].

In Chapter 3, we first show that ¥ admits 1-parameter families of
almost contact structures and a 1-parameter family of contact structures.
An observation concerning the behavior of the leaves of the associated
foliations to these structures is made. It is shown that these structures
are, in general, non-regular. As a more refined case, we show that %
admits a normal contact structure. In doing so, we observe that there
are two natural ways to generalize @w on S* to 2. One is the contact
structure constructed in the previous paper of Erbacher and the author
[2], and the other is the one given in this paper. Although the class of
manifolds that admit the former structure seems larger than that of
the latter [2], we choose the latter as the generalization of @ for the
following reasons. First, the structure in this paper is normal, and
secondly, the leaves of the associated foliation are closed curves. In
fact, these two structures on Y are not much different from each other
in the sense that there is a l-parameter family of contact structures
connecting them. After establishing a certain criterion to classify the
normal contact structures, we show that there exist infinitely many
distinet normal contact structures on the Brieskorn spheres (exotic or
standard), the generalized lens spaces and S” x S*** (n: even). Some
observations are also made to establish a sort of Boothby-Wang fibration
theorem on an open dense subset of 3. This includes a construction of
certain Kadhlerian metric in the base space.

In concluding the introduction, we would like to point out that the
above classification of contact structures is still quite crude, and we
hope that more precise classification will be made in the near future.
It also seems reasonable that some sort of classification can be made in
terms of deformation; for example, the deformation in the sense of



HOPF FIBRATION 337

Gray [8].

Finally, the author would like to thank many people for the useful
and helpful conversations with them during the preparation of this paper.
Special thanks go to J. Erbacher with whom the author enjoyed numerous
discussions during his stay at Connecticut. In fact, some of the ideas
arose in these discussions; and, therefore, the author is indebted to him.
It is also gratefully acknowledged that Professor Sasaki spent many hours
reading this manuscript and giving the author valuable suggestions.

2. Generalized Brieskorn manifolds. Let ¢""' denote complex Eu-
clidean space of complex dimension n+1. For any (n + 1)-tuple (gq,, - -, ¢..)
of positive numbers, there exists a natural £-action on €"*' given as
follows:

W Zy + vy Z,) = ("' Z,y, «++, 6" 7), for all te( .

In what follows, call this type of C-action on various spaces the natural
(*-action.

Let V be an irreducible complex analytic subvariety of €™, and
let us assume that V is invariant under a natural -action on "'
hence, V has a natural C-action induced from that of €. Next let
us denote by S(¢) an ellipsoid in €' given as follows:

S(e) ={(Zy +++y Zp) €™ 0| Zy* + - -+ + b, Z,F = €}

Here b,, ---, b, and ¢ are positive numbers. Notice here that if b, = .- =
b, =1, S(¢) turns out to be the sphere of radius ¢ in €"" which has
the origin 0 of £"*' as its center. Denote by X(¢) the intersection of
S(¢) and V. From now on, we denote S or ¥ for S(s) or X(¢) unless
any possibility of confusion occurs. Now we have,

LEMMA 1. a) Let V=M*UM"*U---UM'UM® be the partition
of V by dimension, where k is the dimension of V and M: (0 £ i< k)
is @ complex submanifold of €™ of complex dimension i. For the
details, see Whitney [26]. Then M*® (0 < ¢ < k) is invariant under the
C-action. In particular, M° = {0} or empty.

b) 0 belongs to the closure of each M*in V 1 =i =<k). Thus if
0 is a regular point of V, ie. if 0eM*, Mi=9p 0=i<k—1).
Therefore V is a complex submanifold of € of complex dimension k.
If 0 is an isolated singular point of V, then M* ' =M"*= ... =M'=Q
and M° = {0}. This implies that V, =V — {0} = M*, so it 18 a complexr
k-dimensional submanifold of €.

e) V intersects S(¢) transversally and VN S(e) = X(e). Further-
more if 0 is a regular (or isolated singular) point of V, X(e) 18 a
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compact smooth (2k — 1)-dimensional manifold with the naturally in-
duced smooth structure from that of S(e).

d) V is, in general, homeomorphic to the cone built on 3(g) whose
generator is the real line R. If 0 is a regular (or isolated simgular)
point of V, V, is diffeomorphic to R x 2(¢), where R X X(¢) has the
product differentiable structure.

We call this 3 a generalized Brieskorn manifold (associated to V).

Proor. Let &= (&, +--, &,) be a point in M* (0 =7 < k). Note here
that M*® is a disjoint union of ¢-dimensional complex submanifolds of
¢+, see p. 93 in [26]. Denote by M} the connected component containing
g. Then there exists an open neighborhood U of ¢ in £"*' such that
U.=UnM! is a connected complex submanifold of U of dimension 4,
and such that U, is open in M. Now let t¢{ be any complex number.
Then (Z,, ++-, Z,)—tZ,, +++, Z,) is a biholomorphism of £**. Since V
is invariant under the ¢-action, t(U,) is contained in V. By the defini-
tion of M7 (0L 7 <k), t(U,), then, is contained in M°’. Now let st
(0 =<s=<1) be the line segment in € between 0 and ¢t. It is easy to
see that (st)(&) (0L s=1) is a curve connecting & and t(¢). By the
above observation, we know that (st)(8) (0 = s £ 1) belongs to M¢. Thus
(st)(8) must belong to M:. As ¢t is any complex number, the action of
¢ leaves M! invariant. If ¢ =0, M° consists of isolated points. It is
clear that the €-action is nowhere trivial, i.e., the €-orbit of any point
in £**' is not a point except for 0. Combining this fact with the above
observation, we see that 0 is the only possible point in M°. In any case,
the (-action leaves M* (¢ =0, ---, k) invariant. This proves a).

Let & be an element of M* (4 =0, ---, k). We restrict the {-action
on V to the subgroup of ¢ consisting of the real numbers. Then we
have an induced R-action on V defined by ¢Z, ---, Z,) = (&"%Z,, -+,
e Z ), t€ R. The orbit of & under this R-action is a curve in V. By
the similar argument to the one used in a), #(&) belongs to M for all
te R. On the other hand, #(&) = (¢*%', --., ¢®'&,) approaches the origin
as ¢t approaches —co. Thus the origin 0 of ¢ is in the closure of

i therefore, in the closure of M‘. Next let 0 be a regular point.
Then 0 belongs to M* which is open and dense in V, see Gunning-Rossi
[9]. Since 0 is in the closure of M), Mi=@ 01k — 1).

If 0 is an isolated singular point of V, it can be a limit point of
M?* alone again by the first half of b). Therefore, M* ‘= ... =M'= @
and M° = {0}. This completes the proof of b).

In order to prove c¢), let (Z, ---, Z,) be a point in X(¢) = V N S(e).
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As is given in the proof of b), ¢{Z, +-+, Z,), tcR, is a curve in V
passing through (7, ---, Z,) at ¢t = 0. The velocity vector of this orbit
at (4, +++, Z,) is given by (2nq,Z, ---, 2nq,Z,). Let v(Z, ---,Z,) =

*ob;| Z,]*— ¢ be a function defined in £**'. Then the set {(Z,, ---, Z,) €
¢t r(Z,y, + o+, 4,) = 0} is exactly the ellipsoid S(¢). It is easy to show
that the gradient of #, say grad», is given by (2b,Z, ---, 2b,Z,) at
(Zy, +++, Z,)e€™*'. Now denote by { > the standard hermitian metric
of £**'. Then

<(27EQOZ01 ttty 27rq'nZ'n)! (ZboZoy M) anzn» = 47r(boqo|Zo|2 iR b'nqnizniz) .

The real part of this inner product is 47w 37, b.q,| Z,;* itself. Since b,
and ¢, are positive (¢ =0, --+, n), the real inner product between the
tangent vector to the R-orbit and the gradient of # is positive every-
where in Y. Since grad r is perpendicular to S at (Z, ---, Z,)€ S, the
tangent space of S at (Z,, ---, Z,) and (27q,Z,, ---, 27q,Z,) span the
whole €. This implies that V and S(¢) intersect transversally every-
where. Now let 0 be either regular of isolated singular. First let us
point out that ¢(Z, ---, Z,) = (&%, -+, 6'Z,), t € R, approaches in-
finity as t— o« since the magnitude |[&(Z, ---, Z,)|] of &« Z, ---, Z,)
equals (et Z,1* + ««- 4+ e | Z, )% and it goes to o« as t~»co.
Therefore for any ¢ > 0, the intersection of V and S(¢) is non-empty.
By b), V,=V —{0} is a real 2k-dimensional smooth submanifold (or
complex k-dimensional) of €"*'. By restricting the above function = to
V, we have a real valued smooth function on V,. Denote the restric-
tion by the same letter » for the sake of convenience. As before, the
gradient of » in £*** is given by 2(,Z, ---, b,Z,) at (Z, -+, Z,), and
the gradient of = in V, is nothing but the tangential component of
2b,Zy -+, b,Z,) to V, at each (Z,, --+, Z,)€ V,. By the previous obser-
vation, we know that the gradient has non-vanishing inner product with
the velocity vector along the R-orbit. This tells us the gradient of »
does not vanish on V,. Thus all the points in V, are regular points of
7 in the sense of Morse theory; i.e., they are not critical points of 7.
It is well known that any level set of such a function is a smooth
(2k — 1)-dimensional submanifold of V, without boundary. For any
¢ >0, the level set of »r={(Z, -+, Z)eVyar(Z, -+, Z,) =€} =V
{(Zyy +++, Z,)el*  (Zyy +++, Z,) = €} = VN SE) = Z(e). Thus 3(e) is a
compact, smooth, (2k — 1)-dimensional submanifold of V as well as £"*
and S(¢) without boundary. This proves c¢).

Finally, let [— oo, o) x X(¢) be the Cartesian product of [—co, o)
and X(¢). By the cone built on X(¢) with generator R, we mean the
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topological space obtained from [— oo, o) X X(¢) by identifying {— oo} X
Z(e) with a point. The cone is given the natural quotient topology.
Now define a mapping F:[—co, o) x 3(¢) — V as follows:

F(tr (Zm "'7Z'n)):t(Z0’ "',Zn) if te(———oo, oo)
= the origin of 0 of ¢!
for all points in {— o} X (&) .

Clearly F' is continuous in (—co, o) x 3(¢). Let (—oo, (Zy, +++, Z,)) be
a point such that F(—c, (Z, -+, Z,) =0. Let B(5) be the open ball
in €* about 0 with radius 6. Since [|¢{(Z,, ---, Z,)|| = -, €% | Z; )2
for all t€(— oo, ), we have ||[t(Z,, -+, Z,)|| £ Ke* 9t + for all points
in S(¢), where K is a positive constant. This tells us that |[¢(Z,, -, Z,)||—0
uniformly as ¢ — — oo; therefore, for the given 0 > 0, there exists a
real number t, such that F([—, ¢,) x Z(¢)) = B(§). This shows that F
is continuous everywhere. Let F' be the mapping from the cone onto
V which is naturally induced from F. Then the following diagram
commutes. Note that F is clearly continuous.

[— o, o) x 5(6) 2oV
r/
lP /

the cone

Here P is the quotient mapping of the cone which is of course con-
tinuous. Next we show that F is one to one and onto, and F' is con-
tinuous. Again by the definition of F (or F'), it is clear that F is ome
to one. Let (w, ---,®,) be any point of V. If (w, ---,®,) is the
origin, it is clear that (w, ---, ®,) is the image of some point under F.
Let (@, +--, ®,) be a point in V,. As before t(w, --+, ®,) —0 (or oo)
as t— — o (or o). Thus there must exist some #,€(— o, =) such
that t(w, ---, ®,) belongs to S(e¢); therefore, it belongs to X(¢). Then
F(—ty, t(@y, + -, @) = (=1, + to)(wor sy @) = (W v v, @), So we have
shown that F' is onto. It is easy to show that F''is continuous and the
proof is left to the reader. This proves the first half of d). Now let
0 be either a regular or isolated singular point of V. It can be easily
seen that F' restricted to (— o0, =) x 3(¢) is a diffeomorphism as follows.
Let F' be the mapping from (—co, o) x S(¢) onto €' — {0} defined by
(t, Wyy * -, (0,,,) = t(woy ] wm) for te ('— oo, °°) and (wo: Tty (0,,,) GS(S).
Then clearly F is a diffeomorphism. Since (— oo, o) x 3(¢) is a regular
submanifold of (— oo, ) x S(¢) and F restricted to (—oo, o) X Z(¢) is
F, F is a diffeomorphism. This completes the proof of Lemma 1. q.e.d.
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ExaMpLE 1 (Brieskorn manifold). The following is the original poly-
nomial studied by Brieskorn and others. Let P(Z) = Z;* + +-+ + Z.* be
a polynomial of % variables Z, .-+, Z,, where a, ---, @, are positive
integers. Then it is well known that the origin is the only possible
singular point of the locus of zeros of the polynomial, say V. Let S
be the unit hypersphere of £"*' at the origin. Then ¥ =V NS is a
(2n — 1)-dimensional, smooth manifold, and is called the Brieskorn mani-
fold associated with the polynomial P(Z). The topological aspects of
this Y has been studied thoroughly by many people, and have produced
a great deal of stimulation in the related areas. For example, ¥ is
(n — 2)-connected, and represent all the exotic spheres which bound a
parallelizable manifold. For the fundamental information of 3, see Milnor
[17], and of course, the original papers by Brieskorn. Next, we show
that V admits a €-action such as described previously.

Let d denote the least common multiple of a, ---, @,, which is
sometimes denoted by [a,, ---, a,]. For any Z = (Z,, ---, Z,) e £**, and
for any complex number t e €, define the action by

HE) = UZoy -+, Ba) = (€40 G, -, & T,) .

It is clear that this action leaves V invariant. Thus ¥ is a generalized
Brieskorn manifold.

ExAMPLE 2. Let P(Z, -+, Z,) = X3, 0;Z57, i =1, ---, m, be a set
of m polynomials of n + 1 variables, where a,; 1 1= m, 07 <n)
is a real number and a,; 1 £1<m,0=<j5<n) is a positive integer.
Denote by V the locus of common zeros of P, (1 <1< m) in € i.e.,
V={Z, " Z)eC"" P(Z, -+, Z,) =0 for 1 <1< m}). We define a
C-action on V. To this end, denote by d;, (1 <7 < m) the least common
multiple of a,, -+, @,,, and set g,, =dJa,; for 1 <im0 57 <5 n.
Furthermore, we assume that ¢,; is independent of ¢. Let us denote
g;i = Qi(=@; = ++* =qu;), =0, -+, n. Define a C-action on £*** by

Q(Zyy w+2y Z,) = (659 F,, ++, e"'Z,), for te(l.

Then this ¢-action leaves V invariant. If we denote by S(¢) a hyper-
sphere of radius & at the origin, 3(¢) = VN S(¢) is a generalized Brieskorn
manifold. The topological aspects of this X(¢) have been studied in [5]
[19] [21].

ExampLE 3. (Weighted homogeneous madifolds). Let (w,, ---, ®@,) be
an (n + 1)-tuple of positive rational numbers. A polynomial P(Z,, +--, Z,)
is said to be weighted homogeneous with weights (@, ---, ®,) if P(Z)
is a linear combination of monomials ZXZ!-.. Zi* for which i,/w, + «-- +
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i./w, = 1. For example, any polynomial in Example 1 is weighted ho-
mogeneous with weights (a,, - -+, @,). Also, consider P(Z, Z,, Z,) = Z,Z* +
Z.Zt+ Z,7Z) is weighted homogeneous with weights (25/7, 25/9, 25/4).
For more examples, see [17]. Now write w; = u;/v;, =0, ---, n, where
u; and v; are relatively prime positive integers. Let d be the least
common multiple of w, -+, u,, and let ¢; = d/@w; = dv;/u;, 0 < 5 < n.
Then ¢ acts on £ by t(Z, -, Z,) = (5% Z,, -+, & ='Z,)., It is easy
to see that this C-action leaves V invariant; therefore, V N S(e) = 3(e)
is a generalized Brieskorn manifold.

3. Almost contact structures and contact structures on the gener-
alized Brieskorn manifolds. First we recall some notions and notations
on almost contact structures and contact structures. We follow Sasaki
[22] for this purpose.

Let M be a (2n + 1)-dimensional smooth manifold. A triple (g, &, 1)
of smooth tensor fields of type (1, 1), (1, 0) and (0, 1) is called an almost
contact structure on M, if the following two conditions are satisfied:

1) 7(¢) =1 everywhere.

2) ¢(X)= — X + n(X)¢ for all smooth vector fields X on M.
From 1), one sees that £ is a nowhere vanishing vector field on M, and
it generates a 1-dimensional foliation on M which we call the associated
foliation. The almost contact structure (¢, &, ) is called regular if the
associated foliation is regular in the sense of Palais [20], and otherwise
called non-regular. To be more precise, a foliation is regular if for each
point x e M there exists Frobenius coordinates around x such that dif-
ferent slices belong to different leaves of the foliation.

Let M be the same as above. A contact structure on M is a smooth
1-form @w on M such that @ A (dw)" = 0 everywhere on M. Then a
distribution D on M is associated with @ as follows. Let

D,={XeTM,:dw(X, Y)=0 for all YeTM,}.

Because of @ A (dw)" # 0 everywhere, dim D, — 1. Thus D is integrable
and determines a l-dimensional foliation on M which we call the as-
sociated foliation with w. In fact, it is easy to see that D is generated
by a nowhere vanishing vector field. The contact structure @ is called
regular if this associated foliation is regular, and otherwise non-regular.

Next we briefly mention that a contact structure on M gives rise
to a natural almost contact structure on M under a certain Riemannian
metric. For the details, see [22]. Let (¢, & ) be an almost contact
structure on M. Then it is known [22] that there exists a Riemannian
metric ¢ on M such that N(X) = g(¢ X) and ¢(8X,¢Y)=9gX, YY) —
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N X)N(Y) hold for all vector fields X and Y on M. The quadruple
(8, & 7, g) is called the almost contact Riemannian (or metric) structure
on M associated with the almost contact structure (¢, &, 7). Now let ®
be a contact structure on M. Then there exists an almost contact metric
structure (g, & %, g) such that P(X)=o(X), N(X) =g, X) and d(X, Y) =
do(X, Y) = g(¢X, Y). This almost contact metric structure is called a
contact metric structure associated with @w. A contact structure can be
called regular if the associated almost contact metric structure is regular,
otherwise non-regular.

As an almost complex structure has a torsion tensor whose vanishing
is a necessary and sufficient condition for the almost complex structure
to be a complex structure, there can be defined a torsion tensor T for
an almost contact structure (g, & %) as follows.

(X, Y)=1[X, Y] + ¢l¢X, Y] + ¢[X, ¢Y] — [¢X, Y]
—(X(Y) — Yn(X)§,

where X and Y are any smooth vector fields on M and [X, Y] denotes
the Lie bracket between X and Y. (¢, & %) is called normal if T =0
everywhere, A contact structure is called normal if the associated
almost contact structure is normal.

Going back to the generalized Brieskorn manifolds, let V be an
irreducible complex subvariety of €**' such as in §2 which has a -
action given by #(Z,, ---, Z,) = (¢¥*Z,, «--, ¢'Z,), te€. Let S(¢) be
the ellipsoid in €*** defined by the equation 7(Z) = b,| Z,* 4 «++ +
b, Z,F=¢ (¢ >0). Note here b,= +-- =b, =1 gives us the hyper-
sphere of radius . As before, we denote by 3(¢) the intersection of
V and S(s). In this section, we always assume that the origin of £,
say 0, is a regular or isolated singular point of V. We also denote V —
{the origin} = V — {0} by V, for the sake of convenience. First we show
that the -action on V induces a natural S'-action on 3(¢) under certain
conditions. Let iR be the subgroup of ¢ represented by purely im-
aginary numbers. Then <R acts on V by the induced action from that
of ¢. The action leaves V invariant. We see that iR-action leaves
S(¢e) invariant. This implies the ¢R-action leaves X(¢) = V N S(e) in-
variant. This can be considered as an R-action on Y(¢). In particular,
let all of ¢, -+, ¢, be all positive rational numbers. Put g, = u,/v, -,
q, = u,/v,, where u;, and v, (¢t =0, -+, n) are mutually prime positive
integers. Denote by d the least common multiple of v, -+-, v,. Then
qd, -+, ¢.d are positive integers. Therefore,
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U+ 7)(Zy -y Ba) = (@000, -, niiiniZ)
= ’l;’l"(Zo, M) an) .

This tells us that the iR-action on X(¢) is periodic with period d, and
it induces an S*-action on X(¢). We call the S'-action the induced S*-
action. It is easy to see that this S'-action is fixed point free, and that
the S'-orbits are all diffeomorphic to S'. The €-actions in Examples 1,
2 and 3 induce the natural S‘-actions.

Going back to the €-action on V, it is well known that each element
of the Lie algebra of a Lie transformation group generates a vector
field in a natural way on the manifold on which it aets. In particular,
1 and V' —1 considered as elements of the Lie algebra of ¢ generate
vector fields ¥ and B on V, = V — {the origin} as given below.

A = (27Tq0Z09 Tty 27rq’le’n)
B = 2nqV —1Z,, ++-, 2nq,V —1Z,) for all (Z, -+, Z)eV,.

Note here that U and B are nothing but the velocity vectors of the R
and tR-actions at the corresponding point, respectively. It is clear that
A and B are nowhere vanishing vector fields on V,, and they are tangent
to the C-orbit of (Z, Z, ---, Z,). Note here that if 0 is the only pos-
sible singular point, by Lemma 1, b), V, is a complex submanifold of
C*+, and therefore, V, is a Kahlerian submanifold of €' with its
induced metric from that of €**. Since B =1"—1 U and since the com-
plex structure J on V, is induced from that of £"*, we see that the
tangent spaces of the €-orbits are J-invariant. In fact, each ¢-orbit in
V, is a complex curve. It is clear also that % and B are orthogonal to
each other with respect to the induced metric.

Let TV, be the tangent bundle of V,, and let A and B be the line
subbundles of TV, which are generated by ¥ and B, respectively. Next
let ¥ have the Riemannian metric induced from that of S(¢) (or V),
which is the same metric induced from the natural metric of €**'; and
let R have the natural metric. Then the tangent boundle T(R x X(g))
of R x 2(¢) has the orthogonal direct sum decomposition:

T(R x 3() = TR TS(e)

where T3(e) is the vector bundle over R x 3(¢) which is induced from
the tangent bundle TX(¢) of 3(¢) via the natural projection from R x 3(¢)
onto 3(¢), and TR is the vector bundle over R x 3(¢) which is induced
from the tangent bundle TR of R via the natural projection from R x
Y(¢) onto R. By Lemma 1, d), there is a global diffeomorphism F from
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R x Z(¢) onto V,. Therefore, there exists a smooth bundle isomorphism
F..T(R x 2(¢))— TV, which is nothing but the Jacobian transforma-
tion of F'; therefore, the following diagram commutes:

T(R x () % TV,

lﬂl 177-'2
Rx 3 ——v,.

Here 7, and 7, are the bundle projections of the corresponding tangent
bundles.

Let us denote by F~* and F';' the inverse mappings of F and F,,
respectively. By the definition of F, F';' maps the line subbundle A of
TV, onto TR, and the line subbundle B of TV, into T5(€), respectively.
If we denote by B the line subbundle over R x 2(c) generated by Fx(8),
we have the following orthogonal decomposition of T(R x Z(¢)) with
respect to the product Riemannian metric:

TR x 3() = TR® TS(c) = TROBP (TR P B)-
Here the symbol 1 denotes the orthogonal complement. Note that
(TR @ B)* is actually the orthogonal complement of B in 7'3(¢).
As before, let & denote the complex dimension of V,, and let & be
a complex vector subbundle of TV, of complex dimension . — 1 such

that © is transversal to A@ B. This means that AP B and @ span
TV, and (A@ B)N 6O = {0}

LEMMA 2. Let P:T(R x 3(e))— T3(e) be the natural orthogonal
bundle projection map. Then PoF ' restricted to © is a bundle iso-
morphism such that PoF3(0) is a vector subbundle of T2(e) of real
dimension 2(k — 1), and such that PoF¥(0) is transversal to B in
T5(e).

PrOOF. A mere verification; and left to the reader.

THEOREM 1. Let 3(¢) be a generalized Brieskorn manifold.

a) 2(e) admits almost contact structures.

b) Let © be a complex (k — 1)-dimensional subbundle of TV, which
is transversal to A@ B. Then there is in general a l-parameter family
of almost contact structures (¢.(t, 0), &, O), N.(t, ©)), —oo <t < oo, On
3(¢) associated to ©. These structures are in general non-regular. If
Qo ** ) Q. are all rational, the associated foliations have closed curves
as their leaves.
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ProorF. By Lemma 2, PoF' establishesNa bundle isonorphigm G
from 6@ onto Po F,Y(0®) which we. denote by 6. _ 9learly, ® and B are
transversal to each other in 7T3(¢) and span T2(¢). Define a bundle
homomorphism ¢,(¢, 6): T3 (e) — T(e) as follows:

B.(t, 0)X) = GoJoG(X) if X is a section of 6.

$.(t 6)(X) =0 if X is a section of B .
Here J denotes the complex structure of ® which is the induced complex
structure from that of TV,. Now extend &.(¢, ©) linearly to the bundle

TS(e). It is clear that the resulting bundle homomorphism §.(¢, 6) is
smooth. Next define a smooth section £.(t, @) of T2(¢) by

£.(t, 6) = PoF{(®B).
Finally, define a smooth section 7.(t, @) of Hom (T3(e), R) by
7., O)X) =0 if X is a section of &
and
7.t O)E, 0)) = 1.
Then we have, for any section X of T3(e),

git, O)X) = — X + 7.(t, OYX)E(L, 6) .

Recall that T3(e) = R x T3(¢), where T3(e) is the tangent bundle of
3(e). Let Q:T3(e)— T3(¢) be the natural projection of 7T3(e¢) onto
TX(e), and let ,: TZ(e)— T3(c) be the natural injection of T3(¢) onto
(t, T2(e)) in T5(e), —co <t < . Now define (¢, 8), 7.(t, ©) and ¢,(t, 6)
by QE.(&, 0)), 7.(t, ©)oi, and Qog.(t, @)ot, (—o0 <t < o), respectively.
Then for any smooth vector field X in TX(¢), we have

gi(t, ONX) = Qo @.(t, 0.)01,°Q08.(t, )0 1,(X)
= Qo gi(t, 0)0i(X) = Q(—~i(X) + 7., O)i(X)EL(E, 6))
= — X + 7.t O)X)E(¢, 6).

It is clear that %.(¢, ©)(&.(¢, ©)) = 1. Thus, the family of triple (¢.(¢, ©),
&.(t, @), 0., ) satisfy the two conditions to be an almost contact
structure.

Next we see that these structures are in general non-regular. First,
let us assume that there is at least one leaf of the associated foliation
which is not closed. Call it L. Let (Z, ---, Z,) be a point of L. Then
for s=0,1,2, ---, i8(Z,, -+, Z,) = (e¥0"Z,, +-+, &7 )lies in L. Since
2(¢) is compact, {18(Zy, + -+, Z,)}s=0,1,2... CONVErges to a point (@, -, ®,)
in Y(¢). Now take any Frobenius coordinates neighborhood around
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(w,, -+, w,). Then this neighborhood contains more than one slice which
belongs to L. In order to see this, it suffices to point out that the
iR-action preserves the Hermitian product of ¢**, i.e., it is an isometric
action; therefore, it induces an isometric action on X(¢) with respect to
the induced metric on 3(¢). Such a leaf L as above occurs, except for
rather special cases, if g, ---, ¢, contains irrational numbers.

If all the leaves of the associated foliation are closed curves, we
can assume except for the above special cases that all ¢, ---, g, are
rational. Now consider the induced S'-action and its slice diagram. It
is clear by the slice theorem that if the slice diagram contains more
than two different slice types, the foliation is nonregular. The brief
discussion of slice diagrams will be given later (see the paragraphs after
Theorem 4), For details, see [13] and [19]. Obviously, most of (n + 1)-
tuples (g, -+, q,) of rational numbers give rise to more than two dif-
ferent slice types. This completes the proof of Theorem 1. q.e.d.

In Theorem 1 we assumed the existence of complex (k¥ — 1)-dimen-
sional subbundle &. We now give some typical examples of such bundles.

ExAMPLE 4. Let X(¢) and V, be given as in §2. As mentioned
before, V, is a Kahlerian submanifold of £*** with respect to the induced
metric, and X(¢) is an orientable Riemannian submanifold of V, with
codimension 1. Therefore, the normal bundle of X(¢) in V, is the trivial
line bundle over Y(¢). Let N be a unit normal vector field to X(e).
Then JN is a unit tangent field to X (¢); therefore, it generates a trivial
line subbundle of TZX(¢). Denote by &, the orthocomplementary sub-
bundle of T23(¢) with respect to the induced Riemannian metric. Making
use of O,, define a subbundle of T(R x 3(¢)) to be the pullback &} of
©. under the natural projection from R x X(¢) onto the second factor
X(e). Map OF into TV, under F,, and denote the image F,.(®F) by 6.
Note here that @ restricted to 3(¢) is exactly 6,. Now it is easy to
see that F,.(0F|(t, 2(¢)), where OF|(t, 3(¢)) is the restriction of 6} to
(t, 2(&)) at t(— o <t < o0), is the image of O, under the Jacobian map
of t considered as a transformation of the induced R-action. 6, is the
orthogonal complement of the subbundle generated by N and JN in the
restriction of TV, to 2(¢). Since the subbundle generated by N and JN
is a complex line bundle, and since V, has the induced Kahlerian metric,
its orthogonal complement @, is invariant under the complex structure
J on V,, i.e., 0, is a complex bundle. Next we show that €, is trans-
versal to A B on (). To this end, it suffices to show that the
Hermitian inner product between ¥ and N is nowhere zero on 2(¢), be-
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cause O, is a complex subbundle of complex codimension 1. Suppose
that there is a point in 3(¢) where the inner product between o and N
fails to be non-zero. Then % must be in the span of 6, and JN. By
Lemma 1, ¥ is transversal to S(¢). This is a contradiction. Since AP B
is invariant under the C-action and since the (-action is a holomorphic
action, we immediately see that O is transversal to A @ B and J-invariant
everywhere in V,. This € is the most important subbundle, and will
be used later.

EXAMPLE 5. Let (A& B)' be the orthogonal complement of A B
in TV, with respect to the induced Hermitian metric. Then (4 @ B)*
is a complex subbundle of complex (k¥ — 1)-dimension, and is transversal
to A@Q B. This (A B)' was used earlier to give an example of almost
contact structure in [2].

ExaMpPLE 6. Let 0, (0 < & < o) be the complex (k¥ — 1)-dimensional
subbundle of T3(¢). Define ® on V, by putting @ = Jpc.c 0.. It is
not so hard to show that this 6 is a complex (k — 1)-dimensional sub-
bundle of TV, which is transversal to A @ B.

Erbacher and the author [2] have shown that a broad class of com-
pact manifolds which are given as intersections of complex submanifolds
in €*** and hyperspheres in £**' admit a contact structure. This class
contains all the generalized Brieskorn manifolds. In what follows, we
show that our generalized Brieskorn manifolds admit a contact structure
which is slightly different from those of Erbacher and the author. Our
structures, in a natural way, generalize the contact structures of the
standard spheres which are given by the Hopf fibration. Indeed, our
contact structures possess most of the properties which characterize the
Hopf fibrations. These properties will be shown later. First we state
existence of contact structures on X(e).

THEOREM 2. Let 3(¢) be a generalized Brieskorn manifold. Then
there is in general a 1-parameter family of normal contact Riemannian
structures on 3(¢). These structures are conmected to the structure in
[2] through o l-parameter family of contact structures. Most of these
contact structures are non-regular. If q, ---,q, are rationals, the cor-
responding contact structures have closed curves as their leaves of the
associated foliations.

First of all, we show the following lemmas.

LEMMA 8. Let X(e) (0 < &< o) be a generalized Brieskorn mani-
fold associated with V. Then 3(¢) are diffeomorphic to each other for
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all ¢ and isotopic in V.

ProOF. Let ¢, and ¢ be two positive numbers in R, and let 3(e,)
and X(e,) be the corresponding generalized Brieskorn manifolds, i.e.,
() =V NSe) and 3(,) = VN SE,). We can assume ¢, < &, without
loss of generality. We define a mapping h(g, ¢,) from 3(¢,) onto 3(s,)
as follows. Let (Z, ---, Z,) = Z be a point in X(¢,). Consider the orbit
of Z under the induced R-action on V. The orbit meets 3(s,) once and
only once at w = (w,, ---, w,) by Lemma 1, d). Define h(e, &)Z) = w
for all Ze3(e), i.e., w=h(e, e)Z)=t(Z), where tc R does depend
upon Z. This mapping is clearly one to one and onto. Next we show
that h(e, ¢,) is a diffeomorphism. Consider the foliation on V, generated
by the R-action, whose leaves are nothing but the R-orbits. By the
argument given in the proof of d), Lemma 1, it is obvious that this
foliation is regular. Let w = (w, ---, w,) be a point in 3(¢,) and let
(Y1, ***, Youur) be local coordinates in a neighborhood W around w. By
making use of the diffeomorphism F' in Lemma 1, we know that FIR x W
gives rise to a Frobenius local coordinate system in the neighborhood
R X W of w in V,, which we denote by (&, ¥y, -+, Yu_.). Now let Z
be a point of X(¢,) which is mapped into ® under hk(g,s,), and let
((@yy ++-, 1), U) be a local coordinate system in a neighborhood U of Z
in 3(¢,). By taking U sufficiently small, we can consider U as a regular
submanifold of R X W. Denote by P the natural projection of R x W
onto W, i.e., P(t, ¥, -, Youer) = Yy =", You1). P 18 then a smooth map,
and P restricted to the submanifold U is precisely h(e, ¢, restricted to
U by the definition of h{e, ¢,). By Lemma 1, the tangent space of U
at Z is transversal to the orbit passing through Z, which is the first
coordinate axis. Therefore, the Jacobian map of P maps isomorphically
the tangent space of U at Z onto the tangent space of W at w, which
is nothing but the coordinate space (¥, -+, %u.,). Thus, the Jacobian
map of P restricted to U at Z is an isomorphism between the tangent
space of U at Z and the tangent space of W at w. Now by the inverse
function theorem, P restricted to U is a local diffeomorphism, i.e.,
h(e,, &,) is a local diffeomorphism. We showed earlier that h(e, ¢,) is one
to one and onto, so h(e, &, is a global diffeomorphism between 3(¢,) and
X(e,). g.e.d.

Let Z=(Z, -+, Z, be a point in X() and denote by U=
(2rq,Z, -, 27q,Z,) the velocity of the induced R-action on V,, and by
B the velocity vectors of the induced ¢R-action on X(¢). We know that
JU = J2rq,Z,, -+, 2nq,Z,) = (2riq,Z,, - -+, 27iq,Z,) = B, where J is the
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induced complex structure of V,. Define a 1-form 7. on X(¢) as follows.
Let © be the complex vector subbundle of TV, (or T3(¢)) given in
Example 4, and let 6, be its restriction to 2(¢). Then we know that
©, is a J-invariant subbundle of T3(¢), and B is transversal to 6,. Set
7.(8) =1 and 7.(0,) = 0. Then clearly 7, is a C* 1l-form on 3(¢). In
the sequel, 6, will sometimes denote also the space of all cross sections
of 6..

LEMMA 4. Let us denote by Ly, the Lie derivative in B direction on
3(e). Then Ly6,) 8, ie., 0, is invariant under the Lie derivative.

PROOF. Let Z be any point of X(¢). Then the fiber of 6, over Z
is the only 2(k — 1)-dimensional subspace of the tangent space of 3(e)
at Z which is invariant under J. This can be easily seen by noticing
that the fiber of 6, at Z has real codimension 1 in the tangent space
of X(¢) at Z, and that its orthogonal complement with respect to the
induced metric has its image under J outside TZX(¢). Since B is the
velocity vector fields of the iR-action on 3(¢) induced from the €-action
on V,, the local (global) transformations generated by % are nothing but
the transformations which belong to the €-action (iR-action). Since the
iR-action (or C-action) is a holomorphic action, each element of R is a
holomorphic mapping of V,; and therefore, it leaves 6, invariant. This
fact can be seen by noting that 6, is the only J-invariant 2(k — 1)-
dimensional subbundle of TX(¢) and that the ¢R-action leaves T3(¢) in-
variant. Let us denote by ik (— o < h < =) the global transformations
generated by B and let (ih), denote their Jacobian maps. Then by the
definition of the Lie derivative [15], for any vector field X in 6,,

L.X = lim X~ (i(}b_h))*x .

k-0
Thus LyX is again in 6, for X in 6.. g.e.d.

As before, let r(Z) =b,|Z,P + -« + 0,1 Z,P =€ (b, >0, +++, b, > 0)
give an ellipsoid S(¢), and let grad »(Z) denote the gradient of »(Z) at
r(Z) = ¢&*. Denote by ( ) and || || the natural Hermitian product and
its norm of £"*'. Finally, / denotes the Riemannian connection of £**,
and a denotes the second fundamental form of S(e) in £"*.

LEMMA 5. Let 7 denote 7, as before, i.e., N(B) =1 and 7O, =0,
where O, is given in Example 4. Then for any X.and Y e0,,

a) 2dn(8B, X) = 0.

b) 2d9(X, Y) = l/oB}a(JJY, X) — a(JX, Y), N), where o(B) and N
will be given below.
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PrOOF. a) 2d7(B, X) = BYX) — X7(B) — 9(IB, X]) = — (LX) = 0,
since P(X) =0, 7(B) =1 and L,X¢€0H,, i.e., n(LsX) =0 by Lemma 4.

b) Let N be the normalized gradient of »(Z) at Z, ie., N =
grad (Z)/||grad »(Z)||, where grad »(Z) = (2b,Z,, - -+, 2b,Z,), and there-
fore, ||grad »(Z)| = V4B Z,* + --- + B3| Z,F) > 0 everywhere. Note
here that N is a unit normal vector field to S(¢). Define a new l-form
won Xe) by o(X) = <X, JN) for all Xe T3(¢), where J is the complex
structure of £**'. Then for any Xe®0,, o(X) = (X, JN) =0, since 6,
is J-invariant and N is orthogonal to ©,; therefore, JN is orthogonal to
O.. For any Z = (Z,, --+, Z,) € 2(¢), we have

(B) = Re ((21¢siZ,, - -+, 27q,12Z,), JN)

. . 2b,4Z,, + -, 20,42 ,)
:R<2 Zy, -, 2 ann,( ot 40y y 40,14,
e \(2ma mauiZ), ST )

= 2Tc(q0b0‘ZO‘2 + tre + qﬂbnlzﬂ’z) > 0 .
VBIZ,F + -+ + BIZ,F

Thus o(X) = o(B)(X) for all XeT2(e), i.e., w = 0(B), or n=1/0(B))w.
For any X and Y in 6., we have

2dn(X, Y) = Xn(Y) — Yn(X) — 9([X, Y)) = — (X, Y])

-1
= (D) o(X, Y1)
= a)(éB)qX’ Y}, JN) (D) Y — VX, JN)

= —-—a—)(lg){(X(Y, IN) =Y, VxJN))—(Y<X, JN) —(X, V,JN))}

= L (Y, 7.IN) — (X, P IND) .
o (B)
Noting that 7 is a Kidhlerian connection as well, we have VyJN = JV/ ;N
and 7,JN =JV;N. Therefore, the last expression = (1/o(B)Y, JVyN) —
(X, JV N} =/ @B —JTY,V x N +{JX,V N} =(1/o(B))({alJ Y, X), N —
(a(JX, Y), Ny). The last equality fallows from the relation between
the second fundamental form and the shape operators. q.e.d.

The following lemma is, in a way, well known.

LEMMA 6. Let S(e) be the ellipsoid in €**' given by the equation
WZ) =by| ZfP + +++ + b,|Z, P =¢€. Then the second fundamental form
is (strictly) megative definite with respect to N. If we let X =
(o = * =y Xy By ooy %) ANA ¥ = Yoy =+ 5 Yu Y’y = **5 Y ), Lhen



352 K. ABE

a(X Y) I boxoyo + e+ bnxnyn + bow(;x.?/ge + e+ bMI?/IN.
’ VO ZE+ -+ + B[ Z,]

ProOF OF THEOREM 2. First of all, we show that 7A(dn)" +# 0
everywhere. Let us set (X, Y) = — (a(X, Y), N) for all X and Y in
TS(e). By Lemma 6, B is strictly positive definite and symmetric. Thus
B gives rise to an inner product of TS(¢). Next let X and Y be two
vectors in 6,. Since @, is J-invariant, JX and JY are in &,. We show
that B(JX, JY)=8(X, Y) in 6,.. As before, let X={(x,, +--, 2, T, +-+, &)
and Y = (ym ey Ym Yoy m oy y:)- Then JX = (_w;r cee, —@n, Loyt xn)
and JY = (”—yg(.y Tty *?ﬁf, Yoy *°*y yn)'

BWJX, JY) = —(a(JX, JY), N>

_ (2baiys + -+ + 2bxnyn + 2bxyY, + o v 0 + 20,2.Y)
2V Z,f + - + bu]Z,)

=BX, Y).

This tells us that 8 restricted to @, is a Hermitian metric with respect
to the induced metric. It is well known, then, that there exists an
orthonormal basis for 6, of the form {X,, ---, X,_,, JX,, ---, JX,_,} with
respect to £ at every point of S(¢). For the sake of convenience, let
us denote B =¢, X, =¢,, +++, X, ., =6,_,, JX, =€,, -+, JX,_, = €,,_,. Then
{6y € +++, €:,_,} forms a basis for TS(¢) at the point Z. Up to a positive
constant %,

7]A(d77)“_1('53: Xu tt Xn—u JXu %y JXn—l) = 7]/1(d1])"'"1(eo, A ezn—z)
= kaze‘%(sgn 0)7](90(0))(177(9”(1); ea(z)) ot d’?(ea(zn—a); eﬂ(Zn—Z)) .

Here © is the symmetric group of letters {0, 1, ---, 2n — 2}, and sgno =1
if o is an even permutation, and sgno = — 1 if ¢ is an odd permuta-
tion. By the definition of %, 7(e;) =0 for 1 < i < 2n — 2, and 7(e,) =
77(%) = 1. Therefore, 77(6.;(0))d77(ea(1)y i) * dv(ea(zn—s)r €ri3a-2) 7= 0 only if
0(0) = 0, and it equals dn(e,u), €,) * * * A(€s30-0 €oi2s-n). By Lemma 5,

d7(e, €;) = 5(1%7«04(.!@, ey N> — (a(Je, e;), N)
=~ _—1 o) — s
= @) (B(Je;, ;) — B(Je, e;)) .

Therefore, dx(e,, ¢;) = 0 unless ¢, =Je; or e; =.Je, by the choice of
€, "+, 6, .. Now let ¢ be a permutation such that

(881 7)7(6.(0)AN €11y Eci21) * * * AN(€ctznss Cetanm) = O,
i.e.,
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_(0,1,2, s, 2n—1

) where e, = + Je.y, ,
O’ T(l): T<2); Tty T(zn - 2)

1=1 ¢, (n—1).
Note here that

. —1 +2 +2
anle, Je,) = ——— (B(—e,, ;) — B(Je, Je,)) = —=- i 6;) = ———
Ui ) a)(%)( ( ) — B(Je;, Jey)) (D) B(es €;) (D)
and dn(e, Je,) = — dn(Je,, ¢). Therefore, if we denote by ¢ the permuta-

tion 7 followed by the transposition of e._,, and ¢, 1 <1<n—1),
sgnt = — sgn it and
SN TAN(Cciryy €rimr) ** * AN €etzicys €eizir) *** BN Crtan—s) Erizn—s)
= — sgn TAN(e.)y ri0) ** * AN(€ciayy Crtaimn) * * * AN(Ccizn_s)y €rizn2)
= sgn (dN(€.1)y ux) *** AP(€puizicrys Cuienr) ** * AN(6uizn2) Cuizn-2)
Next let p be the permutation z followed by two transpositions between
7(2¢ — 1) and 7(27 — 1) and between 7(2¢) and z(25) for 7 < 7, i.e.,
_ 0 1 -+ (20—-1) 2¢ -+ 2j—1) 2§ «-- 2n — 2
o= (0 (1)« (25 — )(2F) - - (2% — V)r(20) - - T(2m — 2)) '
Then sgn 7 = sgn o and
An(ecy; €:w) *** AN(€izn—ss Cetzn-n) = AN €otyy €or) ** * AN €ptan—2» Cpizn—s) +

Thus, by these two observations, we can conclude that

(sgn 7)€ )dN (6 11y cin) * * dv(ér(Zn—a)r €oi2n—2)
= (—1)‘"*1)(”_2)/277(00)0177(61, e'n) e d’?(en—n 32n~2)
= (=12 inB)dn( X, JX,) -+ (X, JX,\)

for all ¢ such as described above. Therefore, up to a non-zero constant k,
vA(dv)ﬂ_l(%y Xl; ) Xnmly JXH M) JXn—l)
= EW(EB)dU(Xn JXI) b dv(Xn——u JXn~1)

_ +2 n—1
= k(-w—(%T> %0
Hence, 7 is a contact form on 2(e).

Our next aim is to show that 7 is normal. To this end, we show
that there is a Riemannian metric on X(¢) with which the almost contact
structure (¢.(0, ), £.(0, ), 7.(0, ©)) in Theorem 1, which is associated with
the vector subbundle of Example 4, is exactly the associated almost
contact Riemannian structure on 3(¢). By the definition of 8 as above
and by Lemma 5, b), for any X and Ye@,,
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dy(X, ¥) = %E(%«aun X), Ny — (a(JX, Y), N))

1
W(’“B(JYy X))+ BUX,Y)

— L _gUJX, Y), since 8 is Hermitian in ..
@(B)

As we know,

270(gobo | Z,* + <+ + q,bu|Z.1%)
w(B) = g >0.
A VAT VA
Now define an inner product g in T3(¢) = B O, as follows.

9B, B) =n(B) =1.

g8, X) = ¢(X,B) =0 for all Xe0,,

9X,Y) = —L _8(X,Y) forall X and Ye®, .

w(B)
It is clear that the above g extends linearly on TX(e¢), and it is smooth.
If we define a type (1,1) tensor ¢ on T3(¢c) by dn(X, Y) = g(6X, Y),
then ¢X = JX on 6, and ¢B = 0 by the above definition of g and Lemma
5 a). Also 7(X)=g(®B, X) and ¢(sX, ¢Y)=9g(X,Y) — pX)(Y) are
clear from the definition of g. Hence, (¢, B, 7, g) is an associated almost
contact Riemannian structure, and (4, B, ) coincides with (¢(®, ¢), &(6, ¢),
(0, ¢)), as is mentioned above.
The contact structure 7 being normal will be shown via the follow-

ing convenient lemma. Let (¢, & %) be an almost contact structure on
M of odd dimension. Then R X M admits an almost complex structure

J naturally induced from (¢, & n) in the follozving sense. Let d/dt be
the unit coordinate vector field of RB. Define J by

JX=¢X if XeT3Z() and 7(X)=0

jE:—d%, and j(%):g,

It is easy to see that (J)* = — I; therefore, J is an almost complex
strucfure on R x X(¢).

LEMMA 7. The almost complex structure J on R x M reduces to a
complex structure if and only if (¢, & %) on M is normal.

Proor. See [22].
Next we will show that J on R x 3(¢) induced from (¢, B, ) is a
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complex structure.

According to d) of Lemma 1, F: Rx 2(¢) —V, is a diffeomorphism.
From the construction of 6 in Example 4, it is clear that F, oJ = Jo F,,
where F, is the Jacobian mapping of F from T(R x 2(¢)) onto TV,
and J is the induced complex structure on V,. The torsion tensor TJ
of J on R x 3(¢) is given as, for any X and Y in T(R X 3(¢)),

THX,Y)=[X, Y]+ J[JX, Y]+ J[X,JY] — [JX, JY]
=F7oF (X, Y] +J[JX, Y]+ J[X,JY] - [JX, JY))

since the torsion of J on V,=TJ =0. Thus J is a complex structure
on R x 2X(¢); therefore, 7 on X(¢) is normal. The structure » on X(g)
is usually non-regular. As we have seen, the associated vector field of
7 is B which is the velocity vector field of ¢R-action on X(¢). As in the
proof of Theorem 1, we can show that if ¢, ---, ¢, are all rational, the
associated foliation has closed curves as its leaves.

Finally, for any 6 (0 < < «), let 7, denote the normal contact
structure on 3(3). By Lemma 3, X(¢) is diffeomorphic to 3(4). Let
h(e, 6) be the diffeomorphic between them. Define 7(5) (0 < § < =) on
Z(e) as follows.

N(0) = h*(e, 0)7; if e<o
and
7(0) = (A0, &)y, if d<e,

where the superscript = denotes the pullback of the forms. Clearly, 7(d)
(0 < 6 < o) is the desired l-parameter family in Theorem 2.

REMARK 1. The form @ in the proof of Lemma 5 is a contact form,
which coincides with the contact form of Erbacher-Author [2]. Recently,
Hsu and Sasaki [23] have constructed a contact form on Brieskorn mani-
folds. Their method is quite different from ours; however, the form
itself coincides with our @ on original Brieskorn manifolds.

This contact form ® is actually connected to our %» through a 1-
parameter family of contact forms. To see this, put w(t) = (1 — t)n +
tw for 0<t<1. Then it is easy to see that () A (dw(t))**
(B, X, ++, Xyu_1)#0 for all ¢, where X,,---, X,,_,, are vectors in 6, as
before. Therefore, w(t) is a 1-parameter family of contact forms such that
®w(0) = 7 and @(1) = w. This completes the proof of Theorem 2. g.e.d.

LEMMA 8. Let V be an irreducible analytic subvariety of €
which has the origin as only possibl_e singular point. Let by Z,F +
cer + 0,2, =¢ and by)|ZF + +o + b, Z,P =& be two ellipsoids in
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g*,  Then 3(E) = VNSE and 3() = VNSE) are diffeomorphic to
each other, and isotopic in V.

PrOOF. Consider the family of ellipsoids in £*** given by, for 0 <
t<£1,

(1 — )y + th) | Z,fP + ++» + (L — )b, + tb)| Z,I° = (1 — t)e® + t&.

The rest of the proof follows from the argument used to prove Lemma 3.
q.e.d.

LEMMA 9. Let fi(Z,8), +»o, fu(Z,t) (ER) be m (mE£n +1) 1-pa-
rameter families of holomorphic functions of wvariables Z, ---, Z,.
Assume that f(Z,t), ++-, f.(Z, 1) define an trreducible subvariety for all
t such that the origin of €**' is the only possible singular point. Let
S(t, &) be the l-parameter family of ellipsoids defined by g)|Z,* +
e + 0,0 Z,12— =0 for teR, where g(t)>0 for 01 n, and
let 3(t, &) be the corresponding generalized Brieskorn manifolds for
teR. Then 2(t,¢) are diffeomorphic to each other for all te R, and
they are isotopic in €.

Proor. The agument given in [11] works in this case. The proof
is left to the reader.

The following are some examples for Lemma 9.

ExampLE 7. Let f(Z,t) = a)Z,° + --- + @, (t)Z,*, where at)=
Q-+t (0=1=5n), a,(0=21=Zn)>0 and @, (0 =7 £ n) are positive
integers. Let S(t, &) be the ellipsoids defined by g,t)|Z,*+ --- +
9. Z, P — et =10, where ¢,(() =1 —t)+tg, and g, >0 for all 0 <7 < n.
Then X(0,¢) is the original Brieskorn manifold with the polynomial
f(Z,0)=Z»+ --- + Z and the sphere defined by [Z,* + «-- + |Z,]* = &;
and X(1, ¢) is the generalized Brieskorn manifold associated with f(Z, 1)
and the ellipsoid g¢,|Z, + -+ + g,|Z,* = ¢&*. The same kind of defor-
mations can be constructed for the generalized Brieskorn manifolds.

LEMMA 10. Let V(t) be a 1-parameter family of irreducible varieties
and let S(t) be a l-parameter family of ellipsoids. Then the contact
forms w(t) on 3Z(t) introduced im the proof of Theorem 2 form a 1-
parameter family. Here V(i) is invariant under a fixed natural €-
action on C™*,

PrROOF. Let us denote by N(t) the normalized gradients of those
ellipsoids. Then w(@)(X(t)) = (X(¢), JN()) for all tc R, where X(¢) is
tangent vector to X(t) and J is the complex structure of £»*.. It is
evident that w(t) form a l-parameter family from the expression. q.e.d.
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THEOREM 3. Let f(Z,t) (1 <1< m) be given as in Lemma 9, and
let V(t) be the corresponding irreducible varieties. Furthermore, assume
that there is a l-parameter family of C-actions on V(t) of the form
(Zgy + =2y Z) 1> (€505 Z,y, o oo, e Z ) (s€f), where q(t) (0=1i=mn) is
a l-parameter family of positive real numbers. For any t,c R, let
S(t, €) be an ellipsoid given by the equation by| Z,[* + +++ + b,|Z, [ = ¢,
and let S(0,1) be the unit sphere defined by the equation |Z,* + --- +
|Z,1*=1. Then the contact forms 1(t, €) and (0, 1) on 2(¢,, &) = S(t, &)N
V(t,) and 2(0,1) = S(0, 1) N V(0) constructed in Theorem 2 are comnected
by o l-parameter family of normal contact forms on X(0,1) up to dif-
feomorphisms.

Proor. First, we define a 1-parameter family of ellipsoids connecting
S(0, 1) and S(t,, ¢). Consider the 1-parameter family of equations given by

(L —8) + B\ Z + voe + (L —8) + b)) Z,f—t =0 for 0<t<1.

Clearly the ellipsoids S(¢) defined by these equations form a l-parameter
family connecting S(0, ¢) and S(¢, ¢). Denote by X(¢) the corresponding
generalized Brieskorn manifold 3(t) = S¢) N V(¢, t,) for 0 £ ¢ < 1. Then
by Lemma 9, X(¢) is diffeomorphic to 3(0, &) = ¥(0). Now by Lemma 3,
2(0, &) = 3(0) is diffeomorphic to X(0,1). Denote this composition of
diffeomorphism from X(¢) onto X(0,1) by h(t), 0 =<t < 1. Let n(t) be
the normal contact form on X(¢) given in Theorem 2. Then the pullback
of n(t) by h(t)™, i.e., (R'E)*(n(t)) is a l-parameter family of contact
forms on 3(0, 1) which connects 7(0, 1) and #%(¢, ¢) up to the diffeomor-
phism &(t). q.e.d.

Roughly speaking, Theorem 3 tells us that isotopic deformations of
varieties and ellipsoids give nothing new. For example, the generalized
Brieskorn manifold associated with a polynomial of the form P(Z) =
@ Ze 4 e a2y (>0, -0, @, > 0) is essentially the same as the
original Brieskorn manifold associated with P(Z) = Z;* + --- + Z.*. From
this point of view, we will only treat, in what follows, the generalized
Brieskorn manifolds given as intersections of varieties and the unit
sphere of ¢!,

The following corollaries will be obtained from our theorems and
known results. It is a well known fact [5] that every odd dimensional
exotic sphere bounding a parallelizable manifold can be represented as a
Brieskorn manifold. In fact, it is pointed out [5] that such an exotic
sphere has infinitely many representations as a Brieskorn manifold. As
for the standard spheres of odd dimension, there are clearly infinitely
many representations as a Brieskorn manifold. The latter can be easily
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seen by finding that the intersection of an algebraic subvariety of ¢"*
and a hypersphere around a regular point is always diffeomorphic to
standard sphere. Of course, a generalized Brieskorn manifold around
an isolated singular point can be a standard sphere. Indeed, there are
infinitely many such examples. In order to determine whether or not a
given generalized Brieskorn manifold is an exotic sphere, one essentially
wants to show that the given manifold is a homology sphere. For di-
mension = 5, it is then homeomorphic to a sphere by the well known
theorem of Smale. Note that 7,(XF) = 0 in general. Let X be an original
Brieskorn manifold. It bounds an even dimensional manifold M which
is a fiber of the Milnor fibration [17] and which has the homotopy type
of a bouquet S*V --- Vv S" of spheres. Let us assume that the Brieskorn
manifold is given by polynomial P(Z)=Z+ --- + Z,*, and let H M
be the n-th homology group of M. Then

THEOREM (Brieskorn-Pham). The group H, M is free abelian of rank
(@g— 1) -+- (a, — 1). The characteristic roots of the characteristic homeo-
morphism h [LT] are the products ryr, -«+ r, where each r; ranges over
all a;th roots of wnity other than 1. Hence the characteristic poly-
nomial is given by A{t) = It — ryr, -+« 7.)-

THEOREM ([5] [17]). ¥ s a topological sphere if and only f
41) = £ 1.

Using these results, Brieskorn showed [5] that every Brieskorn exotic
sphere has infinitely many representations as a Brieskorn manifold. Thus
we have

COROLLARY 1. FEwvery Brieskorn sphere (exotic or standard) admits
infinitely many seemingly different almost contact structures such as
wn Theorem 1 and normal contact structures such as in Theorem 2.

The following example shows how to determine whether or not the
given Brieskorn manifold is a Brieskorn sphere.

ExamvpLE 8. First, let P(Z)=Z:+ --- + Z2_, + Z, where | is an
odd number =3. Then 7r,=+:+ =7¢,_,=—1, and r,=0, L £ j <1 - 1),
where @ is an I-th root of unity different from 1. If » = odd, 4(1) =1;
therefore, X is a topological sphere. Next,let P(Z)=Z:+ «+- + Z2_, +
Z,_ .+ Z:, where q is odd and 3 and ¢ are relatively prime. Then », =
P,=ce=7r,,=—1and r,_,=® or @ and 7, =0 1 <j<q—1),
where @ is a 3rd root of unity == 1, and p is a ¢-th root of unity == 1.
If n=2m and ¢q=6k—1 (m=4,k=1,2, ---), 41) = w,w, = 1. Thus
2 corresponding to P(Z) is homeomorphic to a standard sphere. Going
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back to the first polynomial, if » = odd, then 4(—1)=1. By a well
known theorem of Levine [16], the Arf-invariant C(M) = 0 if 4(—1)= =+
1(mod 8) and C(M) =1 if 4(—1)= + 3(mod8). Hence if I= + 3 (mod8),
the above X corresponding to the first polynomial is an exotic sphere;
and if I = 4-1(mod 8), Y is a standard sphere. For the 2nd polynomial,
as n = 2m, the signature of the intersection pairing H MK HM—Z
completely determines the diffeomorphism class of 3, and it is given by
(—1) 8k. In particular, P(Z)=Z:4+Z:+Z:+ Z3+ Z{ ' (k=1,2, -+, 28)
represents all the 28 exotic spheres of dimension 7; and a similar poly-
nomial with & > 28, also represents one of these spheres.

COROLLARY 2. For even n =2, 8" x S™' admit infinitely many
seemingly different normal contact structures which are non-regular and
have closed curves as the leaves of the associated foliatioms.

ProoF. Recently, L. Kauffman [14] showed based on the work of
Durfee that the Brieskorn manifold associated with the polynomial (n
odd) P(Z)=Z:+ «-- + Z:_, + ZE (n = 3) has a certain periodicity. If
we denote by X, the above Brieskorn manifold, then ¥, is diffeomorphic
to 2, k=123, ---), and furthermore 3 = S§*!, 3, =T, 3= 3,
=X S xS, I,=23 3=T, ¥,==8"" and 3; = S"* X S*, where
T is the tangent sphere bundle of S*, Y is the Kervaire sphere of di-
mension 2n — 1, and # denotes connected sum. Thus applying Theorem
2, we have the desired result. Note here T also has non-regular normal
contact structure. It is well known that any sphere bundle over a
smooth manifold admits a regular contact structure [4]. q.e.d.

COROLLARY 3. Let B, denote the p-th Betti number of a generalized
Brieskorn manifold 2. Then

dimZ':|, and
2

B,=0(mod2) ¢f p=1(mod2) and 1§p§\:

’

B,=0(mod2) if p=0(mod2) and [d1112121+1<p§2[dir;2}

where [ ]| denotes the greatest integer function.

PrROOF. As is shown in Theorem 2, 3 is a normal contact Riemannian
manifold. Thus, by making use of harmonic p-forms on X, one can
show that the set of harmonic p-forms is even dimensional; for the
details, see Theorem 33.5 [22]. Now by Poincaré duality, we get the
desired result. Brieskorn [5] gives an expression of the (n — 1)-st Betti
number of a Brieskorn manifold in terms of the powers of the poly-
nomials. That is given as follows. Let P(Z)=Z+ -+- + Z," be a
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Brieskorn polynomial and let 3 be the Brieskorn manifold. Then

Bm-1(2)=_a°_"'.i"__+(_1)12 ao---@...an
[aO; cee, an] i [a,o’ '.'7a'£) v, a“]

+ oo (=1 Z’Z__i_+ (=1,

k3

where [a, +++, a,] is the least common multiple of «, ---,a,, and @,
means to delete a,. He also showed that B, _,(2) is even under a certain
condition. Our result generalizes this aspect of his result. g.e.d.

COROLLARY 4. For any pair of positive integers k and n (odd),
there exists an n-dimansional compact manifold which admits infinitely
many seemingly different contact structures and whose fundamental
group 18 Z,. Furthermore, these structures are normal and they have
closed curves as the leaves of the associated foliations.

Proor. Let X be a (2m — 1)-dimensional generalized Brieskorn mani-
fold. We know that S' acts on X isometrically with respect to the
induced Riemannian metric from that of €. Now let Z, be the cyclic
subgroup of S! consisting of the k-th roots of unity. Then Z, acts on
Y isometrically. The action is the induced action from that of S'. The
orbit space M = 3/Z, is in general not a manifold. However, in the
case of the generalized Brieskorn manifolds given in Examples 1, 2 and
3, a necessary and sufficient condition for M to be manifold is given
[5] [19]. In particular, if ¥ is three dimensional, M = X/Z, is always a
manifold. In any case, 3 is, in general, a ramified covering manifold of
M. Thus z(M) may not be easy to compute. Next consider whether
or not the contact form 7 on X can give rise to a contact structure on
M. One of such cases occurs when X becomes a covering space of M.
It is well known that a finite group action gives rise to a covering space
if the action is fixed point free. Now let P(Z) = Z,+ +++ + Z,_, + Z%
be a Brieskorn polynomial. As in Example 1, P(Z) gives a Brieskorn
manifold X. Since the variety V associated with P(Z) has no singular
point, 3 is diffeomorphic to S*™ !, Again as in Example 1, the action
on X is given by

U * -2y Zn) = (671D + o -, €L, €7 7,) .

It is easy to see that this S'-action on 2 has only one isotropy group
Z, other than the identity {¢}. Thus if & and [ are mutually prime, Z,N
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Z, = {e}; therefore, Z,-action on ¥ does not have any fixed point. Hence
Y/Z, = M is the base space of the covering triple (X, P, M), where P is
the natural quotient map. Now let » be the normal contact structure
on 3 as in Theorem 2, and let (g, &, 7, ¢) be the almost contact Riemannian
structure associated with 7. Later, we will show in the proof of Theo-
rem 7 that L¢ =0, LZ=0, Ly, =0 and L.g = 0; i.e., (3, & 7, g) is in-
variant under the S'-action. Therefore, as the covering projection P is
locally diffeomorphic, we can uniquely define an almost contact Riemannian
structure (4, &, 7, §) on M such that P,o¢ = goP,, & = P,(8), 7 = p*7]
and g = p*g. It is clear that 7 is a contact structure on M and (3, &, 7, 7)
is an associated almost contact Riemannian structure with 7. Next since
a contact structure being normal is a local property given by vanishing
of the torsion tensor, and since the torsion tensors of (g, &, %) and (4, &, 7))
coincide locally, 77 is a normal contact structure on M. It is clear that
7(M) = Z,. 1t isnot so hard to see that the orbits generated by & are
precisely the images of the orbits of & under P, so they are closed
curves. Thus by varying m and [, we have the desired result. q.e.d.

REMARK 2. It is easy to see that 7% is non-regular unless ! = 1.
When [ =1, 7 on ¥ is the Hopf fibration, and M has a regular contact
structure and #,(M) = Z, for any k. In particular, if k¥ = 2, we have
real projective space as M. Some of this kind of examples were given
by Tanno [25]. We can actually give more examples than are given in
the proof of Corollary 4. Now let P(Z)=Z;+ -+« + Zi_, + Z. (I = 0dd)
be a Brieskorn polynomial. As was described previously, if I = 4-8
(mod 8) and n = even, ¥ is an exotic sphere of dimension 2n — 1. Now
the S'-action on Y in this case is given by

t(Zoy Tty Zn) = (eZRItiZO, ) GZmltiZn—“ euztiZ“) .

The only non-trivial isotropy subgroup of this S*-action is Z,. Therefore,
for any % which is relatively prime to ! = + 3 (mod 8), the orbit space
M = 5/Z, is a compact manifold such that 7, (M) = Z,, and the triple
(%, P, M) is a covering space. Now let #n = m, then X in the proof of
Corollary 4 and X have different differentiable structures, but they are
homeomorphic. Then M and M can be homeomorphic to each other, but
they can never be diffeomorphic. Suppose that there is a diffeomorphism
f from M onto M. Then by the unique lifting property of the covering
space (I, P, M), there exists a diffeomorphism f such that Pof = foP.
This is a contradiction. Clearly the above construction works for more
general situations, and we can get more examples of compact manifolds
which admit normal contact structures and which are not simply con-
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nected.

In the next place, we will refine the argument in the proof of Co-
rollary 4 to show that the generalized lens space admits a contact strue-
ture. First, we review the definition of lens spaces. For the details,
see Spanier [24]. Let » and ¢, -+, q,., be positive integers such that p
and ¢, 1 £ 1< n —1) are relatively prime, Let S*'={(Z, ---, Z,_)¢
¢ | ZyP+ «-- +|Z,_,2 =1}). Define an S*-action on S** by

Uy <22y Zyr) = (€72, €05, 0, €117, )

Here S' is identified with [0, 1); therefore, ¢ is a real number such that
0=<t<1. Now let us identify the group of the p-th roots of unity
with Z,. Let @ be ¢/»% which is a generator of the p-th roots of
unity. Then @' is identified with [ in Z,, i.e., @' = ~V»* (01 Z p — 1).
Consider Z, as a subgroup of S' in this way, and restrict the above
Stl-action to Z,. Then we have a fixed point free action of Z, on S*.
The orbit space of this action is a manifold which is covered by S* .
We call this orbit space the lens space L(p,q, -+, ¢._). It is clear
that the fundamental group of L(p,q, -+, ¢..) = Z,. Now we have

COROLLARY 5. L(p, q, ---, q._,) admits & mormal contact structure
whose leaves of the associated foliation are closed curves.

PrOOF. Let us denote by ¢, -+ §; ++- ¢._, the product of ¢, through
q._, divided by ¢; (=1, ---, n — 1).
Let

P(Z) — ng--qn—1 + Z?lqz..-qn41 4o 4 Z?l-..aj---qn—l doeee Z:1;-£qn—171n—1 + Z"

be a Brieskorn polynomial. As before, we denote by X, V and S the
Brieskorn manifold, the variety and the unit sphere in €"**'. The S
action on XY is given by

o+ 0, Bo) = (€ €70E,, wov, @70 G, (T T )

Here, as before, S* is identified with [0, 1). Now we wish to establish
a diffeomorphism between X/Z, and L(p,q, :--, ¢...). To this end, we
first establish a diffeomorphism between 3 and the image of 3 under
the projection of ¢"*' onto €™(Z, +--, Z,.,). Since V is given as the
locus of zeros of P(Z) = 0, it is easy to see that the correspondence h
between €"(Z,, ---, Z,_,) and V given by

h A N
(Zo +voy Ba) = Ly =y By — (B0 ZEI0t oy ity

is a holomorphic diffeomorphism. Now restrict this correspondence to
Y =VnNS. Then we have a diffeomorphism % from X onto A(3) in
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CZy <+, Z,_). Of course, h(¥) is a submanifold of €*~Z, ---, Z,_).
It is obvious that A(Z) invariant under the S'-action induced from the
(-action on £**', and that & commutes with these actions. Hence, h is
an equivariant diffeomorphism between ¥ and A(X). Now let S*~ be
the unit sphere of €*(Z, ---, Z,_,). Note that h(X) lies in the unit ball
of £". Next we will establish an equivariant diffeomorphism between
h(2) and S*™'. As is described in §1, the C-action on V induces the
R-action given by, for any sc R,

S(Zm ) Zn) = (eZWaZO, 627:1113Z1, cee, @I T e%qlmq"‘lszn) .

The orbits of this R-action are diffeomorphic to R and they intersect
transversally every sphere of ¢**' with the origin as its center once and
only once. As h is a diffeomorphism, the h-images of these orbits in-
tersect h(X(¢)) transversally once and only once. Of course, they are dif-
feomorphic to R, and nothing but the orbits of R-action on €*(Z,, «--, Z,_,)
induced from the R-action on ¢"*' restricted to the first » coordinates.
Thus, it is easy to see that these orbits intersect the unit sphere S**! of
¢" transversally and once and only once. We define a correspondence g
from A(Y) onto S**7! as follows. Let (Z, ---, Z,_,) be a point in A(ZX).
Define ¢(Z, -++, Z,_,) to be the point of intersection of S**' and the
R-orbit passing through (Z,, --+, Z,_,). We may write it as follows.

g(ZO’ M) Zn—l) = (GZMZO’ eznqlsZu Tty 32”"_182”—1) .

Here s depends on (Z, ---, Z,_,), and it is uniquely determined for
each (Z, ---,Z, ) in such a way that |e™Z,® + |[e¥Z. P+ --- +
|e*n-1tZ,_ 12=1. Obviously, this mapping ¢ is one-to-one and onto. By
the similar argument used in the proof of Lemma 3, we can show that
g is indeed a diffeomorphism. This part of the proof is left to the
reader. We next show that g is equivariant. Note that the following
diagram commutes.

W(Z)S (Zoy +y Bney) = (" Zyy =+, €507, ) €SP
ISl-action ISi-action

v

h(Z) ) (ezztizo’ oee, GZM”—‘”Z“_l) _g_) (ezn(ti+s)Z0’ “ee, 62”"—1<ti+8)Z,,,_1) =) Szn—1

Here sc R is a real number given as above, and it depends upon (Z,, «--,
Z. ). The fact that we can use the same s< R for the right hand side
follows from the fact that each R-orbit on €*(Z, ---, Z,.,) is mapped
onto an R-orbit under the S'-action, and that it intersects S**~' only
once. Now we have established an equivariant diffeomorphism gk be-
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tween Y and S*'. It is clear that gok is also Z,equivariant, since
the Z,-actions on Y and S**' are induced from these S'-actions. Passing
to the orbit spaces of these Z,-actions, we have established a diffeomor-

phism goh between X/Z,= B and L(p, q, **-, ¢,-,) such that the follow-
ing diagram commutes.

Z‘ goh) SZ'n—l

|7

oh
B 'g_—’ L(p7 gy ** Qn——1)

Indeed, the pair (goh, goh) gives rise to a covering isomorphism. Asin
Corollary 4, B admits a normal contact structure, so does L(p, q,, *++, ¢n.).
This structure clearly has the properties mentioned in Corollary 5. Fur-
thermore, they are in general non-regular. q.e.d.

As was pointed out earlier, the C-action on the irreducible variety
V induces the iR-action on 2X(¢), and if all of ¢, :--, q, are rational
numbers, then this ¢R-action reduces to S!-action. Recall the following.
Let ¢, = wy/vy, *++, ¢, = U,/v,, where u, and v; ( = 0, - -+, n) are mutually
prime positive integers and let d be the least common multiple of
Yy "+, U,. Then the S* should be identified with [0, d), or the closed
interval [0, d] whose endpoints are identified. Following Brieskorn-Van
de Ven [6], let I' be the discrete subgroup of ¢ generated by 1 and
id =1 —1d. Then the (-action on V, induces a proper holomorphic
action of the complex l-torus T = €/I" on H = V,/[. Note here that
the C-action on V, induces a proper discontinuous I™-action on V,; and
therefore, the quotient H is a complex manifold. Now using a theorem
of Holman [12], the quotient H/T is in a natural way a normal complex
space, and the canonical projection

n: H— H/T

is holomorphic in the sense of complex space. Furthermore, (H, 7, H/T)
is a holomorphic Seifert fiber space with elliptic curves as its fibers.

In what follows, we will try to characterize this complex structure
on H/T restricted to a dense open subset in connection with the contact
structures in Theorem 2. Included will be some kind of Boothby-Wang
fibration concerning the contact structures. Now let us assume that all
g ***, 4, are rationals. Then, it is easy to see that the quotient X/S' is
the same as H/T. Denote 3(¢)/S' by B(¢s). By the definition of this
S'-action, it is easy to see that the S'-orbits are either principal or



HOPF FIBRATION 365

exceptional orbits, and the isotropy groups are finite cyclic groups Z,.
If we denote by 7 the projection of 3(¢) onto B(¢) in the natural way,
7w is continuous. By the well known slice theorem, 7 is smooth in a
neighborhood of each principal orbit. If we call the n-images of excep-
tional orbits the singular points of B(¢), = is smooth outside exceptional
orbits with respect to the naturally induced differentiable structure on
B(¢) — {the singular points}. In fact, B(¢) as a whole can be given natu-
rally a differentiable structure under certain conditions in such a way
that 7 is smooth. Such conditions are given in [5] [19] [21]. They
showed that B(e) is a topological manifold if and only if B(¢) is a com-
plex manifold with the quotient complex structure and z is holomorphic
in the usual sense. By the definition of the {-action, it is easy to see
that B(e) — {singular points} is an open and dense subset of B(e), and we
denote it by U(s). We also denote by 7 (U(¢)) the set of principal
orbits. Let (4(¢), &(e), 7(¢), g(¢)) be the associated almost contact Rieman-
nian structure with the contact structure 7(¢). As long as there is no
fear of confusion, we will denote them without . The restriction of
(4, & 7, g) to = (U) will be denoted by the same symbols for obvious
reasons. The following arguments are routine.

LEmMMA 11. (z%(U), =, U) 8 a principal circle bundle and the con-
tact form 1 gives rise to a connection on (z~(U), m, U) whose horizontal
space is O, and whose vertical space is the orbit.

Proor. The first half of the statement is clear since the S’-action
on 77 X(U) is free. Now let &' be the Lie algebra of S*, and let d/dt be
the left invariant basis for &'. Define a &'-valued 1-form 7 on T(z Y(U))
by

(&) = P(&)d/dt = d/dt
and
7(0)) =0.

To show that 7 is a connection form, it suffices to show that a) 7(&) = d/d¢
and b) R*7 = (adt™)7, where ¢™* is the inverse of ¢ in S'. a) is obvious
because 7(¢) = 7(&) and d/dt = d/d¢ by the definition of 7. To show b),
we first note L. = 0, where L, is the Lie derivative in ¢ direction. This
follows easily from 7(¢) =1 and a) in Lemma 5. This tells that 7 is
invariant under the group S!. Since the right translation R, is exactly
the group of transformation generated by & we have R!7 = 7. On the
other hand, S being commutative implies ad¢™* = identity. Thus b) has
been shown. The fact @ being horizontal is clear from the definition of
7 and from Lemma 4. q.e.d.
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LemMA 12. U is a Kdhlerian manifold, and m, restricted to 6O;
i.e., 7,10: 0~ TU is a complex linear map.

PrOOF. Since © is the horizontal space, for any vector field Y in
TU, there exists a unique horizontal lift of Y in 6, say X, and of course
7.X)=Y and L, X = 0. Now define an almost complex structure J in
U by JY = n,(¢X), where X is the horizontal lift of Y. Clearly
(JPY = J(r,pX) = n,4(¢X) = — Y. This follows from the fact that
L. = 0 which will be shown in the proof of Theorem 7. Next we show
that this J is a complex structure on U. Let Y, and Y, be any two
vector fields on U and let X, and X, be their horizontal lifts, respectively.
Since (g, &, 7)) is normal in 7 U), the torsion tensor T¢(X,, X,)=[X,, X;] +
olo X, Xo] + ¢[X,, 6X,] — [8X,, 6X5] — (X(X,) — X(X)))¢ = 0. Since X,
and X, are in O, the last two terms vanish. It is clear that 7.[X, X,] =
[7 X, 7 X:] = [Y, Y,]. Thus we have the torsion tensor of J =
Y, Y.l + JJY, Y1+ J[Y, JY,] — [JY, JY,] = (X, Xi| + ¢[sX, X;]+
3l X, o Xo] — (X, ¢X5]} = 7, Te(X,, X,) = 0. Therefore, by the Newlander-
Nirenberg theorem, J is a complex structure on U. Finally, we show
that U admits a K&hlerian structure. Let ¢g be the Riemannian
metric given in the proof of Theorem 2. Recall that n(X) = g(¢ X)
and ¢(¢X, ¢Y)=g(X, Y) — nX)(Y) hold for all vector fields X, Y
on . Now (L)X, Y)=L(gX,Y)) —9gLX,Y)—gX, LY)=0 if
X and Y are invariant under the S'-action. Thus ¢ is invariant under
the S'-action. In fact, this fact can be easily seen from the fact
that the S!action on X is an isometric action with respect to the
induced metric on Y. Combining this fact and that the horizontal
space @ is Sl-invariant, we can define a Riemannian metric § on U as
follows. Let Y, and Y, be any two vector fields on U and let X, and
X, be their horizontal lifts. Define §(Y,, Y,) = g(X,, X;). Notice that X,
and X, are S'-invariant; therefore, § is well-defined. Clearly g is an
inner product on U. Next g(JY,, JY,) = g(¢X,, ¢X,) = 9(X,, X;) =§(Y,, Yo).
Hence, § is a Hermitian metric on TU with respect to J. Define a 2-
form 2 on U by &Y, Y,) =glJY, Y,). Consider dy. 7 is invariant
under the S'-action, i.e., L = 0. Since L, commutes with d, L.dn =
dL,m =0, ie., dn is invariant under the S'-action. It is easy to see
from Lemma 5 that 7n*2 = d». Thus n*d2 = dn*Q = ddyp = 0. This
observation tells us that =#*d2(X, X, X;) = d2(x,. X, 7, X,, 7. X,) =
a2(Y, Y, Y,) =0, where X, X,, X, are the horizontal lifts of Y, Y,
and Y,. Therefore 2 is a closed form, and (J, §) gives rise to a Kihlerian
structure on U. q.e.d.
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REMARK 3. The following observation concerning 2 may be of in-
terest. In Lemma 11, we have shown that 7 is a connection form of
(#z7(U), =, U). Let us denote the curvature form of » by 2. Then for
any X and YeTrn  U), d)(X, Y) = (—1/2)[(X), (Y)] + X, V). It
is well known that 2(X, Y) is a horizontal 2-form, and [7(X), 7(Y)] =0

gince S*' is abelian. Therefore, d7(X, Y) = 2(X, Y). Hence our 2 on
U is a 2-form such that z*Q2 = Q.

Next, by the definition of g, one can easily see that @ is mapped
under 7, isometrically onto TU with respect to the metric g in z~Y(U).
This tells us that the triple (z~'(U), =, U) is a Riemannian submersion.

As we pointed out before, there are many cases where the whole
quotient space B becomes a complex manifold. For example, if dimXY = 3,
the examples 1, 2 and 3 all give compact Riemann surfaces as B. One
can here ask the question whether or not B in these cases, is a Kihlerian
manifold as a whole. The answer is affirmative in most cases as Brieskorn
pointed out that B in general is projective as a complex space. Also
see Mumford [18] for the projective imbedding of B. We now see that
these B have a Kahlerian metric which is induced from the Fubini-Study
metric of the ambient projective space. However, our metric § cannot
be extended to the whole B if 3 has an exceptional orbit. It is quite
easy to see that g blows up at the singular points. Even if B does not
have a singular point, the metric § may not coincide with the one in-
duced from the projective space. Of course, if the variety V is given
by homogeneous polynomials, B is naturally projective algebraic variety
and g coincides with the induced metric up to a constant.

Finally, let X be a differentiable manifold in general and denote by
HYX), H(X: R) and HY(X: Z) the I-th de Rham cohomology group, the
[-th singular cohomology group with real coefficient and the I-th singular
cohomology group with the integer coefficient, respectively. Then there
is the de Rham isomorphism di: H(X)— HYX: R). On the other hand,
the natural imbedding j of the coefficient groups from Z into R, say
j: Z— R, induces the homomorphism j*: H(X:Z)— H'(X: R). We say
an element a of HYX) is integral if di(a) is contained in j*(H'(X: Z)).
A compact Kahlerian manifold X is called a Hodge manifold if the
Kahlerian form is integral in H%X). For convenience, even if X is not
compact, we say X is of Hodge type if its Kahlerian form is integral.

Going back to our fibration (z7U), =, U), we can in fact show that
our Ki#hlerian form @ is integral. The proof is in a way well known.
We just mention that one usually makes use of the isomorphism between
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the singular cohomology and Cech cohomology groups. For a typical
proof of this type, see Boothby-Wang [4], or Hatakeyama [10]. Now
summarizing our observations, we have the following theorem which is
the mixture of Boothby-Wang fibration theorem and a theorem of Hata-
keyama [10].

THEOREM 4. Let (X, w, B) be a fibration as before, and let (x *(U),
7w, U) be the restricted fibration to the non-singular set U of B. Then
a) w'(U) s a circle bundle over U with © as its projection.

b) 7 defines a connection over the bundle (z~Y(U), &, U).

¢) U is a Kahlerian mantifold and its Kdhlerian form 2 is the
curvature form of the above conmection 7, i.e., dn = xn*Q i3 the struc-
ture equation of the connection. Furthermore, U is of Hodge type. In
other words, 2 s an integral cocycle.

In fact we can describe the fibration (2, =, B) a little more precisely
by decomposing (¥, x, B) into the disjoint union of orbit bundles. This
will be given below as a remark after we introduce relevant definitions.

In general let G be a compact Lie group and let G act on a smooth
manifold M smoothly. We call such a manifold M a G-manifold. Let
xe M be a point in the G-manifold M and let G, be the isotropy group
of x. Denote by G(x) the orbit of » with respect to G. Let N, =
TM,/TG(x), be the normal space to the orbit G(x) at x, where TM, and
TG(x), denote the tangent spaces of M and G(x) at x. Now let o,: G,—
GL(N,) be the slice representation of G,. Then the pair [G., ¢.]; is
called the slice type at the point x. The slice type is constant along
orbits in M, for if g€G@G, then G,, = ¢G.97" and o,, ~ 0,°(g*g™"); there-
fore, [G,., 0,.)¢ = [G., 0.1 By the slice theorem, [G,, 0,] completely
determines the local structure of M at x. The set of all slice types of
a G-manifold M can be given a partial order in a natural way, and the
set with this natural partial order is called the slice diagram of M.
Furthermore, if the orbit space M/G is connected, the slice diagram of
M, say 4G, M), has the unique largest element [H, 6] called the principal
type. The principal type is characterized by the fact that the representa-
tion is trivial. If M is compact, 4(G, M) has a finite number of slice
types. Let H be a closed subgroup of G, and M be the G-manifold.
Then the orbit bundle M, is defined as follows:

M, ={xe M|G, is conjugate to H in G}.

M, is an invariant submanifold, and has a natural structure of fiber
bundle over M,/G with the orbits as fibers. This M, can be further
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partitioned as follows: Let [H, o] be a slice type of M. Then the set
My, = {xe M|[G,, 0.,] = [H, o]} is known to be an invariant open and
closed submanifold of M,. M, also has the natural fiber bundle struc-
ture. In fact, M, is given as the disjoint union of M, ,, where [H, o]
runs over all the slice types of M as H is fixed. Call M, also an
orbit bundle for convenience. For the details, see Janich [13]. Now we
have a remark,

REMARK 4. Let X(; ., be an orbit bundle of the S*-manifold ¥. Then
the triple (3.1, 7, 72 11.0) = Ziw.a/SY) has the similar structures to those
described in Theorem 4. Of course, we should realize that the S'-action
on 3., is in general not effective; therefore, we have to consider the
S'-action as the quotient action.

As we have learned that some generalized Brieskorn manifolds may
admit infinitely many contact structures as given in Theorem 2, it would
be of natural interest to ask whether or not these structures can be
classified in a certain way. In what follows, we give a simple classifica-
tion of these structures based on the S'-action on 2.

Let M and N be contact manifolds, and let f: M— N be a diffeo-
morphism from M onto N. Let w, and w, be the contact forms on M
and N, respectively. We say that f is a contact transformation from
M onto N if f*w, = pw,, where f* is the pullback homomorphism of
S and p is a nowhere vanishing smooth function on M. If o =1 on M,
we say f is a strict contact transformation. Let @, and @, be two
contact structures on M. Then we say w, = @, if there exists a diffeo-
morphism f of M and a nowhere vanishing smooth function o such that
f*®, = pw,. Similarly, @, = w, in the strict sense if f*w,= ®,. Our
criterion to be used for the classification is the contact transformation
in the striet sense. Obviously, there are two more natural ways to
classify the contact structures. One is the contact transformation in
the usual sense, and the other is the deformation of contact structures
as defined in Gray [8]. Classification with respect to these two criteria
seems to be much more difficult, and except for some special cases
nothing has yet been known to the author.

Our theorem states as follows:

THEOREM 5. Let 3, and 3, be two generalized Brieskorn manifolds
with the normal contact structures n, and 7, respectively. Assume that
the induced iR-actions on 3, and X, give rise to S'-actions. If the slice
diagrams A(SY, X)) and A(SY, X,) are not isomorphic to each other, then
there is mo strict conmtact transformation between 7, and 7,.
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ProorF. Let f:23,— 2%, be a strict contact transformation between
(Z,7n) and (3, 7n,), i.e., f*n, =7n. As before, let us denote by & and
@, (1 =1, 2) the velocity vector fields of the S'-orbits in 3, and the
kernel of 7,.

We need the following lemma.

LEMMA 13. Let (X, 7,) (1 =1,2) and f be as above. Then we have
a) [fu(&) = &.
b) f*(@x) = @2-

PrOOF. Let X be an element of ©,, Then 7,(f (X)) = f*n(X) =
N(X) = 0. Therefore, f.(6,) O, Since the dimensions of &, and 0,
are equal, we have f,(0) = 0,. Tis proves b). Next f*n, =, implies
that d(f*n,) = dn,; therefore, f*dy, = df*n, =dy. As is shown in
Lemma 5, dn,(&, X)=0 for all XeTX, (4+=1,2), and & 1is unique
(¢=1,2). Now let X be an element of TZX,. Then 0= dy({, X) =
A n)Ey X) = frdn &, X) = dn,(fi&, f.X). Since f, is an isomorphism,
we have that f.& = k&, where k is a non-zero function. On the other

hand’ 1= 771(51) = f*yiz(&) = 772(f*51) = nz(k'fz) = k7]2(52) =k. Thus f*‘fl =&,
This proves a). g.e.d.

We continue with the proof of Theorem 5. Let +(t) and +4,(t) be
the 1l-parameter groups of transformations generated by &, and & on X,
and 3, respectively. Let xe 3, be a point in ¥, and let f(x) be the
image of z in ¥,. Then +(t)x is the orbit through x under the S'-action
by the choice of ¢, and its velocity vector is &. By a) of Lemma 13,
we see that the image curve foq4r(t)r has & as the velocity vector at
each point. Thus by uniqueness of solutions of ordinary differential
equations, the integral curve of & through f(z) must be the curve
Soar(t)(x). On the other hand, +,(t)(f(x)) is the integral curve of &;
therefore, we have fo,(t)(®) = () o f(x). As « is an arbitrary point
in ¥,, we have shown that fo4(t) = 4 (t)ef. In other words, the 1-
parameter groups of transformations commute with f. These 1-parameter
groups are precisely the S!-actions on ¥, and X, again by the choice of
& and £ and by uniqueness of solutions of ordinary differential equa-
tions. Thus f commutes with these S'-actions on ¥, and JX,. In other
words, f is an equivariant diffeomorphism. Then it is well known that
the corresponding slice diagrams are isomorphic to each other. This
contradicts the assumption of Theorem 5; so there cannot exist a strict
contact transformation. q.e.d.

Theorem 5 can have more precise forms in the cases where ¥, and
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2, are given as in Examples 1, 2 and 3. The following observations
which we will make for original Brieskorn manifolds can be carried out
for 2’s in Examples 2 and 3; however, most interesting examples arise
as a Brieskorn manifold.

Let P(Z)= Z;®+ --- + Z," be a Brieskorn polynomial as in Example
1. Then the C-action is given by t(Z, ---, Z,) = (e¥*Z,, + -+, €*4'Z,),
where a; = dja; (1 =0, ---,n) and d = the least common multiple of
(@, -+, a,). Let X(a,) be the corresponding Brieskorn manifold. Then
Neumann [19] showed that the slice diagram A(S*, 3(a,)) is given by a
slice type [H, o] which has the form [Zica - -ap5 0oy, D 0oy, , D+ B
0, D2k —1)] (0=<k=mn), or can be obtained from such a slice type
by permuting the indices. The corresponding orbit bundle in ¥ is given
by the set {(Z, +++, Z,, 0, -+, 00eICC*|Z, 0 (0=<1=<k)}, or the
set given by permuting the indices. Here ged(as, ---, a;) is the greatest
common divisor of ag, +--, a;, and (2k — 1) is the trivial representation
of (2k — 1)-dimensional Ruclidean space. The representation o, is the
representation of Z, on ¢ = R* given by (¢*%, Z) = ¢***Z for Ze(.
For more details, see Neumann [19]. Thus we have

COROLLARY 6. Let Z(ay, «--, a,) and X(b, +-+, b,) be two Brieskorn
mantifolds, and let 7, and 7, be the corresponding normal contact struc-
tures on Z(a) and (). Then 7, is mot equivalent to 7, in the strict
sense 1f their slce diagrams do not coincide.

Making use of Corollary 6, we now show by examples that every
odd dimensional standard sphere and some exotic spheres admit infinitely
many distinet normal contact structures given as in Theorem 2. Here
“distinet” means not equivalent in the strict sence unless otherwise
mentioned.

EXaMPLE 9. Let P(Z)=Z,+ Z,+ Z; + -+ + Z, (¢q>0) be a
Brieskorn polynomial. Since the origin of £**' is a regular point of the
variety defined as the locus of zeros of P,(Z), the Brieskorn manifold
associated with P,/(Z), say 2, is diffeomorphic to the standard unit
sphere of dimension 2n — 1. It is easy to show that the (-action is
given by #(Z, +--, Z,) = ("4, VL, ¢ Z,, +++, & Z,). Thus the slice
diagram of this S!-action on X, contains the slice type given by
[Z;:0, - Do), where o, is the representation of Z, on ¢ = R® de-

(n—1) times

fined by (%, Z)re*Z, Ze¢ and teZ, The corresponding orbit
bundle is given by {(Z, Z,0,---,0e3,CcC""|Z,# 0,2, +0}. It is
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clear that [Z,:0, D --- D o] #[Z,:0,D---Po] and A4S, ¥,) = 4S*, ¥,)
(n—1)-times (n—1)-times

if ¢ = »r. Thus the normal contact structures 7, (¢ =1,2, ---) are all
distinet on S*. In particular, 7, is the normal contact structure on
S*~! given by the Hopf fibration. It is obvious that we can have more
distinct normal contact structures on S**' by manipulating the powers
of polynomials.

ExaMpLE 10. Consider the polynomial P(Z)=Z:i+ ++ + Zin + Zinss
(l: 0dd) as given in Example 8. As was mentioned in Example 8, if
l = 4+ 3(mod 8), the corresponding Brieskorn manifold X, is an exotic
sphere of dimension 4m + 1 (m = 3). The induced S'-action on X, is
given as follows:

t(ZO! CT Y Z2m+1) = (ezzlitzo, Tty ezzlitzzmy 64:’ltZZWH—l) .
This action contains a slice type of the form [Z;:0, B :-- @ o, P o,] and

na
2({m—1)

its orbit bundle is given by {(Z, Z,0, ---,0)e X, Cc€*"|Z %= 0 and
Z, + 0}. As before, we can show that 4(S!, X,) cannot contain the slice
type [Z:0, P --- Do, Do) if | #m. Thus the corresponding contact
structures 7, and 7, are distinet if [/ = m. Since there are infinitely
many | = # 3(mod8) and there are a finite number of exotic spheres
bounding a parallelizable manifold in general, we notice at least some
of them must have infinitely many distinct contact structures. By
making use of the second type of Brieskorn polynomial in Example 8,
we can show that more exotic spheres have infinitely many normal con-
tact structures which are distinef. In particular, a 7-dimensional exotic
sphere has infinitely many distinet normal contact structures as given
in Theorem 2. More precise computation is left to the reader., Within
Raymond’s scheme, Neumann [19] has obtained more precise classification
of 3-dimensional Brieskorn manifolds. Therefore, according to his clas-
sification we can obtain the topological characterization of Brieskorn 3-
manifolds, and the minimum number of distinct normal contact struec-
tures on each are as in Corollary 6 and Examples 9 and 10. Among
these, it is perhaps of greatest interest to describe the situation about
the Brieskorn manifolds which are diffeomorphic to S®. Let P(Z) =

O+ Z+ Z;* be a Brieskorn polynomial, and let 3(a, a, @, be the
corresponding Brieskorn manifold. Then it follows from Neumann’s
classification that 2X{(a, @, a,) is diffeomorphic to S* if and only if at
least one of a, ¢, and a, equals 1. Thus we can assume that the poly-
nomial has the form P(Z) = Z, + Z; + Z,. Then we have,
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THEOREM 6. Let P(Z) = Z,+ Z¥ + Z; (1 =1, 2) be two polynomial,
and let 3, and 9, (1 =1, 2) be the Brieskorn manifolds and its normal
contact structure. Then X, is diffeomorphic to S® and 9, (i =1, 2) con-
sidered as contact structures on S* are distinct if either

ged ?01,1, b) . ged ?02, by) and ged Z;l, b,) 7 ged ?;2, '
ged Z;l, b)) . ged Z;,z, b.) and ged ?:1,1, b,) . ged ?02,2, b,) ’ or
ged ?clz,, b) > ged ?;2, b.) and ged Z;” b) > ged ?;2, b, ’ or
ged E’:z“ b,) . ged ?1212, b.) and ged ?«111, b,) . ged Z;, b,)

PrROOF. Let h; be ged(a;, b;) (j=1,2), and let a; = h;e; and b; =
hid; (7 =1,2). Then the triple of integers (1, a;, b;,) can be written as
(1, he;, hid;) (7 = 1, 2). Denote by 3; the corresponding Brieskorn mani-
fold to P(Z)=0. The S'-actions on %; is given by ¢4, Z,, Z,) =
(e¥mhicititi g, et e it 7)) (§ = 1, 2). It is easy to see that the excep-
tional orbits of X; occur among Z, =0 or Z,=0, and they have Z,
and Z,; (j = 1, 2) as their isotropy groups respectively. There is precisely
one orbit in each case. Now if there exists a diffeomorphism f: 3, — %,
such that f*7, = »,, the slice diagrams 4(S’, %) and 4(S", X,) must coincide.
4S8, ;) contains the slice types {[Z.;0,] and [Z,;0.]} (4 =1,2).
A8, X)) = A8, 3,) if and only if either [Z,; 0,] = [Z.,; 0,,] and [Z,;0.] =
(Z,;0.] or [Z,;0,] =12,;0.] and [Z,;0,] = [Z,,; 6,] holds. Since ¢,
and d, are relatively prime (i = 1, 2), the above is equivalent to either
¢, =c¢,and d, =d, or ¢, = d, or d, = ¢, holds. Thus if either ¢, # ¢, and
c,#d, ore #c and d, #¢, or d,#d, and ¢, # d, or d, # d, and d, # ¢,
then 7, and 7, cannot be strictly equivalent. This completes the proof.

g.e.d.
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