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1. INTRODUCTION

The reliability function R(t ) is defined as the probability of failure-free operation until
time t . Thus, if a random variable (rv) X denotes the lifetime of an item or a system,
then R(t ) = P (X > t ). Another measure of reliability under stress-strength setup is the
probability P = P (X > Y ), which represents the reliability of an item or a system of
random strength X subject to random stress Y. A lot of work has been done in the litera-
ture for the point estimation and testing of R(t ) and P . For a brief review, one may refer
to Bartholomew (1957, 1963), Pugh (1963), Basu (1964), Tong (1974, 1975), Kelly et al.
(1976), Sathe and Shah (1981), Chao (1982), Awad and Gharraf (1986), Tyagi and Bhat-
tacharya (1989), Chaturvedi and Rani (1997, 1998), Chaturvedi and Surinder (1999),
Chaturvedi and Tomer (2002, 2003), Kotz and Pensky (2003), Chaturvedi and Singh
(2006, 2008), Saracoglu and Kaya (2007), Krishnamoorthy et al. (2007, 2009), Baklizi
(2008a,b), Eryilmaz (2008a,b, 2010, 2011), Kundu and Raqab (2009), Krishnamoorthy
and Lin (2010), Rezaei et al. (2010), Chaturvedi and Pathak (2012, 2013), Chaturvedi and
Kumari (2016), Chaturvedi and Malhotra (2017), Chaturvedi and Vyas (2017), Chaturvedi
et al. (2018) and others.

Constantine et al. (1986) have derived the UMVUE and MLE of P when X and Y fol-
low gamma distributions with shape parameters to be integer-valued. Huang and Wang
(2012) have generalized these results for the case when shape parameters are positive-
valued. Liang (2008) proposed a family of lifetime distributions, which he named as a
positive exponential family of distributions. He showed that three distributions, expo-
nential, Weibull and gamma to be the particular cases of this family. Recently, Chaturvedi
and Malhotra (2018) developed estimation procedures for the reliability characteristics
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of the positive exponential family of distributions.
The purpose of present paper is manifold. We propose a generalization of the posi-

tive exponential family of distributions which covers as many as ten distributions to be
particular cases. We derive uniformly minimum variance unbiased estimators (UMVUEs),
maximum likelihood estimators (MLEs) and method of moment estimators (MMEs) of
the reliability characterstics. In Section 2, we propose the generalized exponential fam-
ily of distributions and study its properties. In Section 3, we derive UMVUEs, MLEs
and MMEs. In Section 4, we derive MLES and MMES when all the parameters are un-
known. In Section 5, we present simulation studies and in Section 6, we present two
examples of real data. Finally in Section 7, we give the concluding remarks.

2. THE GENERALIZED POSITIVE EXPONENTIAL FAMILY OF DISTRIBUTIONS AND
ITS PROPERTIES

A random variable X is said to follow generalized positive exponential family of distri-
butions if its probability density function is given by

f (x;α,β, ν ,θ) = α
�

β

θ

�ν 1
Γ (ν)

xαν−1 exp
�

−βxα

θ

�

; x > 0,α,β, ν ,θ > 0. (1)

The corresponding cumulative distribution function (cdf) is given by

F (x) =
γ
�

ν, βxα

θ

�

Γ (ν)
. (2)

where γ (x,a) =
∫ x

0 t a−1e−t d t is the lower incomplete gamma function.
We note that this family covers the following distributions as special cases.

1. For α = ν = β = 1, we get one parameter exponential distribution (see Johnson
and Kotz, 1970, pp. 197).

2. For α=β= 1, it gives a gamma distribution. Further, for integral values of α, it
gives an Erlang distribution (see Johnson and Kotz, 1970, pp. 197).

3. For β = 1, it leads to generalized gamma distribution (see Johnson and Kotz,
1970, pp. 197).

4. For β = ν = 1, it turns out to be a Weibull distribution (see Johnson and Kotz,
1970, pp. 250).

5. For ν = 1
2 ,β= 1,α= 2, it is known as half normal distribution (see Davis, 1952).

6. For ν = m
2 , α= 2,β= 1

2 , m > 0 we get a chi distribution (see Patel et al., 1976, pp.
173) and for m = 3 we get a Maxwell distribution (see Tyagi and Bhattacharya,
1989).
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7. For α= 2, ν = 1, β= 1, we get a Rayleigh distribution (see Sinha, 1986, pp. 200).

8. For α = 2, β = 1, ν = k + 1; k ≥ 0 we get a generalized Rayleigh distribution of
(see Voda, 1978).

9. For ν =β and α= 2, ν > o, β> 0 we get the Nakagami (1960) distribution.

10. Forβ= 1, we get the positive exponential family of distribution (see Liang, 2008;
Chaturvedi and Malhotra, 2018).

2.1. Distribution properties

Here we discuss some important distribution properties of the generalized positive ex-
ponential family of distributions.

1. The r th raw moment is given by

µ
′

r =
(θ/β)(r/α)

Γ (ν)
Γ
� r
α
+ ν

�

; r = 1,2, ...,

so that

Mean=
(θ/β)(1/α)

Γ (ν)
Γ
�

1
α
+ ν

�

.

2. Mean square error is given by

Mean square=
(θ/β)(2/α)

Γ (ν)

�

Γ
�

2
α
+ ν

�

− 1
Γ (ν)

�

Γ
�

1
α
+ ν

��2�

.

3. Mode is the value of x for which f (x) is maximum. The mode of the distribution
is given by

Mode=
�

θ

β

(αν − 1)
α

�( 1
α )

.

4. Median is the solution of the following equation:

F (M d ) = 0.5,

⇒
γ
�

ν, β(M d )α

θ

�

Γ (ν)
− 0.5= 0.
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2.2. Reliability characteristics

Here we discuss some reliability characterstics of this family of distributions.

1. Mean time to system failure for this family of distributions is given by

M T SF =

�

θ
β

�( 1
α )

Γ (ν)
Γ
�

1
α
+ ν

�

.

2. The relibility function is given by

R(x) = P [X > x] = 1− 1
Γ (ν)

γ

�

ν,
βxα

θ

�

.

3. The mean residual life is given by

µ(x) =

�

∫∞
x 1−

γ
�

ν , βuα

θ

�

Γ (ν)

�

�

1−
γ
�

ν , βxα

θ

�

Γ (ν)

�
.

4. The failure rate function of this family of distributions is given by

α
�

β
θ

�ν 1
Γ (ν) x

αν−1 exp
�−βxα

θ

�

1−
γ
�

ν , βxα

θ

�

Γ (ν)

.

3. UMVUES, MLES AND MMES OF θq , R(t )& P

Let X1,X2, . . . ,Xn be a random sample of size n from the distribution given in (1). Then,
assuming ν , β and α to be known, the likelihood function of the parameter θ given the
sample observations x = (x1, x2, . . . , xn) is:

L(θ | x) =
�

α

Γ (ν)

�n �β

θ

�nν

e
− β
θ

n
∑

i=1
xαi

n
∏

i=1

xαν−1
i . (3)

The following theorem provides UMVUEs of powers of θ.

THEOREM 1. For q ∈ (−∞,∞), the UMVUE of θq is given by:

eθq =







�

Γ (nν)
Γ (nν + q)

�

Sq ; nν + q > 0

0; otherwise

where β(a, b ) = Γ (a)Γ (b )
Γ (a+b ) is the beta function and S =β

∑n
i=1 X α

i .
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PROOF. It follows from (3) and factorization theorem (see Rohatgi and Saleh, 2012,
pp. 367) that S is sufficient statistic for θ and the pdf of S is

fs (s | θ) =
s nν−1

Γ (nν)θnν
exp

�

− s
θ

�

; ν > 0, θ > 0, s ≥ 0. (4)

From (3), since the distribution of S belongs to exponential family, it is also com-
plete. Now it follows from (4) that

E[Sq] =
�

Γ (nν + q)
Γ (nν)

�

θq , (5)

and the theorem follows. 2

In the following theorem, we obtain UMVUE of the sampled pdf at a specified point.

THEOREM 2. The UMVUE of the sampled pdf at a specified point x is:

ef (x;θ) =

(

α
β(ν ,(n−1)ν)

�

β
S

�ν
xαν−1

�

1− βxα

S

�(n−1)ν−1
; βxα < S

0; otherwise

where β(a, b ) = Γ (a)Γ (b )
Γ (a+b ) is the beta function.

PROOF. We can write

f (x;θ) = α
�

β

θ

�ν 1
Γ (ν)

xαν−1
∞
∑

i=0

(−1)i

i !

�

βxα

θ

�i

.

Applying Theorem 1

ef (x;θ) =
αβν xαν−1

Γ (ν)

∞
∑

i=0

(−1)i (βxα)i

i !
(eθ)(−(ν+i)),

=
α
�

β
S

�ν
x (αν−1)

β (ν, (n− 1)ν)

(n−1)ν−1
∑

i=0

(−1)i
�

(n− 1)ν − 1
i

��

βxα

S

�i

,

and the result follows. 2

The following theorem provides UMVUE of the reliability function R(t ).

THEOREM 3. The UMVUE of R(t ) is:

eR(t ) =

(

1− I βtα
S
(ν , (n− 1)ν); βtα < S

0; otherwise

where Ix (p, q) = 1
β(p,q)

∫ x

0
y p−1(1− y)q−1d y; 0≤ y ≤ 1, x < 1, p, q > 0 is the incomplete

beta function.
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PROOF. We note that the expectation of
∫ ∞

t

ef (x;θ)d x with respect to S is R(t ).

Thus, applying Theorem 2,

eR(t ) =
∫ ∞

t

ef (x;θ)d x,

=
α

β(ν , (n− 1)ν)

�

β

S

�ν ∫ ∞

t
xαν−1

�

1−
βxα

S

�(n−1)ν−1

d x,

and the result follows by substituting βxα

S = z. 2

Let X and Y be two independent random variables with respective pdf :

f (x;θ1) = α1

�

β1

θ1

�ν1 1
Γ (ν1)

xα1ν1−1 exp
�

−β1xα1

θ1

�

,

and

f (y;θ2) = α2

�

β2

θ2

�ν2 1
Γ (ν2)

yα2ν2−1 exp
�

−β2yα2

θ2

�

.

Let X1,X2, . . . ,Xn be a random sample of size n from f (x;θ1) and Y1,Y2, . . . ,Ym be

a random sample of size m from f (y;θ2). Define, S =
n
∑

i=1
β1X α1

i and T =
m
∑

i=1
β2Y α2

i .

Now the UMVUE of P is given in the following theorem.

THEOREM 4. The UMVUE of P is

P̃ =























































































∫ 1
z=0

1
β{ν1,(n−1)ν1}

z ν1−1 (1− z)(n−1)ν1−1 I








β2

�

S z
β1

�( α2
α1 )

T











(ν2, (m− 1)ν2)

where
�

S
β1

�1/α1 ≤
�

T
β2

�1/α2 .

1− 1
β{ν2,(m−1)ν2}β{ν1,(n−1)ν1}

∫ 1
z=0 z ν2−1 (1− z)(m−1)ν2−1

×
∫ (zT /β2)

α1/α2

w=0 wν1−1 (1−w)(n−1)ν1−1 d w,

where
�

S
β1

�1/α1 >
�

T
β2

�1/α2 .

PROOF. It follows from Theorem 3 that

ef (x;θ1) =











α1
β(ν1,(n−1)ν1)

�

β1
S

�ν1 xα1ν1−1
�

1− β1 xα1

S

�(n−1)ν1−1
;β1xα1 < S

0 ;otherwise
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and

ef (y;θ2) =











α2
β(ν2,(n−1)ν2)

�

β2
T

�ν2 yα2ν2−1
�

1− β2yα2

T

�(m−1)ν2−1
;β2yα2 < T

0 ;otherwise

From the arguments similar to those used in Theorem 2

eP =
∫ ∞

x=0

∫ x

y=0

ef (x;θ1) ef (y;θ2)d x d y,

=
∫ min(

�

S
β1

�
1
α1 ,
�

T
β2

�
1
α2 )

x=0

α1xα1ν1−1

β(ν1, (n− 1)ν1)

�

β1

S

�ν1 �

1− xα1

S

�(n−1)ν1−1
,

× I β2 xα2
T
(ν2, (m− 1)ν2)d x. (6)

When
�

S
β1

�
1
α1 ≤

�

T
β2

�
1
α2 , we substitute β1

xα1

S = z and the first assertion follows. When
�

S
β1

�
1
α1 >

�

T
β2

�
1
α2 , we first replace

∫∞
x=y

ef (x;θ1)d x by eR(y) and then substituteβ2
yα2

T = z
and the second assertion follows. 2

It is interesting to note that on putting α1 = α2 = 1 and β1 = β2 = 1 we get the
UMVUE of P (X > Y ) obtained by Huang and Wang (2012). Hence we were able to
obtain a generalized expression of UMVUE of P (X > Y ) by a different yet simpler
approach. Assuming both shape parameters ν1 and ν2 to be integers, Constantine et al.
(1986) showed that UMVUE of P (X > Y ) can be expressed in terms of an incomplete
beta function and hypergeometric series. Following which, in Corollary 5, we derive
a generalized expression of UMVUE of P (X > Y ) when both the shape parameters ν1
and ν2 are integers.
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COROLLARY 5. The UMVUE of P when the shape parameters ν1 and ν2 are integers is:

eP =























































































































1
β(ν1, (n− 1)ν1)β(ν2, (m− 1)ν2)

(m−1)ν2−1
∑

i=0

(−1)i

ν2+ i

�

(m− 1)ν2− 1
i

�

·
∫ 1

0
z ν1−1(1− z)(n−1)ν1−1







β2

�

zS
β1

�

α2
α1

T







ν2+i

d z;
�

S
β1

�
1
α1

≤
�

T
β2

�
1
α2

1− 1
β(ν1, (n− 1)ν1)β(ν2, (m− 1)ν2)

(n−1)ν1−1
∑

i=0

(−1)i

ν1+ i

�

(n− 1)ν1− 1
i

�

·
∫ 1

0
z ν2−1(1− z)(m−1)ν2−1







β1

�

zT
β2

�

α1
α2

S







ν1+i

d z;
�

S
β1

�
1
α1

>

�

T
β2

�
1
α2

PROOF. From Theorem 4, for
�

S
β1

�
1
α1 ≤

�

T
β2

�
1
α2 ,

eP =
∫ 1

z=0

z ν1−1(1− z)(n−1)ν1−1

β(ν1, (n− 1)ν1)β(ν2, (m− 1)ν2)
,

·
∫

β2
T

�

zS
β1

�

α2
α1

w=0
wν2−1(1−w)(m−1)ν2−1d wd z,

and the first assertion follows by binomial expansion of (1−w)(m−1)ν2−1. For
�

S
β1

�
1
α1 >

�

T
β2

�
1
α2 , we consider

eP =
∫ ∞

y=0

∫ ∞

x=y

ef (x;θ1) ef (y;θ2)d x d y,

=
∫

�

T
β2

�
1
α2

y=0

α2yα2ν2−1

β(ν2, (m− 1)ν2)

�

β2

T

�ν2
�

1−
β2yα2

T

�(m−1)ν2−1

× [1− I β1 yα1
S
(ν1, (n− 1)ν1)]d y.

and the second assertion follows on substituting β2yα2

T = z. 2

It is interesting to note that on putting α1 = α2 = 1 and β1 = β2 = 1, we get the
UMVUE of P (X > Y ) obtained by Constantine et al. (1986). Hence we were able to
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obtain another generalized expression of UMVUE of P (X > Y ) by a different yet sim-
pler approach when the shape parameters ν1 and ν2 are assumed to be integers.

Now we provide MLE of R(t ) in the following theorem.

THEOREM 6. The MLE of R(t ) is given by:

bR(t ) = 1−
γ
�

ν, nνβtα

S

�

Γ (ν)
,

where γ (a, r ) =
∫ r

0
ya−1e−y d y is the lower incomplete gamma function.

PROOF. It can be easily seen from (3) that the MLE ofθ is bθ= S
nν , where S =βΣxi

α.
Now from the invariance property of MLE, the MLE of sampled pdf is:

bf (x;θ) =
αxαν−1

Γ (ν)

�

nνβ
S

�ν

exp
�

−nνβxα

S

�

.

Thus, bR(t ) =
∫ ∞

t

bf (x;θ)d x and the theorem follows. 2

The MLE of P is given in the following theorem:

THEOREM 7. The MLE of P is:

bP = 1− 1
Γ (ν1)Γ (ν2)

∫ ∞

z=0
z ν2−1e−zγ






ν1,

nν1β1

�

zT
mν2β2

�

α1
α2

S






d z.

PROOF. We have,

bP =
∫ ∞

y=0

∫ ∞

x=y

bf (x;θ1) bf (y;θ2)d x d y,

=
∫ ∞

y=0

bRX (y) bf (y;θ2)d y,

=
∫ ∞

y=0



1−
γ
�

ν1, nν1β1yα1

S

�

Γ (ν1)





α2yα2ν2−1

Γ (ν2)

�

mν2β2

T

�ν2

exp
�

−mν2β2yα2

T

�

d y,

and the theorem follows on substituting mν2β2yα2

T = z. 2
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4. MLES AND MMES WHEN ALL THE PARAMETERS ARE UNKNOWN

Now we discuss the case when all the four parameters α,β ν and θ are unknown. For
MLES, the log-likelihood function of the parameters α, ν, β and θ given the sample
observations x is:

l (α, ν,β,θ | x) = n log(α)− n log(Γ (ν))+ nν log(β)− nν log(θ)

−
β

θ

n
∑

i=1

xαi +(αν − 1)
n
∑

i=1

log(xi ).

The MLE’s of α, ν,β and θ are given by the simultaneous solution of the following
three equations:

∂ l
∂ α
=

n
α
−
β

θ

n
∑

i=1

xαi log(xi )+ ν
n
∑

i=1

log(xi ) = 0, (7)

∂ l
∂ ν
=
−n
Γ (ν)

dΓ (ν)
d ν
− n log(θ)+ n log(β)+α

n
∑

i=1

log(xi ) = 0, (8)

∂ l
∂ β
=

nν
β
−

n
∑

i=1
xαi

θ
= 0, (9)

∂ l
∂ θ
=
−nν
θ
+
β

n
∑

i=1
xαi

θ2
= 0. (10)

Since these non-linear equations don’t have a closed form solution, therefore we ap-
ply Newton Raphson algorithm to compute MLEs of α,β and ν. These values of MLEs
of α,β and ν so obtained can be substituted in equation (10) to obtain MLE of θ. From
(10), the MLE of θ is

bθ=

bβ
n
∑

i=1
xbαi

nbν
,

where bα, bβ and bν are the MLEs of α, β and ν respectively. It is to be noted that from
Theorem 6, Theorem 7, and invariance property of MLE, the MLE of R(t ) is given as:

bR(t ) = 1−
γ
�

bν, nbν bβt bα

S

�

Γ (bν)
,

where S = bβ
n
∑

i=1
X bα

i and the MLE of P is given as:

bP = 1− 1
Γ (bν1)Γ (bν2)

∫ ∞

z=0
z (bν2−1)e−zγ

�

bν1,
nbν1

bβ1

�

zT
mbν2

bβ2

�

bα1
bα2

S

�

d z,
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where S = bβ1

n
∑

i=1
X bα1

i , T = bβ2

m
∑

i=1
Y bα2

i .

Next we derive the moment estimators of the parameters α, ν ,β and θ of this family
of distributions. From equation (1), we obtain the r th moment as:

E(X r ) =
∫ ∞

0
α

�

β

θ

�ν 1
Γ ν

x r+αν−1 exp
�

−βxα

θ

�

d x,

=

�

θ
β

�
r
α

Γ (ν)
ar ,

on substituting βxα

θ = y, where ar = Γ
� r
α + ν

�

.
For r = 1,2,3 and denoting E(X r ) by X

r
, we obtain the following equations:

Γ (ν)X − a1

�

θ

β

�
1
α

= 0, (11)

Γ (ν)X 2− a2

�

θ

β

�
2
α

= 0, (12)

Γ (ν)X 3− a3

�

θ

β

�
3
α

= 0, (13)

Γ (ν)X 4− a4

�

θ

β

�
4
α

= 0. (14)

These equations can be simultaneously solved using the uniroot function in the R
software to obtain MMEs ÓαM , cνM , dβM and ÓθM of the parameters α, ν , β and θ.

For α, β, ν known, the moment estimator of θ is given by

Ó

θ
1
α

M =
Γ (ν)

Γ
�

1
α + ν

�Xβ
1
α .

5. SIMULATION STUDY

Firstly, we conduct Monte Carlo simulation studies to compare the performance of eθq ,
ÔθM

q and bθq for different sample sizes and powers of parameter θ. For α= 3 andβ= ν =
2, we generate 10,000 samples each of size n from generalization of positive exponential
family of distributions and repeat this procedure for several values of θ.

Figure 1 shows the mean square error (MSE) of the UMVUE, MMSE and MLE of
θq . From these figures we note that for smaller sample sizes and for q=2, the MLE
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performs the best and the MME performs the worst. The performance of UMVUE is
in between the two. As the sample size increases the three curves come close to each
other.

Figure 1 – MSE of the UMVUE, MLE and MMSE of θq for different sample sizes.

On similar lines, we perform simulation studies to compare the performance of eR(t )
and bR(t ) for different sample sizes. For t = 7 and α = β = ν = 2, we generate 10,000
samples each of size n from the generalization of positive exponential family of distri-
butions and repeat this procedure for several values of R(t ). Figure 2 shows the MSE
of the UMVUE and MLE of R(t ). From these figures we note that the MSE of the
UMVUE of R(t ) is always greater than that of the MLE, however for large sample sizes
these estimators of R(t ) are better and almost equally efficient.

Figure 2 – MSE of the UMVUE and MLE of R(t ) for different sample sizes.
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Now, we compare the performance of eP and bP for different sample sizes. By Monte
Carlo simulation, for α1 = 1 and β1 = ν1 = 2 and α2 = 2 and β2 = ν2 = 3, we generate
10,000 samples each of size n and m from generalization of positive exponential family
of distributions and repeat this procedure for several values of P . Figure 3 shows the
MSE of the UMVUE and MLE of P . From these figures we note that the MSE of the
UMVUE of P is always greater than that of the MLE, however for large sample sizes
these estimators of P are better and almost equally efficient.

Figure 3 – MSE of the UMVUE and MLE of P for different sample sizes.

Figure 4 shows estimation of pdf in Equation (1) based on MLE and UMVUE.

Figure 4 – MLE and UMVUE of sampled pdf.
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6. REAL LIFE DATA EXAMPLES

This section deals with examples of real data to illustrate the proposed estimation meth-
ods.

Example 1. This data set was originally reported in Schafft et al. (1987) (see also Ku-
mar et al., 2017), represents hours to failure of 59 conductors of 400-micrometer length.
All specimens ran to failure at a certain high temperature and current density. The 59
specimens were all tested under the same temperature and current density.We observe
that Nakagami distribution, which is the special case of the generalization of the posi-
tive exponential family of distributions, fits well to this data as shown in Figure 5. Let
us assign the random variable X ∼ f (x;β,θ) to Data set I that has been reproduced in
the Table 1.

TABLE 1
Data set I, example 1.

6.545 9.289 7.543 6.956 6.492 5.459 8.120 4.706 8.687 2.997
8.591 6.129 11.038 5.381 6.958 4.288 6.522 4.137 7.459 7.495
6.573 6.538 5.589 6.087 5.807 6.725 8.532 9.663 6.369 7.024
8.336 9.218 7.945 6.869 6.352 4.700 6.948 9.254 5.009 7.489
7.398 6.033 10.092 7.496 4.531 7.974 8.799 7.683 7.224 7.365
6.923 5.640 5.434 7.937 6.515 6.476 6.071 10.491 5.923

Figure 5 – The empirical and theoretical cdf of Nakagami(β,θ) model.

Now for the above data set we obtain the various estimators of β, θ and R(t ) and
the results are presented in Table 2.
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TABLE 2
The MLE, UMVUE and MME of parameters β and θ of Nakagami model and its corresponding

reliability function RX (t ) for time t = 2 based on Data set I.

bβ bθ eθ bβM
bθM

bRX (t ) eRX (t )
4.834 51.282 51.282 4.872 51.282 0.999 0.999

Example 2. The data on breaking strength of jute fibers were proposed by Xia et al.
(2009) (see also Chaturvedi et al., 2018). The Jute fibers were tested under tension at
gauge lengths of 5, 10, 15, and 20 mm. In our study, we consider data on breaking
strength of jute fibers under gauge lengths 15 mm and 20 mm. These data are reported
in Tables 3 and 4, respectively.

TABLE 3
Data set I, example 2.

594.40 202.75 168.37 574.86 225.65 76.38
156.67 127.81 813.87 562.39 468.47 135.09
72.24 497.94 355.56 569.07 640.48 200.76
550.42 748.75 489.66 678.06 457.71 106.73
716.30 42.66 80.40 339.22 70.09 193.42

TABLE 4
Data set II, example 2.

771.46 419.02 284.64 585.57 456.60 113.85
187.85 688.16 662.66 45.58 578.62 756.70
594.29 166.49 99.72 707.36 765.14 187.13
145.96 350.70 547.44 116.99 375.81 581.60
119.86 48.01 200.16 36.75 244.53 83.55

First of all these two data sets are used to fit the exponential distribution, separately
(see Figures 6 and 7).

Let us assign the random variable X ∼ f (x;θ1) to Data set I that has been reproduced
in Table 3 and let us assign the random variable Y ∼ f (y;θ2) to Data set II that has
been reproduced in Table 4. Now, for the above two data sets, we obtain estimators of
P = P (X > Y ) and the results are presented in Table 5.
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Figure 6 – The empirical and theoretical cdf of exponential(θ1)model.

Figure 7 – The empirical and theoretical cdf of exponential(θ2)model.

TABLE 5
The MLE and UMVUE of P (X > Y ).

bP eP
0.516 0.517
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7. CONCLUSIONS

In the present paper, we have generalized the results of Chaturvedi and Malhotra (2018)
to a family of distributions which we name as generalized exponential family of dis-
tributions. This family of distribution covers as many as ten distributions as partic-
ular cases. UMVUEs, MLEs and MMEs are developed for the powers of parameters,
R(t ) = P (X > t ) and P = P (X > Y ). Efficiency comparison of the three methods of
estimation is done.
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SUMMARY

A generalization of positive exponential family of distributions developed by Liang (2008) is
taken into consideration. Its properties are studied. Two measures of reliability are discussed.
Uniformly minimum variance unbiased estimators (UMVUES), maximum likelihood estimators
(MLES) and method of moment estimators (MMES) are developed for the reliability functions.
The performances of three types of estimators are compared through Monte Carlo simulation.
Real life data sets are also analyzed.

Keywords: Generalized positive exponential family; MLE; MME; Reliability; UMVUE.


