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Abstract. We prove a generalized resolvent estimate of Stokes equations with
nonhomogeneous Robin boundary condition and divergence condition in the Lq

framework (1 < q < ∞) in a domain of Rn (n = 2) that is a bounded domain
or the exterior of a bounded domain. The Robin condition consists of two conditions:
ν · u = 0 and αu + β(T (u, p)ν − 〈T (u, p)ν, ν〉ν) = h on the boundary of the domain
with α, β = 0 and α + β = 1, where u denotes a velocity vector, p a pressure, T (u, p)
the stress tensor for the Stokes flow, and ν the unit outer normal to the boundary
of the domain. It presents the slip condition when β = 1 and the non-slip one when
α = 1, respectively.

1. Introduction.

Let Ω be a domain in Rn with boundary Γ that is a compact hypersurface. Given
velocity vector u = t(u1, . . . , un)∗ and pressure p, the stress tensor T (u, p) of the Stokes
flow is defined by the formula: T (u, p) = D(u)−pI, where D(u) and I are n×n matrices
whose (j, k) components D(u)jk and Ijk are given by the formulas:

D(u)jk =
∂uj

∂xk
+

∂uk

∂xj
, Ijk = δjk = 1 (j = k) and Ijk = δjk = 0 (j 6= k).

In this paper, we are interested in the Lq (1 < q < ∞) estimate of solutions u and p to
the generalized Stokes resolvent problem in Ω with Robin boundary condition:

λu−Div T (u, p) = f, div u = g in Ω

ν · u = 0, Bα,β(u) = αu + β(T (u, p)ν − 〈T (u, p)ν, ν〉ν) = h on Γ (1.1)

where α and β are two constants such as α, β = 0 and α + β = 1; 〈·, ·〉 denotes the
inner product in Rn, ν the unit outer normal to Γ, f = t(f1, . . . , fn) the prescribed force
for the motion, h = t(h1, . . . , hn) the prescribed force on the boundary, and g the given
divergence of the problem. Noting that 〈ν, ν〉 = 1, we have

Bα,β(u) = αu + β(D(u)ν − 〈D(u)ν, ν〉ν) (1.2)
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and therefore the Robin condition does not contain the pressure p, which is an essential
difference from the pure Neumann condition: T (u, p)ν = h on Γ that was treated by
Grubb and Solonnikov [9], Grubb [10], Shibata and Shimizu [17] and Steiger [20]. When
β = 0, the boundary condition is the usual non-slip one, and this case has been studied
by Farwig and Sohr [5]. Therefore, we shall study the case where β > 0 only in this
paper.

The problem (1.1) with β > 0 was first studied by Giga [8] when Ω is bounded
and g = 0. He actually considered more general boundary condition and gave some
sufficent condition to obtain a resolvent estimate. Later on, Grubb and Solonnikov [9]
and Grubb [10] proved the well-posedness of the non-stationary Stokes equation with
general first order boundary condition. But, the arguments due to Giga [8] and also
to Grubb and Solonnikov ([9], [10]) relied heavily on the calculus of pseudo-differential
operators. Such arguments can be understood only by those who are quite familiar with
the pseudo-differential operator techniques. However, when the boundary condition is
the non-slip one (u = 0 on Γ), Farwig and Sohr [5] proved the resolvent estimate by
using rather elementary method based on Fourier analysis and functional analysis. Our
motivation of this paper is to study the generalized resolvent problem for the Stokes
equation with Robin boundary condition by extending the method due to Farwig and
Sohr, so that our argument in this paper is completely different from the argument
due to [8], [9] and [10] but rather closed to that due to [5]. When Ω is a half space
and g = h = 0, Saal [15] studied (1.1) and he proved not only the resolvent estimate
but also H∞ calculus. Miyakawa [13] and Akiyama, Kasai, Shibata and Tsutsumi [1]
studied the Stokes resolvent problem with some first order boundary condition like ν ·
u = 0 and (rotu) × ν = 0 on Γ which arises from the mathematical theory of the
magnetohydrodynamics.

Concerning the non-stationary Navier-Stokes equation with Robin boundary condi-
tion, Itoh, Tanaka and Tani [12] proved a locally in time unique existence theorem in
the Hölder space framework. When Ω is a bounded domain, Steiger [20] studied it in the
Lq (1 < q < ∞) framework and he proved a locally in time unique existence theorem of
solutions with very irregular initial data. He used Giga’s result [8] to show the generation
of the Stokes semigroup, so that he treated only the case where Ω is bounded. By using
our result obtained in this paper, we can show the generation of Stokes semigroup even
when Ω is an exterior domain, and therefore Steiger’s result seems to hold when Ω is an
exterior domain.

In order to state our main results, at this point we outline our notation. Given
vector or matrix M , tM denotes the transpose of M . Given Banach space X with norm
‖ · ‖X , we set

Xn = {v = t(v1, . . . , vn) | vj ∈ X}, ‖v‖X =
n∑

j=1

‖vj‖X .

To denote the inner-product in Rn, we use the two symbols: x · y = 〈x, y〉 =
∑n

j=1 xjyj

for every x = (x1, . . . , xn) and y = (y1, . . . , yn) ∈ Rn. F = (Fjk) means the n×n matrix
whose (j, k) component is Fjk. For the differentiation of a scalar function p, an n-vector
of functions u = t(u1, . . . , un) and an n × n matrix of functions F = (Fjk), we use the
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following symbols:

∂jp = ∂p/∂xj , ∇p = t(∂1p, . . . , ∂np), ∇u = (∂juk),

∇2u = (∂j∂ku`), Div F = t

( n∑

j=1

∂jF1j , . . . ,
n∑

j=1

∂jFnj

)
.

For any domain D in Rn with boundary ∂D, the inner products (·, ·)D and (·, ·)∂D are
defined by the formulas:

(u, v)D =
∫

D

u(x) · v(x) dx, (u, v)∂D =
∫

∂D

u(x) · v(x) dσ

where dσ denotes the surface element of ∂D and v the complex conjugate of v. Lq(D) and
Wm

q (D) (1 5 q 5 ∞) denote the usual Lebesgue and Sobolev spaces of functions defined
on D with norms ‖ · ‖

Lq(D) and ‖ · ‖
W m

q (D) , respectively. We denote the closure of C∞0 (D)
in Wm

q (D) by Wm
q,0(D) and the dual space of W 1

q′,0(D) by W−1
q (D) with q′ = q/(q − 1).

Set

BL = {x ∈ Rn | |x| < L}, SL = {x ∈ Rn | |x| = L},
DL,L+1 = {x ∈ Rn | L 5 |x| 5 L + 1}.

Let R be a fixed positive number such as BR−5 ⊃ Γ. Set ΩL = Ω∩BL for L > R− 5. If
Ω is bounded, then ΩL = Ω when L > R− 5.

As a space of pressure terms, we introduce the homogeneous space Ŵ 1
q (Ω) that is

defined by the formula:

Ŵ 1
q (Ω) =

{
p ∈ Lq,loc(Ω) | ∇p ∈ Lq(Ω)

}

where we have to identify two elements differing by a constant. When Ω is bounded,
Lq,loc(Ω) may be replaced by Lq(Ω). Moreover, we may fix a representative u ∈ Ŵ 1

q (Ω)
by

∫
Ω

u dx = 0. Therefore, in view of Poincaré’s inequality we may identify

Ŵ 1
q (Ω) =

{
p ∈ W 1

q (Ω) |
∫

Ω

p(x) dx = 0
}

provided Ω is bounded. Let

Ŵ−1
q (Ω) =

[
Ŵ 1

q′(Ω)
]∗

be the dual space of Ŵ 1
q′(Ω) (q′ = q/(q − 1) and 1 < q < ∞) endowed with the norm:

‖g‖
Ŵ
−1
q (Ω)

= sup
0 6=v∈Ŵ 1

q′ (Ω)

|[g, v]|/‖∇v‖
L

q′ (Ω)
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where [·, ·] denotes the duality of Ŵ−1
q (Ω) and Ŵ 1

q′(Ω). When D is one of Rn, Rn
+ and a

bent half space that will be defined in Section 4 below, Ŵ 1
q (D) and Ŵ−1

q (D) are defined
in the same manner as above. Here and hereafter, Rn

+ denotes the half space that is
defined by

Rn
+ =

{
x = (x′, xn) ∈ Rn | x′ = (x1, . . . , xn−1) ∈ Rn−1, xn > 0

}
.

Set

Ẇ 1
q (ΩR) =

{
W 1

q (Ω) if Ω is a bounded domain
{
p ∈ W 1

q (ΩR) | p|
SR

= 0
}

if Ω is an exterior domain

and let Ẇ−1
q (ΩR) be the dual space of Ẇ 1

q′(ΩR) endowed with the norm:

‖g‖
Ẇ
−1
q (ΩR)

= sup
0 6=v∈Ẇ 1

q′ (ΩR)

|[g, v]|/‖v‖
Ẇ1

q′ (ΩR)
.

As a space of data for the divergence equation: div u = g in (1.1), we introduce the space
Wq,div(Ω) that is defined by

Wq,div(Ω) =





{
g ∈ W 1

q (Ω) | ∫
Ω

g(x) dx = 0 |} if Ω is a bounded domain
{
g = div g̃ | g ∈ W 1

q (Ω), g̃ ∈ Lq(Ω)n, ν · g̃|Γ = 0
}

if Ω is an exterior domain.

We have

‖g‖
Ŵ
−1
q (Ω)

5
{

C‖g‖
Lq(Ω) if Ω is a bounded domain

‖g̃‖
Lq(Ω) if Ω is an exterior domain

(1.3)

for every g ∈ Wq,div(Ω) where C is some positive constant arising from Poincaré’s in-
equality. A useful characterization of the space of data for the divergence equation was
given by Farwig-Sohr [5]. As a space of boundary forces, we introduce the space W j

q,∂(Ω)
(j = 1, 2) that is defined by

W j
q,∂(Ω) =

{
h ∈ W j

q (Ω)n | ν · h|Γ = 0
}
.

To state the Helmholtz decomposition, we introduce the following spaces:

Jq(Ω) = the closure of the space C∞0,σ(Ω) in Lq(Ω)n

C∞0,σ(Ω) =
{
u ∈ C∞0 (Ω)n | div u = 0 in Ω

}

Gq(Ω) =
{∇p | p ∈ Ŵ 1

q (Ω)
}
.
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Then, it is well-known that there holds the Helmholtz decomposition: Lq(Ω)n = Jq(Ω)⊕
Gq(Ω), ⊕ being the direct sum (cf. [6], [5], [7], [14] and [18] and references therein).
Namely, given any u ∈ Lq(Ω)n, there exist v ∈ Jq(Ω) and p ∈ Ŵ 1

q (Ω) uniquely such that
u = v +∇p. For the later use, we define the solenoidal projection Sq and the gradient
projection Gq by the relations: Squ = v and Gqu = ∇p, respectively. For the resolvent
parameter λ, we introduce the set Σε defined by the formula:

Σε = {λ ∈ C \ {0} | | arg λ| 5 π − ε}, 0 < ε < π.

For the notational simplicity, we set

Iλ(u, p, D) = |λ|‖u‖
Lq(D) + |λ|1/2‖∇u‖

Lq(D) + ‖∇2u‖
Lq(D) + ‖∇p‖

Lq(D)

Dλ(f, g, h,D) = ‖f‖
Lq(D) + |λ|‖g‖

Ŵ
−1
q (D)

+ |λ|1/2‖(g, h)‖
Lq(D) + ‖∇(g, h)‖

Lq(D)

which are used to state our generalized resolvent estimate. By C we denote a generic
constant and Ca,b,... denotes the constant depending on the quantities a, b, . . . . The
constants C and Ca,b,... may change from line to line.

Throughout the paper we assume that the following two conditions hold:

Assumption 1.1. Assume that β > 0 and that Γ is a C2,1 compact hypersurface.

Since λ = 0 is resolvent for the Stokes operator in any bounded domain with nonslip
boundary condition (cf. [5]), in our case it is also natural to consider the solvability of
the problem (1.1) when Ω is bounded and λ = 0. Concerning this topics, we need some
geometrical assumption on Ω when α = 0.

Definition 1.2. By a hyperline in Rn we mean that an affine subspace of codi-
mension two.

Ω is said to be rotationally symmetric with respect to a hyperline L if for any
a ∈ L the two-dimensional section L⊥a ∩ Ω of Ω by L⊥a is, if nonempty, symmetric
with respect to a, where L⊥a denotes the plane through a and orthogonal to L.
Moreover, Ω is said to be rotationally symmetric if there exists a hyperline L such
that Ω is rotationally symmetric with respect to L.

Two theorems which follow are our main results.

Theorem 1.3. Let 1 < q < ∞.

(1) Let 0 < ε < π/2 and δ > 0. Then, for every λ ∈ C \ (−∞, 0], f ∈ Lq(Ω)n,
g ∈ Wq,div(Ω) and h ∈ W 1

q,∂(Ω) the problem (1.1) admits a unique solution (u, p) ∈
W 2

q (Ω)n × Ŵ 1
q (Ω) which satisfies the estimate:

Iλ(u, p, Ω) 5 Cε,q,δDλ(f, g, h,Ω) (1.4)

provided λ ∈ Σε and |λ| = δ.
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(2) Let Ω be a bounded domain. Assume that Ω is not rotationally symmetric. Then,
there exists a λ0 > 0 depending only on Ω such that for every λ ∈ {λ ∈ C | |λ| 5
λ0}, f ∈ Lq(Ω)n, g ∈ Wq,div(Ω) and h ∈ W 1

q,∂(Ω) the problem (1.1) admits a
unique solution (u, p) ∈ W 2

q (Ω)n × Ŵ 1
q (Ω) which satisfies the estimate:

‖u‖
W2

q (Ω)
+ ‖p‖

W1
q (Ω)

5 Cq

(
‖f‖

Lq(Ω) + ‖(g, h)‖
W1

q (Ω)

)
(1.5)

provided λ ∈ C with |λ| 5 λ0.

Theorem 1.4. Let 1 < q < ∞ and 0 < ε < π/2. Let us consider the equation
(1.1) with f ∈ Jq(Ω), g = 0 and h = 0. If (u, p) ∈ W 2

q (Ω)n × Ŵ 1
q (Ω) is a solution to

(1.1), then we have

|λ|‖u‖
W
−1
q (ΩR)

+ ‖p‖
Lq(ΩR) 5 Cε,q|λ|−(1/2)(1−(1/q))‖f‖

Lq(Ω) (1.6)

provided that λ ∈ Σε and |λ| = 1.

Remark 1.5.

(1) We call (1.1) the generalized resolvent problem when all of f , g and h are non-
trivial, while we call (1.1) the resolvent problem when only f is non-trivial.

(2) When the boundary condition is the non-slip one (u = 0 on Γ), the theorem
corresponding to Theorem 1.3 was proved by Farwig and Sohr [5] under only
the assumption that Γ ∈ C1,1. But, in our case we can not avoid the condition:
Γ ∈ C2,1 as far as we use the transformation (4.5) in Section 4 below that keeps the
divergence condition and what the normal component of the velocity field vanishes
on the boundary unchanged at the same time.

(3) When Ω is a bounded domain in R3, the assertion (2) of Theorem 1.3 was proved
by Solonnikov-Ščadilov [19]. The point is Korn’s first inequality. In our proof, we
use some generalization of Korn’s first inequality due to Ito [11].

(4) The estimate for the pressure term given in Theorem 1.4 also holds even if the
boundary condition is the non-slip one, which Farwig and Sohr [5] did not mention.
The estimate in Theorem 1.4 will play an important role to show uniform Lp-Lq

decay estimates when Ω is an exterior domain, which will be shown elsewhere.

The organization of the paper is as follows: Using the Fourier multiplier theorem,
we prove the estimates of Iλ(u, p, Rn) and Iλ(u, p, Rn

+) in Section 2 and Section 3,
respectively. The half space problem has been studied by Saal [15] when g = 0 and
h = 0. However, we have to study essentially the case where all of f , g and h are non-
trivial, so that our solution formula is different from Saal’s one. Therefore, we give a
proof of estimates of solutions to the generalized resolvent problem in the half space. In
Section 4, we solve the generalized resolvent problem in a bent half space by transforming
the problem to the half space problem. Our assumption: Γ ∈ C2,1 arises only from this
transformation. In Section 5, first of all using the usual localization procedure and the
results obtained in Section 2 and Section 4 we show the a priori estimate:



A resolvent estimate of Stokes system with Robin boundary condition 475

Iλ(u, p, Ω) 5 C
{

Dλ(f, g, h,Ω) + ‖p‖
Lq(ΩR) + |λ|‖u‖

Ẇ
−1
q (ΩR)

+ ‖∇u‖
Lq(ΩR) + |λ|1/2‖u‖

Lq(ΩR)

}
. (1.7)

In order to eliminate two perturbation terms: ‖p‖
Lq(ΩR) and |λ|‖u‖

Ẇ
−1
q (ΩR)

in (1.7) for

large |λ|, we use an estimate of solutions to the Neumann problem for the Laplace
operator in ΩR, while Farwig and Sohr used a compactness argument based on the
uniqueness of the Helmholtz decomposition. In fact, we show that

‖p‖
Lq(ΩR) 5 C

{
‖∇u‖

Lq(Γ) + ‖∇u‖
Lq(Ω) + ‖Gqf‖Lq(Ω) + |λ|‖g‖

Ŵ
−1
q (Ω)

}

|λ|‖u‖
Ẇ
−1
q (ΩR)

5 C
{‖(D(u), p)‖

Lq(Γ) + ‖(D(u), p)‖
Lq(ΩR) + ‖f‖

Lq(Ω)

}
. (1.8)

This is a key observation to eliminate the perturbation terms in the right hand side of
(1.7), which seems to be new. Combining (1.7) and (1.8), we can eliminate the pertur-
bation terms in (1.7) for large |λ|. As a by-product, we also have (1.6). When λ varies in
any compact set of Σε, we use a compactness argument based on the uniqueness of solu-
tions to (1.1) in order to eliminate the perturbation terms in the right hand side of (1.7).
In this way, we prove a priori estimates stated in (1.4), (1.5) and (1.6). In Section 6, we
prove the unique existence of solutions to (1.1) under the assumption that Ω is bounded.
We start with the unique existence of weak solutions to (1.1) in the L2 framework. And
then, by using the localization method and results obtained in Section 2 and Section 4,
we show that such weak solutions actually belong to W 2

q (Ω)n×Ŵ 1
q (Ω). Finally, we show

that such weak solutions satisfy the boundary condition. In the argument in Section 6
we essentially use the boundedness assumption of the domain Ω to show the existence of
the pressure term by using the idea due to Solonnikov and Ščadilov [19]. As Farwig and
Sohr did ([5, p. 630]), by the Riesz representation theorem and the de Rham theorem we
can show the existence of u ∈ W 1

2 (Ω)n and p ∈ Ŵ 1
2 (Ω) such that λu − Div T (u, p) = f

and div u = 0 in the distribution sense of Ω even when Ω is an exterior domain. This
observation is useful to treat the case where u = 0 on Γ. But, the boundary condition is
hidden in the weak formula of the equation in our case, because our boundary condition
is of first order. Therefore, from what u and p satisfy the equation in the distribution
sense we do not get any information whether u satisfies the boundary condition unlike the
non-slip condition case. This is the reason why our discussion about the unique existence
of solutions is different from that due to Farwig and Sohr. In Section 7, we prove the
unique existence of solutions under the assumption that Ω is an exterior domain. We can
not use the argument in Section 6, because the domain is unbounded. Therefore, in order
to show the existence of solutions we construct a parametrix by combining the solutions
of the whole space problem and those of the problem in ΩR by a cut-off technique.

2. A generalized Stokes resolvent problem in the whole space.

In this section, we consider the generalized Stokes resolvent problem in Rn:

λu−Div T (u, p) = f, div u = g in Rn. (2.1)
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By the Fourier transform and its inversion formula, the solutions u and p of (2.1) are
given by the formulas:

u = F−1
ξ

[
F̂ (ξ)

λ + |ξ|2
]
, F = f −∇p +∇g

p = −F−1
ξ

[
iξ · f̂(ξ)
|ξ|2

]
− λF−1

ξ

[
ĝ(ξ)
|ξ|2

]
+ 2g (2.2)

where F̂ (ξ), f̂(ξ) and ĝ(ξ) denote the Fourier transforms of F , f and g, respectively;
F−1

ξ denotes the Fourier inverse transform with respect to ξ variables.
The following theorem is a main result in this section.

Theorem 2.1. Let 1 < q < ∞ and 0 < ε < π/2. Then, for every λ ∈ Σε,
f ∈ Lq(Rn)n and g ∈ W 1

q (Rn) ∩ Ŵ−1
q (Rn), the problem (2.1) admits a unique solution

(u, p) ∈ W 2
q (Rn)n × Ŵ 1

q (Rn) which satisfies the estimate:

Iλ(u, p, Rn) 5 C
{
‖f‖

Lq(Rn) + |λ|‖g‖
Ŵ
−1
q (Rn)

+ ‖∇g‖
Lq(Rn)

}

for some constant C depending on ε, q and n only.

Proof. Noting that C∞0 (Rn) is dense in Ŵ 1
q (Rn) (cf. Lemma 5.1 in Farwig and

Sohr [5]), we have

(λu−Div T (u, p), v)
Rn = (u, λ̄v −Div T (v, θ))

Rn (2.3)

for every λ ∈ C, u ∈ W 2
q (Rn)n with div u = 0, v ∈ W 2

q′(R
n)n with div v = 0, p ∈

Ŵ 1
q (Rn) and θ ∈ Ŵ 1

q′(R
n), where q′ = q/(q− 1). Therefore, the uniqueness follows from

the existence of solutions to the dual problem. Since

|λ + |ξ|2| = (sin(ε/2))(|λ|+ |ξ|2) (2.4)

for every λ ∈ Σε and ξ ∈ Rn, applying the Mikhlin Fourier multiplier theorem (cf. Triebel
[21]) to the solution formula of u in (2.2), we have

|λ|‖u‖
Lq(Rn) + |λ|1/2‖∇u‖

Lq(Rn) + ‖∇2u‖
Lq(Rn) 5 Cε,q,n‖F‖Lq(Rn)

5 Cε,q,n‖(f,∇(p, g))‖
Lq(Rn)

for every λ ∈ Σε.
To estimate ∇p, we write

∇p = F−1
ξ

[
ξ(ξ · f̂(ξ))

|ξ|2
]
− iλF−1

ξ

[
ξĝ(ξ)
|ξ|2

]
+ 2∇g. (2.5)
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The Lq boundedness of the first term of the right side of (2.5) follows from the Mikhlin
Fourier multiplier theorem immediately. To estimate the second term of the right side of
(2.5), we take a test function ϕ ∈ C∞0 (Rn) and observe the following formulas:

∣∣(F−1
ξ [ξĝ(ξ)|ξ|−2], ϕ

)
Rn

∣∣ =
∣∣(g, F−1

ξ [ξϕ̂(ξ)|ξ|−2]
)

Rn

∣∣

5 ‖g‖
Ŵ
−1
q (Rn)

∥∥∇F−1
ξ [ξϕ̂(ξ)|ξ|−2]

∥∥
L

q′ (Rn)
. (2.6)

Since

∥∥∇F−1
ξ [ξϕ̂(ξ)|ξ|−2]

∥∥
L

q′ (Rn)
5 Cn,q′‖ϕ‖L

q′ (Rn) (2.7)

as follows from the Mikhlin Fourier multiplier theorem, combining (2.6) and (2.7) we
have

∥∥F−1
ξ [ξĝ(ξ)|ξ|−2]

∥∥
Lq(Rn)

5 Cn,q‖g‖
Ŵ
−1
q (Rn)

.

Therefore, we have

‖∇p‖
Lq(Rn) 5 Cε,q,n

{
‖f‖

Lq(Rn) + |λ|‖g‖
Ŵ
−1
q (Rn)

+ ‖∇g‖
Lq(Rn)

}

which completes the proof of the theorem. ¤

3. A generalized resolvent problem for the Stokes equation in the half
space.

In this section, we consider the generalized resolvent problem in the half space Rn
+:

λu−Div T (u, p) = f, div u = g in Rn
+

ν · u = 0, Bα,β(u) = h on ∂Rn
+ (3.1)

where ∂Rn
+ = {(x′, 0) | x′ ∈ Rn−1} and Bα,β(u) = αu + β(D(u)ν − 〈D(u)ν, ν〉ν) with

ν = t(0, . . . , 0,−1). Since

D(u)ν − 〈D(u)ν, ν〉ν = −




∂1un + ∂nu1

...
∂n−1un + ∂nun−1

0




, (∂j = ∂/∂xj)

in the half space case, the boundary condition in (3.1) is written as follows:

un = 0, αuj − β∂nuj = hj (j = 1, . . . , n− 1) on ∂Rn
+. (3.2)
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As a compatibility condition, it is necessary to assume that ν · h = −hn = 0 on ∂Rn
+.

Set W 1
q,∂(Rn

+) = {h ∈ W 1
q (Rn

+)n | ν · h = 0 on ∂Rn
+}. The following theorem is a main

result in this section.

Theorem 3.1. Let 1 < q < ∞, δ > 0 and 0 < ε < π/2. Let λ ∈ C \ (−∞, 0],
f ∈ Lq(Rn

+)n, g ∈ W 1
q (Rn

+) ∩ Ŵ−1
q (Rn

+) and h ∈ W 1
q,∂(Rn

+) and assume that supp g is
compact. Then, the problem (3.1) admits a unique solution (u, p) ∈ W 2

q (Rn
+)n×Ŵ 1

q (Rn
+)

which satisfies the estimates:

Iλ(u, p, Rn
+) 5 Cε,δ

{
‖f‖

Lq(Rn
+) +‖∇(g, h)‖

Lq(Rn
+) + |λ|1/2‖(g, h)‖

Lq(Rn
+) + |λ|‖g‖Ŵ

−1
q (Rn

+)

}

provided that λ ∈ Σε and |λ| = δ, where Cε,δ is a positive constant depending on ε, δ, n

and q.

In what follows, we shall show Theorem 3.1. We start with the following lemma, by
which (3.1) will be reduced to the divergence free case.

Lemma 3.2. Let 1 < q < ∞ and g ∈ W 1
q (Rn

+)∩ Ŵ−1
q (Rn

+). Assume that supp g is
compact. Then, there exists a v ∈ W 2

q (Rn
+)n such that div v = g in Rn

+ and vn = 0 on
∂Rn

+.
Moreover, v satisfies the following estimates:

‖v‖
Lq(Rn

+) 5 Cq‖g‖
Ŵ
−1
q (Rn

+)
, ‖∇j+1v‖

Lq(Rn
+) 5 Cq‖∇jg‖

Lq(Rn
+) (j = 0, 1).

Proof. Let E(x) be a fundamental solution of the Laplace operator ∆ given by
the formula: E(x) = e(|x|), where e(r) is a function such that e(r) = cnr−(n−2) for n = 3
and c2 log r for n = 2 with some constant cn depending on n. Since supp g is compact,
setting

V (x) =
∫

Rn
+

(E(x− y) + E(x− y∗))g(y)dy = (E ∗ ge)(x)

where y = (y′, yn) and y∗ = (y′,−yn); and ge is the even extension of g to the whole
space defined by the formula: ge(x) = g(x) for xn > 0 and ge(x) = g(x′,−xn) for
xn < 0. We see easily that V ∈ W 1

q,loc(R
n
+), ‖∇2V ‖

Lq(Rn
+) 5 C‖g‖

Lq(Rn
+) , ‖∇3V ‖

Lq(Rn
+) 5

C‖∇g‖
Lq(Rn

+) and ∂nV = 0 on ∂Rn
+. To estimate ‖∇V ‖

Lq(Rn
+) , we take ϕ ∈ C∞0 (Rn

+)
arbitrarily and observe that (∇V, ϕ)

Rn
+

= (g, (∇E)∗ϕe)
Rn

+
, where ϕe is the even extension

of ϕ to the whole space. Therefore, we have

∣∣(∇V, ϕ)
Rn

+

∣∣ 5 ‖g‖
Ŵ
−1
q (Rn

+)
‖(∇2E) ∗ ϕe‖

L
q′ (Rn

+) 5 C‖g‖
Ŵ
−1
q (Rn

+)
‖ϕ‖

L
q′ (Rn

+)

which implies that ‖∇V ‖
Lq(Rn

+) 5 C‖g‖
Ŵ
−1
q (Rn

+)
. If we set v = ∇V = (∂1V, . . . , ∂nV ),

then v satisfies the required properties, which completes the proof of the lemma. ¤
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We set u = v+w in (3.1) and (3.2), and then w and p satisfy the following equation:

λw −Div T (w, p) = f − λv + Div D(v), div w = 0 in Rn
+

wn = 0, αwj − β∂nwj = hj − (αvj − β∂nvj) (j = 1, . . . , n− 1) on ∂Rn
+. (3.3)

Set F = f − λv + Div D(v) and F ∗(x) = (F e
1 (x), . . . , F e

n−1(x), F o
n(x)), where F o

n is the
odd extension of Fn to the whole space defined by the formulas: F o

n(x) = Fn(x) for
xn > 0 and F o

n(x) = −Fn(x′, xn) for xn < 0. Let (U,Φ) be a solution to the whole space
problem:

λU −Div T (U,Φ) = F ∗, div U = 0 in Rn. (3.4)

By Theorem 2.1 and Lemma 3.2, we have U ∈ W 2
q (Rn)n, Φ ∈ Ŵ 1

q (Rn) and

Iλ(U,Φ,Rn) 5 Cε,q,n‖F ∗‖Lq(Rn)

5 Cε,q,n

{
‖f‖

Lq(Rn
+) + |λ|‖g‖

Ŵ
−1
q (Rn

+)
+ ‖∇g‖

Lq(Rn
+)

}
. (3.5)

Moreover, we see easilty that

Un = 0 on ∂Rn
+. (3.6)

We set w = U + z and p = Φ + θ, and then it follows from (3.3), (3.4) and (3.6) that
(z, θ) satisfies the equations:

λz −Div T (z, θ) = 0, div z = 0 in Rn
+

zn = 0, αzj − β∂nzj = Hj (j = 1, . . . , n− 1) on ∂Rn
+ (3.7)

where we have set

Hj = hj − (αvj − β∂nvj)− (αUj − β∂nUj).

By Lemma 3.2 and (3.5) we see that

‖∇Hj‖Lq(Rn
+) + |λ|1/2‖Hj‖Lq(Rn

+) 5 CδDλ

(
f, g, h,Rn

+

)
(3.8)

provided that λ ∈ Σε and |λ| = δ.
Now, we shall show the following theorem.

Theorem 3.3. Let 1 < q < ∞ and 0 < ε < π/2. Then, the equation (3.7) admits
a solution (z, θ) ∈ W 2

q (Rn
+)n × Ŵ 1

q (Rn
+) which satisfies the estimate: Iλ(z, θ, Rn

+) 5
CεDλ(H), where we have set Dλ(H) = |λ|1/2‖H‖

Lq(Rn
+) + ‖∇H‖

Lq(Rn
+) .
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Since the uniqueness follows from the existence theorem of the dual problem, from
Theorem 3.3, (3.8), (3.5) and Lemma 3.2 we have Theorem 3.1. Therefore, we shall show
Theorem 3.3 in what follows.

First of all, we shall derive the solution formula of (3.7). For this purpose, applying
the partial Fourier transform with respect to x′ to (3.7), we have a system of ordinary
differential equations:

(λ + |ξ′|2)Zj(xn)− ∂2
nZj(xn) + iξjΘ(xn) = 0 xn > 0

(λ + |ξ′|2)Zn(xn)− ∂2
nZn(xn) + ∂nΘ(xn) = 0 xn > 0

n−1∑

j=1

iξjZj(xn) + ∂nZn(xn) = 0 xn > 0

Zn(0) = 0, αZj(0)− β(∂nZj)(0) = Ĥj(ξ′, 0) (3.9)

for j = 1, . . . , n− 1, where we have set Zj(xn) = Fx′ [zj ](ξ′, xn), Θ(xn) = Fx′ [θ](ξ′, xn),
Ĥj(ξ′, 0) = Fx′ [Hj ](ξ′, 0); and Fx′ [k](ξ′, xn) denotes the partial Fourier transform of
k(x) with respect to x′ that is defined by the formula:

Fx′ [k](ξ′, xn) =
∫

Rn−1
e−ix′·ξ′k(x)dx′, x′ = (x1, . . . , xn−1), ξ′ = (ξ1, . . . , ξn−1). (3.10)

To solve (3.9), we set Zj = Pje
−Axn + Qje

−Bxn and Θ = Re−Bxn with A =
√

λ + |ξ′|2
and B = |ξ′|. Inserting these formulas into (3.9) implies that

(A2 −B2)Qj + iξjR = 0, (A2 −B2)Qn −RB = 0

n−1∑

j=1

iξjPj − PnA = 0,

n−1∑

j=1

iξjQj −QnB = 0

Pn + Qn = 0, α(Pj + Qj) + β(APj + BQj) = Ĥj(ξ′, 0)

for j = 1 . . . , n− 1. Solving this system of linear equations, we have

Zj(xn) =
e−Axn

α + βA
Ĥj(ξ′, 0) +

α + βB

α + βA

ξj

∑n−1
k=1 ξkĤk(ξ′, 0)

(A−B)(α + β(A + B))B
e−Axn

− ξj

∑n−1
k=1 ξkĤk(ξ′, 0)

(A−B)(α + β(A + B))B
e−Bxn

=
e−Axn

α + βA
Ĥj(ξ′, 0)− β

α + βA

e−Axnξj

(α + β(A + B))B

n−1∑

k=1

ξkĤk(ξ′, 0)

+
1

(α + β(A + B))B
e−Axn − e−Bxn

A−B
ξj

n−1∑

k=1

ξkĤk(ξ′, 0)
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Zn(xn) =
i

α + β(A + B)
e−Axn − e−Bxn

A−B

n−1∑

k=1

ξkĤk(ξ′, 0)

Θ(xn) =
−i(A + B)

(α + β(A + B))B
e−Bxn

n−1∑

k=1

ξkĤk(ξ′, 0).

Set

Mλ(ξ′, xn) =
e−Axn − e−Bxn

A−B
.

Using the identities:

a(xn)b(0) = −
∫ ∞

0

∂

∂yn
[a(xn + yn)b(yn)]dyn

= −
∫ ∞

0

(∂na)(xn + yn)b(yn)dyn −
∫ ∞

0

a(xn + yn)(∂nb)(yn)dyn;

∂nMλ(ξ′, xn) = −e−Axn −BMλ(ξ′, xn) (3.11)

denoting the inverse partial Fourier transform with respect to ξ′ by F−1
ξ′ , writing

Bλ(ξ′) = A =
√

λ + |ξ′|2 and recalling that B = |ξ′|, finally we arrive at the formu-
las:

zj(x) =
∫ ∞

0

F−1
ξ′

[
e−Bλ(ξ′)(xn+yn)

α + βBλ(ξ′)
(Bλ(ξ′)− ∂n)Ĥj(ξ′, yn)

]
(x′)dyn

+
n−1∑

k=1

∫ ∞

0

F−1
ξ′

[
ξjξke−Bλ(ξ′)(xn+yn)

(α+βBλ(ξ′))(α+β(Bλ(ξ′)+|ξ′|))|ξ′| (α+β∂n)Ĥk(ξ′, yn)
]
(x′)dyn

+
n−1∑

k=1

∫ ∞

0

F−1
ξ′

[
ξjξkMλ(ξ′, xn + yn)

(α + β(Bλ(ξ′) + |ξ′|))|ξ′| (|ξ
′| − ∂n)Ĥk(ξ′, yn)

]
(x′)dyn

zn(x) =
n−1∑

k=1

∫ ∞

0

F−1
ξ′

[
iξke−Bλ(ξ′)(xn+yn)

α + β(Bλ(ξ′) + |ξ′|)Ĥk(ξ′, yn)
]
(x′)dyn

+
n−1∑

k=1

∫ ∞

0

F−1
ξ′

[
iξkMλ(ξ′, xn + yn)
α + β(Bλ(ξ′) + |ξ′|) (|ξ′| − ∂n)Ĥk(ξ′, yn)

]
(x′)dyn

θ(x) =
n−1∑

k=1

∫ ∞

0

F−1
ξ′

[
i(|ξ′|+ Bλ(ξ′))ξke−|ξ

′|(xn+yn)

(α + β(Bλ(ξ′) + |ξ′|))|ξ′| (∂n − |ξ′|)Ĥk(ξ′, yn)
]
(x′)dyn.

(3.12)

In order to estimate zj and θ, we use the following two lemmas.
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Lemma 3.4. Let 0 < ε < π/2. Then, there exist constants c1 and c2 depending on
ε such that

c1(|λ|1/2 + |ξ′|) 5 Re Bλ(ξ′) 5 c2(|λ|1/2 + |ξ′|) (3.13)

for every λ ∈ Σε and ξ′ ∈ Rn−1.
Moreover, we have the following estimates:

∣∣∂α′
ξ′ Bλ(ξ′)s

∣∣ 5 Cα′,s,ε(|λ|1/2 + |ξ′|)s−|α′| (3.14)
∣∣∂α′

ξ′ |ξ′|s
∣∣ 5 Cα′,s|ξ′|s−|α

′| (3.15)
∣∣∂α′

ξ′ e−Bλ(ξ′)xn
∣∣ 5 Cα′,ε(|λ|1/2 + |ξ′|)−|α′|e−(c1/2)(|λ|1/2+|ξ′|)xn (3.16)

∣∣∂α′
ξ′ e−|ξ

′|xn
∣∣ 5 Cα′ |ξ′|−|α

′|e−(1/2)|ξ′|xn (3.17)
∣∣∂α′

ξ′ [|ξ′|Mλ(ξ′, xn)]
∣∣ 5 Cα′,ε|ξ′|−|α

′|e−d|ξ′|xn (3.18)
∣∣∂α′

ξ′ (α + βBλ(ξ′))−1
∣∣ 5 Cα′,ε(|λ|1/2 + |ξ′|)−1−|α′| (3.19)

∣∣∂α′
ξ′ (α + β(Bλ(ξ′) + |ξ′|))−1

∣∣ 5 Cα′,ε|ξ′|−1−|α′| (3.20)

for every α′ ∈ Nn−1
0 , xn > 0, ξ′ ∈ Rn−1, λ ∈ Σε and s ∈ R, where Cα′,s,ε and Cα′,ε are

positive constants independent of xn, ξ′, and λ; and we have set d = min(1, c1)/2.

Lemma 3.5. Let 0 < ε < π/2 and 1 < q < ∞. (1) Let m1(λ, ξ′) be a function
defined on Σε × (Rn−1 \ {0}) such that

∣∣∂α′
ξ′ m1(λ, ξ′)

∣∣ 5 Cα′,ε|λ|1/2(|λ|1/2 + |ξ′|)−|α′| (3.21)

for any α′ ∈ Nn−1
0 , λ ∈ Σε and ξ′ ∈ Rn−1. If we define the operator K1(λ) by the

formula:

K1(λ)[g](x) =
∫ ∞

0

F−1
ξ′

[
m1(λ, ξ′)e−Bλ(ξ′)(xn+yn)ĝ(ξ′, yn)

]
(x′) dyn

then we have

‖K1(λ)[g]‖
Lq(Rn

+) 5 Cε‖g‖Lq(Rn
+)

for any λ ∈ Σε and g ∈ Lq(Rn
+). Here and hereafter, we write ĝ(ξ′, xn) = Fx′ [g(·, xn)](ξ′)

(cf. (3.10)).
(2) Let m2(λ, ξ′) be a function defined on Σε × (Rn−1 \ {0}) such that

∣∣∂α′
ξ′ m2(λ, ξ′)

∣∣ 5 Cα′,ε|ξ′|1−|α
′| (3.22)

for any α′ ∈ Nn−1
0 , λ ∈ Σε and ξ′ ∈ Rn−1. If we define the operators K2(λ), K3(λ) and
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K4(λ) by the formulas:

K2(λ)[g](x) =
∫ ∞

0

F−1
ξ′

[
m2(λ, ξ′)e−Bλ(ξ′)(xn+yn)ĝ(ξ′, yn)

]
(x′)dyn

K3(λ)[g](x) =
∫ ∞

0

F−1
ξ′

[
m2(λ, ξ′)e−|ξ

′|(xn+yn)ĝ(ξ′, yn)
]
(x′)dyn

K4(λ)[g](x) =
∫ ∞

0

F−1
ξ′

[
m2(λ, ξ′)|ξ′|Mλ(ξ′, xn + yn)ĝ(ξ′, yn)

]
(x′)dyn

then we have

‖Kj(λ)[g]‖
Lq(Rn

+) 5 Cε‖g‖Lq(Rn
+) , j = 2, 3, 4

for any λ ∈ Σε and g ∈ Lq(Rn
+).

A proof of Lemma 3.4. Set Bλ(ξ′) = |λ + |ξ′|2|1/2eiθ. Since −π + ε 5 arg(λ +
|ξ′|2) 5 π − ε for λ ∈ Σε, we see that −(π − ε)/2 5 θ 5 (π − ε)/2, and therefore by (2.4)
we have (3.13) immediately.

To prove (3.14), we set f(t) = ts/2 and observe that

∣∣∂α′
ξ′ Bλ(ξ′)s

∣∣ 5 Cα′

|α′|∑

`=1

∣∣f (`)(Bλ(ξ′)2)
∣∣ ∑

α′1+···+α′
`
=α′

|α′
i
|=1

∣∣∂α′1
ξ′ Bλ(ξ′)2

∣∣ · · · ∣∣∂α′`
ξ′ Bλ(ξ′)2

∣∣.

Since ∂α′
ξ′ Bλ(ξ′)2 = ∂α′

ξ′ |ξ′|2, by (3.13) we have

∣∣∂α′
ξ′ Bλ(ξ′)s

∣∣ 5 Cα′,s

|α′|∑

`=1

(|λ|1/2 + |ξ′|)s−2`
∑

k+2(`−k)=|α′|
05k5`

|ξ′|k

= Cα′,s

|α′|∑

`=1

(|λ|1/2 + |ξ′|)s−2`(|λ|1/2 + |ξ′|)2`−|α′|

5 Cα′,s(|λ|1/2 + |ξ′|)s−|α′|

which shows (3.14). Analogously, we can show (3.15).
To show (3.16), we set f(t) = e−txn and observe that

∣∣∂α′
ξ′ e−Bλ(ξ′)xn

∣∣ 5 Cα′

|α′|∑

`=1

∣∣f (`)(Bλ(ξ′))
∣∣ ∑

α′1+···+α′
`
=α′

|α′
i
|=1

∣∣∂α′1
ξ′ Bλ(ξ′)

∣∣ · · · ∣∣∂α′`
ξ′ Bλ(ξ′)

∣∣

By (3.13) and (3.14) we have
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∣∣∂α′
ξ′ e−Bλ(ξ′)xn

∣∣ 5 Cα′

|α′|∑

`=1

e−c1(|λ|1/2+|ξ′|)xnx`
n(|λ|1/2 + |ξ′|)`−|α′|

5 Cα′e
−(c1/2)(|λ|1/2+|ξ′|)xn(|λ|1/2 + |ξ′|)−|α′|

which shows (3.16). Analogously, we have (3.17).
To show (3.18), by the Taylor formula we write

|ξ′|Mλ(ξ′, xn) = −|ξ′|xn

∫ 1

0

e−((1−θ)|ξ′|+θBλ(ξ′))xndθ

Employing the same argument as in the proof of (3.16) and using (3.13), (3.14) and
(3.15), we have

∣∣∂α′
ξ′ e−((1−θ)|ξ′|+θBλ(ξ′))xn

∣∣

5 Cα′

|α′|∑

`=1

x`
ne−((1−θ)|ξ′|+c1θ(|λ|1/2+|ξ′|))xn

×
∑

α′1+···+α′
`
=α′

|α′
i
|=1

(
(1− θ)|ξ′|1−|α′1| + θ(|λ|1/2 + |ξ′|)1−|α′1|)

· · · ((1− θ)|ξ′|1−|α′`| + θ(|λ|1/2 + |ξ′|)1−|α′`|)

5 Cα′

|α′|∑

`=1

x`
ne−2d((1−θ)|ξ′|+θ(|λ|1/2+|ξ′|))xn((1− θ)|ξ′|+ θ(|λ|1/2 + |ξ′|))`|ξ′|−|α′|

5 Cα′e
−(2d/3)((1−θ)|ξ′|+θ(|λ|1/2+|ξ′|))xn |ξ′|−|α′| 5 Cα′e

−(2d/3)|ξ′|xn |ξ′|−|α′|

where 2d = min(1, c1). Therefore, by the Leibniz formula we have (3.18).
To estimate (3.19), we set f(t) = t−1 and observe that

∣∣∂α′
ξ′ (α + βBλ(ξ′))−1

∣∣

5 Cα′

|α′|∑

`=1

|f (`)(α + βBλ(ξ′))|
∑

α′1+···+α′
`

|α′
i
|=1

∣∣∂α′1
ξ′ (α + βBλ(ξ′))

∣∣ · · · ∣∣∂α′`
ξ′ (α + βBλ(ξ′))

∣∣

5 Cα′,ε

|α′|∑

`=1

(βc1(|λ|1/2 + |ξ′|))−(`+1)(β(|λ|1/2 + |ξ′|))`−|α′|

5 Cα′,ε(β(|λ|1/2 + |ξ′|))−1−|α′|

which shows (3.19). Since

∣∣(α + β(Bλ(ξ′) + |ξ′|))−1
∣∣ 5 (βc1(|λ|1/2 + |ξ′|))−1
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as follows from the fact: α = 0 and (3.13), by (3.14) and (3.15) we have (3.20). This
completes the proof of the lemma. ¤

To prove Lemma 3.5 we shall use the following two lemmas.

Lemma 3.6. Let 0 < ε < π/2. (1) Let m1(λ, ξ′) be the same function as in Lemma
3.5 and set

k1(λ, x) = F−1
ξ′

[
m1(λ, ξ′)e−Bλ(ξ′)xn

]
(x′).

Then, we have

|k1(λ, x)| 5 Cε|x|−n (3.23)

for any λ ∈ Σε and x ∈ Rn
+.

(2) Let m2(λ, ξ′) be the same function as in Lemma 3.5 and set

k2(λ, x) = F−1
ξ′

[
m2(λ, ξ′)e−Bλ(ξ′)xn

]
(x′)

k3(λ, x) = F−1
ξ′

[
m2(λ, ξ′)e−|ξ

′|xn
]
(x′)

k4(λ, x) = F−1
ξ′

[
m2(λ, ξ′)|ξ′|Mλ(ξ′, xn)

]
(x′).

Then, we have

|kj(λ, x)| 5 Cε|x|−n, j = 2, 3, 4 (3.24)

for any λ ∈ Σε and x ∈ Rn
+.

Lemma 3.7. Let 0 < ε < π/2. Let k(λ, x) be a function defined on Σε×Rn
+, which

satisfies the estimate:

|k(λ, x)| 5 L|x|−n (3.25)

for any x ∈ Rn
+ and λ ∈ Σε with some constant L independent of x and λ. Let Kλ be

the integral operator defined by the formula:

Kλ[g](x) =
∫

Rn
+

k(λ, x′ − y′, xn + yn)g(y)dy, x ∈ Rn
+.

Then, we have

‖Kλ[g]‖
Lq(Rn

+) 5 Cn,qL‖g‖Lq(Rn
+) (3.26)

for any g ∈ Lq(Rn
+).
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A proof of Lemma 3.5. Let kj(λ, x) be functions defined in Lemma 3.6, and
then the operators Kj(λ) defined in Lemma 3.5 are written as follows:

Kj(λ)[g](x) =
∫

Rn
+

kj(λ, x′ − y′, xn + yn)g(y)dy.

Therefore, applying Lemma 3.7 implies Lemma 3.5 immediately. ¤

Therefore, we shall prove Lemmas 3.6 and 3.7 to complete the proof of Lemma 3.5.

A proof of Lemma 3.6. To show (3.23), we use the identity:

n−1∑

j=1

xj

i|x′|2
∂

∂ξj
eix′·ξ′ = eix′·ξ′ . (3.27)

Applying (3.27) n times and using (3.14) and (3.21), we have

∣∣F−1
ξ′

[
m1(λ, ξ′)e−Bλ(ξ′)xn

]
(x′)

∣∣

5 Cn

∑

|α′|=n

∣∣∣∣
(

x′

i|x′|2
)α′ ∣∣∣∣

∫

Rn−1

∣∣∂α′
ξ′

[
m1(λ, ξ′)e−Bλ(ξ′)xn

]∣∣ dξ′

5 Cα′,n

|x′|n |λ|
1/2

∫

Rn−1
(|λ|1/2 + |ξ′|)−ndξ′. (3.28)

To proceed the estimate (3.28), we observe that

∫

Rn−1
(|λ|1/2 + |ξ′|)−ndξ′ 5 |λ|(1−n)/2

∫

|ξ′|5|λ|1/2
dξ′ + |λ|1/2

∫

|ξ′|=|λ|1/2
|ξ′|−ndξ′

5 Cn (3.29)

with some constant Cn independent of λ. Combining (3.28) and (3.29) we have

∣∣F−1
ξ′

[
m1(λ, ξ′)e−Bλ(ξ′)xn

]
(x′)

∣∣ 5 Cα′,n

|x′|n . (3.30)

On the other hand, by (3.13) and (3.28) we have

∣∣F−1
ξ′

[
m1(λ, ξ′)e−Bλ(ξ′)xn

]
(x′)

∣∣ 5 Cn|λ|1/2

∫

Rn−1
e−c1(|λ|1/2+|ξ′|)xndξ′

5 Cn|λ|1/2

(xn)n

∫

Rn−1
(|λ|1/2 + |ξ′|)−ndξ′ 5 Cn

(xn)n
(3.31)

with some constant Cn independent of λ, which combined with (3.30) implies (3.23).
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To show (3.24), we use the following lemma due to Shibata and Shimizu [16].

Lemma 3.8. Let B be a Banach space and | · |B its norm. Let α be a number > −n

and set α = N + σ − n where N is an integer and 0 < σ 5 1. Let f(ξ) be a function in
C∞(Rn \ {0}, B) such that

∂γ
ξ f(ξ) ∈ L1(Rn, B) for |γ| 5 N

|∂γ
ξ f(ξ)|B 5 Cγ |ξ|α−|γ| for every ξ 6= 0 and γ ∈ Nn

0

Set g(x) =
∫

Rn e−ix·ξf(ξ)dξ. Then, we have

|g(x)|B 5 Cn,α

(
max

|γ|5N+2
Cγ

)
|x|−(n+α)

for every x 6= 0, where Cn,α is a constant depending only on n and α.

By (3.16) and (3.22) we have

∣∣∂α′
ξ′

[
m2(λ, ξ′)e−Bλ(ξ′)xn

]∣∣ 5 Cα′,ε|ξ′|1−|α
′|e−(c1/2)|ξ′|xn (3.32)

and therefore applying Lemma 3.8 with α = 1 (replacing n by n− 1), we have

∣∣F−1
ξ′

[
m2(λ, ξ′)e−Bλ(ξ′)xn

]
(x′)

∣∣ 5 Cε|x′|−n.

On the other hand, by (3.13) and the change of variable: ξ′xn = η′, we have

∣∣F−1
ξ′

[
m2(λ, ξ′)e−Bλ(ξ′)xn

]
(x′)

∣∣

5 Cn

∫

Rn−1
|ξ′|e−c1|ξ′|xndξ′ =

Cn

(xn)n

∫

Rn−1
|η′|e−c1|η′| dη′.

Combining these estimates implies that |k2(λ, x)| 5 Cε|x|−n. Analogously, by (3.22),
(3.15), (3.18) and Lemma 3.8 we see that (3.24) holds for j = 3, 4, which completes the
proof of the lemma.

A proof of Lemma 3.7. By Minkowski’s inequality for integral, Young’s in-
equality and (3.25), we have

‖Kλ[g](·, xn)‖
Lq(Rn−1)

5 L

∫ ∞

0

[ ∫

Rn−1

∣∣∣∣
∫

Rn−1

|g(y′, yn)|
(|x′ − y′|2 + (xn + yn)2)n/2

dy′
∣∣∣∣
q

dx′
]1/q

dyn

= L

∫

Rn−1

dy′

(1 + |y′|2)n/2

∫ ∞

0

‖g(·, yn)‖
Lq(Rn−1)

xn + yn
dyn. (3.33)
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To proceed the estimate, we apply the Marchinkiewitz interpolation inequality to the
integral operator:

G[h](xn) =
∫ ∞

0

h(yn)
xn + yn

dyn.

In fact, by Hölder’s inequality we have

|G[h](xn)| 5
( ∫ ∞

0

dyn

(xn + yn)q′

)1/q′

‖h‖
Lq(R+)

=
( ∫ ∞

0

dt

(1 + t)q′

)1/q′

(xn)−1/q‖h‖
Lq(R+)

which implies that

sup
R=0

R µ({xn > 0 | |G[h](xn)| = R})1/q 5 (q − 1)1/q′‖h‖
Lq(R+)

where µ denotes the Lebesgue measure on R. Therefore, by the Marcinkiewitz interpo-
lation inequality G becomes a bounded linear operator on Lq(R+) for any 1 < q < ∞,
which applied to (3.33) implies (3.26). This completes the proof of Lemma 3.7. ¤

Now, by Lemmas 3.4 and 3.5 we shall show Theorem 3.3. First of all, we consider
the term:

w(x) =
∫ ∞

0

F−1
ξ′

[
ξkMλ(ξ′, xn + yn)

α + β(Bλ(ξ′) + |ξ′|) ĝ(ξ′, yn)
]
(x′)dyn, k = 1, . . . , n− 1

where ĝ(ξ′, xn) stands for one of ∂nĤj(ξ′, xn), Bλ(ξ′)Ĥj(ξ′, xn) and |ξ′|Ĥj(ξ′, xn). To
show that

|λ|‖w‖
Lq(Rn

+) 5 Cε‖g‖Lq(Rn
+) (3.34)

using the identity: λMλ(ξ′, xn) = (Bλ(ξ′) + |ξ′|)(e−Bλ(ξ′)xn − e−|ξ
′|xn) we write

λw(x) =
∫ ∞

0

F−1
ξ′

[
ξkA(ξ′, λ)(e−Bλ(ξ′)(xn+yn) − e−|ξ

′|(xn+yn))ĝ(ξ′, yn)
]
(x′)dyn

where we have set A(ξ′, λ) = (Bλ(ξ′) + |ξ′|)(α + β(Bλ(ξ′) + |ξ′|))−1. Since

∣∣∂α′
ξ′ [ξkA(ξ′, λ)]

∣∣ 5 Cα′,ε|ξ′|1−|α
′|

for every α′ ∈ Nn−1
0 , λ ∈ Σε and ξ′ ∈ Rn−1 as follows from Lemma 3.4, by Lemma 3.5

we have (3.34).
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To show that

|λ|1/2‖∇w‖
Lq(Rn

+) + ‖∇2w‖
Lq(Rn

+) 5 Cε‖g‖Lq(Rn
+) (3.35)

we write

|λ|1/2∂`w(x) =
∫ ∞

0

F−1
ξ′

[ |λ|1/2iξkξ`|ξ′|Mλ(ξ′, xn + yn)
(α + β(Bλ(ξ′) + |ξ′|))|ξ′| ĝ(ξ′, yn)

]
(x′)dyn

|λ|1/2∂nw(x) = −
∫ ∞

0

F−1
ξ′

[ |λ|1/2ξk(e−Bλ(ξ′)(xn+yn)+|ξ′|Mλ(ξ′, xn+yn))
α + β(Bλ(ξ′) + |ξ′|) ĝ(ξ′, yn)

]
(x′)dyn

∂`∂mw(x) = −
∫ ∞

0

F−1
ξ′

[
ξkξ`ξm|ξ′|Mλ(ξ′, xn + yn)
(α + β(Bλ(ξ′) + |ξ′|))|ξ′| ĝ(ξ′, yn)

]
(x′)dyn

∂`∂nw(x) = −i

∫ ∞

0

F−1
ξ′

[
ξkξ`(e−Bλ(ξ′)(xn+yn) + |ξ′|Mλ(ξ′, xn + yn))

α + β(Bλ(ξ′) + |ξ′|) ĝ(ξ′, yn)
]
(x′)dyn

∂2
nw(x) =

∫ ∞

0

F−1
ξ′

[
ξk(Bλ(ξ′) + |ξ′|)e−Bλ(ξ′)(xn+yn)

α + β(Bλ(ξ′) + |ξ′|) ĝ(ξ′, yn)
]
(x′)dyn −

n−1∑

`=1

∂2
` w(x)

where ` and m range from 1 to n− 1 and we have used (3.11). Since

∣∣∂α′
ξ′

[|λ|1/2ξkξ`{(α + β(Bλ(ξ′) + |ξ′|))|ξ′|}−1
]∣∣ 5 Cα′,ε|ξ′|1−|α

′|

∣∣∂α′
ξ′

[|λ|1/2ξk(α + β(Bλ(ξ′) + |ξ′|))−1
]∣∣ 5 Cα′,ε|ξ′|1−|α

′|

∣∣∂α′
ξ′

[
ξkξ`ξm{(α + β(Bλ(ξ′) + |ξ′|))|ξ′|}−1

]∣∣ 5 Cα′,ε|ξ′|1−|α
′|

∣∣∂α′
ξ′

[
ξkξ`(α + β(Bλ(ξ′) + |ξ′|))−1

]∣∣ 5 Cα′,ε|ξ′|1−|α
′|

∣∣∂α′
ξ′

[
ξk(Bλ(ξ′) + |ξ′|)(α + β(Bλ(ξ′) + |ξ′|))−1

]∣∣ 5 Cα′,ε|ξ′|1−|α
′|

for every α′ ∈ Nn−1
0 , λ ∈ Σε and ξ′ ∈ Rn−1 as follows from Lemma 3.4, by Lemma 3.5

we have (3.35).
Write

Bλ(ξ′)Ĥj(ξ′, xn) = λ(Bλ(ξ′)|λ|1/2)−1 ̂|λ|1/2Hj(ξ′, xn)− i
n−1∑

`=1

ξ`Bλ(ξ′)−1∂̂`Hj(ξ′, xn)

|ξ′|Ĥj(ξ′, xn) = −i
n−1∑

`=1

ξ`|ξ′|−1∂̂`Hj(ξ′, xn).

Since

∣∣∂α′
ξ′

[
λ(Bλ(ξ′)|λ|1/2)−1

]∣∣ 5 Cα′,ε|ξ′|−|α
′|,

∣∣∂α′
ξ′

[
ξ`Bλ(ξ′)−1

]∣∣ 5 Cα′,ε|ξ′|−|α
′|

∣∣∂α′
ξ′

[
ξ′`|ξ′|−1

]∣∣ 5 Cα′,ε|ξ′|−|α
′|
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for every α′ ∈ Nn−1
0 , λ ∈ Σε and ξ′ ∈ Rn−1 as follows from Lemma 3.4, by Fourier

multiplier theorem (cf. Triebel [21]) we have

‖g‖
Lq(Rn

+) 5 Cε

(
|λ|1/2‖Hj‖Lq(Rn

+) + ‖∇Hj‖Lq(Rn
+)

)

where g(x) = F−1
ξ′ [Bλ(ξ′)Ĥj(ξ′, xn)](x′) or F−1

ξ′ [|ξ′|Ĥj(ξ′, xn)](x′). Therefore, we have

|λ|‖w‖
Lq(Rn

+) + |λ|1/2‖∇w‖
Lq(Rn

+) + ‖∇2w‖
Lq(Rn

+)

5 Cε

(
|λ|1/2‖Hj‖Lq(Rn

+) + ‖∇Hj‖Lq(Rn
+)

)

for every λ ∈ Σε.
Employing the same arguments as above, by Lemmas 3.4 and 3.5 we can estimate

other terms in (3.12) and therefore we may omit the detailed proof of Theorem 3.3.

4. Resolvent problem of the Stokes system in a bent half space.

Let ω : Rn−1 → R be a bounded function in C2,1 class whose derivatives up to
third order are all essentially bounded on Rn−1. Let us define a bent half space H by
the formula:

H = {x = (x′, xn) ∈ Rn | xn > w(x′)}.

The boundary ∂H and the unit outer normal ν = ν(x′) to ∂H are given by the formulas:
∂H = {x = (x′, ω(x′)) | x′ ∈ Rn−1} and ν(x′) = (∇′ω,−1)/

√
1 + |∇′ω|2, respectively.

Here and hereafter, we set ∇′ω = (∂1ω, . . . , ∂n−1ω). In this section, we consider the
following generalized resolvent problem of the Stokes system in H:

λu−Div T (u, p) = f, div u = g in H

ν · u = 0, Bα,β(u) = h on ∂H. (4.1)

The following theorem is a main result of this section.

Theorem 4.1. Let 1 < q < ∞ and 0 < ε < π/2. Let λ ∈ Σε, f ∈ Lq(H)n,
g ∈ Ŵ 1

q (H)∩Ŵ−1
q (H) and h ∈ W 1

q (H)n. Assume that supp g is compact and that ν ·h = 0
on ∂H. Then, there exist constants λ0 = λ0(q, ε, ‖∇′ω‖B2(Rn−1)

) = 1 and K0 = K0(q, ε)
with 0 < K0 5 1 such that if ‖∇′ω‖

L∞(Rn−1)
5 K0 and |λ| = λ0, then the problem

(4.1) admits a unique solution (u, p) ∈ W 2
q (H)n × Ŵ 1

q (H) which satisfies the estimate:
Iλ(u, p, H) 5 CDλ(f, g, h,H) with some constant C = C(q, ε, ‖∇′ω‖

B2(Rn−1)
) > 0. Here

and hereafter, we set

‖∇′ω‖
Bk(Rn−1)

=
∑

15|α′|5k+1

∥∥∂α′
x′ ω

∥∥
L∞(Rn−1)

, k = 1, 2
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Proof. First of all, we shall make one remark concerning the boundary condition.
If u satisfies n boundary conditions:

ν · u = 0, αuk + β
n∑

`=1

Dk`(u)ν` − 〈D(u)ν, ν〉νk = hk, (k = 1, . . . , n− 1) (4.2)

on ∂H, then u satisfies the following condition automatically:

αun + β
n∑

`=1

Dn`(u)ν` − 〈D(u)ν, ν〉νn = hn (4.3)

on ∂H provided that ν · h = 0 on ∂H. In fact, by (4.2) and the facts that ν · h = 0 and
ν · ν = 1 on ∂H, we have

0 =
〈
αu + β(D(u)ν − 〈D(u)ν, ν〉ν), ν

〉

=
n−1∑

k=1

νkhk + νn

{
αun + β

( n∑

`=1

Dn`(u)ν` −
( n∑

`,m=1

D`m(u)ν`νm

)
νn

)}

= νn

{
− hn + αun + β

( n∑

`=1

Dn`(u)ν` −
( n∑

`,m=1

D`m(u)ν`νm

)
νn

)}
. (4.4)

Since νn = −(1 + |∇′ω|2)−1/2 6= 0, (4.4) implies (4.3).
Now, we shall prove the theorem. For this purpose, first of all we reduce the problem

(4.1) with (4.2) to the half space problem. Let us introduce the transformation ϕ : H →
R defined by y = ϕ(x) = (x′, xn − ω(x′)). Obviously, ϕ is a bijection whose Jacobian
is equal to 1. For a function or a vector field w defined on H, we define w̃(y) by the
formula: w̃(y) = w(x). Note that

∂

∂xj
=

∂

∂yj
− ∂ω

∂yj

∂

∂yn
(j = 1, . . . , n− 1),

∂

∂xn
=

∂

∂yn
.

Below, for the notational simplicity we write K0 = ‖∇′ω‖
L∞(Rn−1)

and Ki =
‖∇′ω‖

Bi(Rn−1)
(i = 1, 2). Since we shall choose K0 small enough, we may assume that

0 < K0 5 1 from the beginning.
Let (u, p) solve (4.1). If we set

vj(y) = ũj(y) (j = 1, . . . , n− 1), vn(y) = ũn(y)−
n−1∑

`=1

∂ω

∂y`
(y′)ũ`(u), θ(y) = p̃(y) (4.5)

we see that the problem (4.1) is reduced to the equation:

λv −Div T (v, θ) = f̃ + S(λ, v, θ), div v = g̃ in Rn
+

vn = 0, αvj − β∂nvj = (1 + |∇′ω|2)−1/2h̃j + Sα
∂ (v) on ∂Rn

+ (4.6)
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for j = 1, . . . , n − 1, where S(λ, v, θ) and Sα
∂ (v) are suitable functions which are linear

with respect to v, ∇v, ∇2v and ∇θ, and satisfy the following estimates:

‖S(λ, v, θ)‖
Lq(Rn

+) 5 C
{

K0

(|λ|‖v‖
Lq(Rn

+) + ‖∇2v‖
Lq(Rn

+) + ‖∇θ‖
Lq(Rn

+)

)

+ K1‖∇v‖
Lq(Rn

+) + K2‖v‖Lq(Rn
+)

}

∥∥Sα
∂ (v)

∥∥
Lq(Rn

+)
5 C

{
K0‖∇v‖

Lq(Rn
+) + (K1 + α)‖v‖

Lq(Rn
+)

}

∥∥∇Sα
∂ (v)

∥∥
Lq(Rn

+)
5 C

{
K0‖∇2v‖

Lq(Rn
+) + K1

(‖∇v‖
Lq(Rn

+) + α‖v‖
Lq(Rn

+)

)

+ K2‖v‖Lq(Rn
+)

}
. (4.7)

Given (v, θ) ∈ W 2
q (Rn

+)n × Ŵ 1
q (Rn

+), let (w, κ) be a solution to the equation:

λw −Div T (w, κ) = f̃ + S(λ, v, θ), div v = g̃ in Rn
+

wn = 0, αwj − β∂nwj = (1 + |∇′ω|2)−1/2h̃j + Sα
∂ (v) on ∂Rn

+

for j = 1, . . . , n − 1. Applying Theorem 3.1 and using (4.7), we see that (w, κ) exists
uniquely in W 2

q (Rn
+)n × Ŵ 1

q (Rn
+) and satisfies the estimate:

Iλ

(
w, κ, Rn

+

)
5 C

{
Dλ

(
f̃ , g̃, h̃, Rn

+

)
+ K0Iλ

(
v, θ, Rn

+

)

+ K1‖∇v‖
Lq(Rn

+) + ((α + K1)|λ|1/2 + K2)‖v‖Lq(Rn
+)

}
(4.8)

provided that |λ| = 1. Let us define the map G by the formula: G(v, θ) = (w, κ), and
then G is a linear map from W 2

q (Rn
+)n × Ŵ 1

q (Rn
+) into itself. If we choose K0 and λ0

in such a way that C(K0 + (2K1 + α)λ−1/2
0 + λ−1

0 K2) 5 1/2, then by (4.8) G becomes
a contraction map on W 2

q (Rn
+)n × Ŵ−1

q (Rn
+) provided that λ ∈ Σε and |λ| = λ0, which

shows the unique existence of solutions (v, θ) of the equation (4.6). Moreover, by (4.8)
we see that Iλ(v, θ, Rn

+) 5 2CDλ(f̃ , g̃, h̃, Rn
+), which completes the proof of Theorem

4.1. ¤

5. A priori estimate.

In this section, we shall show the following three theorems and Theorem 1.4.

Theorem 5.1. Let 1 < q < ∞ and 0 < ε < π/2. Let λ ∈ Σε, f ∈ Lq(Ω)n,
g ∈ W 1

q (Ω) ∩ Ŵ−1
q (Ω) and h ∈ W 1

q,∂(Ω). Let (u, p) ∈ W 2
q (Ω)n × Ŵ 1

q (Ω) solve the
equation (1.1). Then, there exists a constant λ1 = 1 depending on ε, q and Ω such that
Iλ(u, p, Ω) 5 Cq,Ω,εDλ(f, g, h,Ω) provided that |λ| = λ1.

Theorem 5.2. Let 1 < q < ∞ and 0 < ε < π/2. Assume that Ω is an exterior
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domain. Let K be a compact set in Σε. Let f ∈ Lq(Ω)n, g ∈ W 1
q (Ω) ∩ Ŵ−1

q (Ω) and
h ∈ W 1

q,∂(Ω). Assume that for λ ∈ K the uniqueness of solutions to (1.1) holds. If
(u, p) ∈ W 2

q (Ω)n × Ŵ 1
q (Ω) solves the equation (1.1) for λ ∈ K, then we have

‖u‖
W2

q (Ω)
+ ‖p‖

W1
q (Ω)

5 C
(
‖f‖

Lq(Ω) + ‖(g, h)‖
W1

q (Ω)
+ ‖g‖

Ŵ
−1
q (Ω)

)

where C is a constant that depends on q, ε, Ω and K.

Theorem 5.3. Let 1 < q < ∞ and 0 < ε < π/2. Assume that Ω is a bounded
domain. Let K be a compact set in C. Let f ∈ Lq(Ω)n, g ∈ Wq,div(Ω) and h ∈ W 1

q,∂(Ω).
Assume that for λ ∈ K the uniqueness of solutions to (1.1) holds. If (u, p) ∈ W 2

q (Ω)n ×
Ŵ 1

q (Ω) solves the equation (1.1) for λ ∈ K, then we have

‖u‖
W2

q (Ω)
+ ‖p‖

W1
q (Ω)

5 C
(
‖f‖

Lq(Ω) + ‖(g, h)‖
W1

q (Ω)

)

where C is a constant that depends on q, ε, Ω and K.

In order to prove Theorems 5.1, 5.2 and 5.3, we start with the following theorem.

Theorem 5.4. Let 1 < q < ∞, 0 < ε < π/2 and λ0 > 0. Let λ ∈ Σε, f ∈ Lq(Ω)n,
g ∈ W 1

q (Ω)∩Ŵ−1
q (Ω) and h ∈ W 1

q,∂(Ω). Let (u, p) ∈ W 2
q (Ω)n×Ŵ 1

q (Ω) solve the equation
(1.1). Then, there exists a constant C depending on λ0, ε, q and Ω such that

Iλ(u, p, Ω) 5 C
(
Dλ(f, g, h,Ω) + ‖∇u‖

Lq(ΩR)

+ |λ|1/2‖u‖
Lq(ΩR) + |λ|‖u‖

Ẇ
−1
q (ΩR)

+ ‖p‖
Lq(ΩR)

)
(5.1)

provided that |λ| = λ0.

Proof. Let (u, p) ∈ W 2
q (Ω)n × Ŵ 1

q (Ω) solve the equation (1.1). Given cut-off
function ϕ ∈ C∞(Rn), we have

λ(ϕu)−Div T (ϕu, ϕp) = fϕ, div (ϕu) = gϕ in Ω

ν · (ϕu) = 0, Bα,β(ϕu) = hϕ on Γ (5.2)

where we have set

(fϕ)i = ϕfi −
n∑

j=1

∂ϕ

∂xj
Dij(u)−

n∑

j=1

∂

∂xj

(
∂ϕ

∂xj
ui +

∂ϕ

∂xi
uj

)
+

∂ϕ

∂xi
p;

(hϕ)i = ϕhi + β
n∑

j=1

(
∂ϕ

∂xj
ui +

∂ϕ

∂xi
uj

)
νj − β

( n∑

j,k=1

(
∂ϕ

∂xk
uj +

∂ϕ

∂xj
uk

)
νjνk

)
νi;

gϕ = div (ϕu) = ϕg + (∇ϕ) · u
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and ki denotes the i-th component of n vector k. Here and hereafter, ν = t(ν1, . . . , νn) is
suitably extended into Rn as a vector of functions in C2,1(Rn) having compact support.
First of all, we shall derive an estimate near the boundary. Pick x0 ∈ Γ up and consider
a small neighborhood of Bσ(x0) = {x ∈ Rn | |x− x0| < σ} of x0, where σ will be chosen
later. Let ϕ be a cut-off function in C∞0 (Bσ(x0)) such that ϕ(x) = 1 on Bσ/2(x0). Let
O be an orthogonal matrix such that Oν(x0) = t(0, . . . , 0,−1). Consider the change of
variable: x = x0 +Oy and set (ϕu)(x) = v(y), (ϕp)(x) = θ(y) and w(y) = tOv(y). Then,
we have

λw −Div T (w, θ) = F, div w = G in Ω̃

ν̃ · w = 0, αw + β(D(w)ν̃ − 〈D(w)ν̃, ν̃〉ν̃) = F∂ on Γ̃

where Ω̃ = {tO(x − x0) | x ∈ Ω}, ν̃(y) = tOν(y), F (y) = tOfϕ(x), G(y) = gϕ(x) and
F∂(y) = tOhϕ(x). Let ε0 and ε1 be two small positive numbers such that 0 < 2ε0 < ε1
and

Bε0 ∩ Ω̃ ⊂ {
y = (y1, . . . , yn) | yn > ψ(y′), y′ ∈ B′

ε1

}

Bε0 ∩ Γ̃ ⊂ {
y = (y1, . . . , yn) | yn = ψ(y′), y′ ∈ B′

ε1

}

for some ψ ∈ C2,1(B′
ε1) that satisfies the conditions:

ψ(0) = 0, ∇′ψ(0) = 0, ν̃ = (∇′ψ,−1)/
√

1 + |∇′ψ|2

where ∇′ψ = (∂1ψ, . . . , ∂n−1ψ), Bε0 = {y ∈ Rn | |y| < ε0}, and B′
ε1 = {y′ ∈ Rn−1 |

|y′| < ε1}. Let ρ(y′) be a function in C∞0 (Rn−1) such that ρ(y′) = 1 for |y′| 5 1 and
ρ(y′) = 0 for |y′| = 2 and set ω(y′) = ρ(y′/ε0)ψ(y′),

H =
{
y = (y1, . . . , yn) ∈ Rn | yn > ω(y′), y′ ∈ Rn−1

}
,

∂H =
{
y = (y1, . . . , yn) ∈ Rn | yn = ω(y′), y′ ∈ Rn−1

}
,

νω = (∇′ω,−1)/
√

1 + |∇′ω|2.

Let us choose σ > 0 so small that suppw and supp θ ⊂ Bε0 , and then we finally arrive
at the equation:

λw −Div T (w, θ) = F, div w = G in H

νω · w = 0, αw + β(D(w)νω − 〈D(w)νω, νω〉νω) = F∂ on ∂H. (5.3)

Moreover, we have ‖∇′ω‖
L∞(Rn−1)

5 C(ε1)ε0 with some constant C(ε1) that depends
on ε1 but does not depend on ε0. Let K0 = K0(q, ε) be the positive number given in
Theorem 4.1. Let us choose ε0 > 0 so small that C(ε1)ε0 5 K0. Since ν̃ = νω on suppF∂ ,
we see that νω · F∂ = 0 on ∂H. Then, applying Theorem 4.1 to (5.3), we see that there
exist constants Λ = 1 and C > 0 depending on ε, q, ε0 and ε1 such that
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Iλ(w, θ, H) 5 CDλ(F, G, F∂ ,H) (5.4)

provided that λ ∈ Σε and |λ| = Λ. We may assume that supp ϕ ⊂ BR, and then noting
that |λ| = Λ = 1, we see easily that

‖F‖
Lq(H) 5 C(x0)

{
‖u‖

W1
q (ΩR)

+ ‖p‖
Lq(ΩR) + ‖f‖

Lq(ΩR)

}
;

‖∇(G,F∂)‖
Lq(H) + |λ|1/2‖(G,F∂)‖

Lq(H)

5 C(x0)
{‖∇(g, h)‖

Lq(ΩR) + |λ|1/2‖(g, h)‖
Lq(ΩR) + ‖∇u‖

Lq(ΩR) + |λ|1/2‖u‖
Lq(ΩR)

}
.

(5.5)

Now, we shall estimate ‖G‖
Ŵ
−1
q (H)

. Recall that

‖G‖
Ŵ
−1
q (H)

= sup
{
|(G, v)H | | v ∈ Ŵ 1

q′(H), ‖∇v‖
L

q′ (H) = 1
}

(5.6)

Given v ∈ Ŵ 1
q′(H), we set Φ(x) = v(z) with z = tO(x− x0). Defining the constant c by

the formulas:

c =

{∫
Ω

ϕΦ dx/
∫
Ω

ϕdx when Ω is a bounded domain
1

µ((suppϕ)∩Ω)

∫
suppϕ∩Ω

Φ dx when Ω is an exterior domain

where µ denotes the Lebesgue measure on Rn, we set Φ0 = Φ− c. When Ω is a bounded
domain, the fact that

∫
Ω

ϕΦ0 dx = 0 implies that ϕΦ0 ∈ Ŵ 1
q′(Ω); and when Ω is an

exterior domain, the fact that (∇ϕ)Φ0 vanishes on SR implies that (∇ϕ)Φ0 ∈ Ẇ 1
q′(ΩR).

Recalling that G(z) = (div (ϕu))(x), that ν · (ϕu) = 0 on Γ, and that suppϕ ∩ Ω ⊂ ΩR,
we have

|(G, v)H | = |(div (ϕu),Φ)Ω| = |(ϕu,∇Φ0)Ω| 5 |(g, ϕΦ0)Ω|+ |(u, (∇ϕ)Φ0)Ω|
5 ‖g‖

Ŵ
−1
q (Ω)

‖∇(ϕΦ0)‖L
q′ (Ω) + ‖u‖

Ẇ
−1
q (ΩR)

‖(∇ϕ)Φ0‖
Ẇ1

q′ (ΩR)
. (5.7)

When Ω is an exterior domain, we have
∫
supp ϕ∩Ω

Φ0 dx = 0, and therefore by Poincaré’s
inequality we have

‖∇(ϕΦ0)‖L
q′ (Ω) , ‖(∇ϕ)Φ0‖

Ẇ1
q′ (ΩR)

5 C‖∇Φ‖
L

q′ (Ω) . (5.8)

When Ω is a bounded domain, we also have (5.8), because we know the estimate:

‖Φ− c‖
L

q′ (Ω) 5 C‖∇Φ‖
L

q′ (Ω) (5.9)

for any Φ ∈ W 1
q′(Ω) with c =

∫
Ω

ϕΦ dx/
∫
Ω

ϕdx. In fact, we can show (5.9) by contradic-
tion as follows. Suppose that for any natural number m there exists a Φm ∈ W 1

q′(Ω)
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such that ‖Φm − cm‖L
q′ (Ω) > m‖∇Φm‖L

q′ (Ω) where cm =
∫
Ω

ϕΦm dx/
∫
Ω

ϕdx. Set
Ψm = (Φm − cm)/‖Φm − cm‖L

q′ (Ω) , and then ‖Ψm‖Lq(Ω) = 1 and ‖∇Ψm‖L
q′ (Ω) < 1/m.

Since ‖Ψm‖
W1

q′ (Ω)
5 1 + 1/m 5 2 for any natural number m, passing to a subsequence if

necessary, we may assume that there exists a Ψ ∈ W 1
q′(Ω) such that Ψm → Ψ weakly in

W 1
q′(Ω) and strongly in Lq′(Ω) as m →∞. In particular, we have ∇Ψ = 0, that is Ψ = c

(constant), and ‖Ψ‖
L

q′ (Ω) = 1.

On the other hand, we see that
∫
Ω

ϕΨ dx = 0, because

∫

Ω

ϕΨm dx =
1

‖Φm − cm‖L
q′ (Ω)

( ∫

Ω

ϕΦm dx−
∫

Ω

ϕdxcm

)
= 0.

Therefore, 0 =
∫
Ω

ϕΨ dx = c
∫
Ω

ϕdx, which implies that 0 = c = Ψ. This contradicts to
the fact that ‖Ψ‖

L
q′ (Ω) = 1, which shows that (5.9) holds.

By (5.6), (5.7) and (5.8), we have ‖G‖
Ŵ
−1
q (H)

5 Cϕ(‖g‖
Ŵ
−1
q (Ω)

+ ‖u‖
Ẇ
−1
q (ΩR)

), which

combined with (5.4) and (5.5) implies that

Iλ(u, p, Ωx0) 5 Cx0

[
‖f‖

Lq(ΩR) + ‖∇(g, h)‖
Lq(ΩR) + |λ|1/2‖(g, h)‖

Lq(ΩR)

+ ‖∇u‖
Lq(ΩR) + |λ|1/2‖u‖

Lq(ΩR) + |λ|‖u‖
Ẇ
−1
q (ΩR)

+ ‖p‖
Lq(ΩR)

]

provided that λ ∈ Σε and |λ| = Λ, where Cx0 is a constant depending on x0 and
Ωx0 = {x ∈ Rn | |x − x0| < σ/2}. Since Γ is compact, covering Γ by a finite number
of small neighborhoods like Ωx0 , we see that there exist a subdomain Ω′ of Ω and two
numbers λ1 = 1 and C such that Ω′ ⊃ Γ and

Iλ(u, p, Ω′) 5 C
[
‖f‖

Lq(ΩR) + ‖∇(g, h)‖
Lq(ΩR) + |λ|1/2‖(g, h)‖

Lq(ΩR) + |λ|‖g‖
Ŵ
−1
q (Ω)

+ ‖∇u‖
Lq(ΩR) + |λ|1/2‖u‖

Lq(ΩR) + |λ|‖u‖
Ẇ
−1
q (ΩR)

+ ‖p‖
Lq(ΩR)

]
(5.10)

provided that λ ∈ Σε and |λ| = λ1.
Now, let λ be any complex number such as |λ| 5 λ1. If (u, p) ∈ W 2

q (Ω)n × Ŵ 1
q (Ω)

satisfy (1.1), then it also satisfies the equation:

λ1u−Div T (u, p) = f + (λ1 − λ)u, div u = g in Ω

ν · u = 0, Bα,β(u) = h on Γ. (5.11)

Therefore, applying (5.10) to (5.11), we have

‖u‖
W2

q (Ω′) + ‖∇p‖
Lq(Ω′) 5 C

[
‖f‖

Lq(ΩR) + ‖(g, h)‖
W1

q (ΩR)
+ ‖g‖

Ŵ
−1
q (Ω)

+ ‖u‖
W1

q (ΩR)
+ ‖u‖

Ẇ
−1
q (ΩR)

+ ‖p‖
Lq(ΩR)

]
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which combined with (5.10) implies that

Iλ(u, p, Ω′) 5 C
[
Dλ(f, g, h,Ω) + ‖∇u‖

Lq(ΩR) + |λ|1/2‖u‖
Lq(ΩR)

+ |λ|‖u‖
Ẇ
−1
q (ΩR)

+ ‖p‖
Lq(ΩR)

]
(5.12)

provided that λ ∈ Σε and |λ| = λ0, where C is a constant that depends on ε, q, Ω, and
λ0.

Now, we shall estimate u and p on Ω \ Ω′. Let δ be a positive number such that
Ω′ ⊃ {x ∈ Ω | dist (x,Γ) < 4δ} and let ϕ be a function in C∞(Rn) such that ϕ(x) = 1
for x ∈ D3δ = {x ∈ Ω | dist (x,Γ) > 3δ} and ϕ(x) = 0 for x ∈ Eδ = Ωc ∪ {x ∈ Ω |
dist (x,Γ) < δ}. From (5.2) it follows that

λ(ϕu)−Div T (ϕu, ϕp) = fϕ, div (ϕu) = gϕ in Rn

and therefore by Theorem 2.1 we have

Iλ(ϕu, ϕp, Rn) 5 Cε,q

[
‖fϕ‖Lq(Rn) + ‖∇gϕ‖Lq(Rn) + |λ|‖gϕ‖

Ŵ
−1
q (Rn)

]
(5.13)

provided that λ ∈ Σε. We see easily that

‖fϕ‖Lq(Rn) + ‖∇gϕ‖Lq(Rn) 5 C
[
‖f‖

Lq(Ω) + ‖g‖
W1

q (Ω)
+ ‖u‖

W1
q (ΩR)

+ ‖p‖
Lq(ΩR)

]
. (5.14)

To estimate ‖gϕ‖
Ŵ
−1
q (Rn)

, for any ψ ∈ C∞0 (Rn) we observe that

∣∣(gϕ, ψ)Rn

∣∣ =
∣∣(div (ϕu), ψ)Rn

∣∣ =
∣∣(ϕu,∇(ψ − cψ))Rn

∣∣

5 |(g, ϕ(ψ − cψ))Ω|+ |(u, (∇ϕ)(ψ − cψ))Ω|
5 ‖g‖

Ŵ
−1
q (Ω)

‖∇(ϕ(ψ − cψ))‖
L

q′ (Ω) + ‖u‖
Ẇ
−1
q (ΩR)

‖(∇ϕ)(ψ − cψ)‖
W1

q′ (ΩR)

where we have set

cψ =

{∫
Ω

ϕψ dx/
∫
Ω

ϕdx when Ω is a bounded domain
1

µ(supp (∇ϕ))

∫
supp (∇ϕ)

ψ dx when Ω is an exterior domain.

By Poincaré’s inequality and (5.9),

‖∇(ϕ(ψ − cψ))‖
L

q′ (Ω) , ‖(∇ϕ)(ψ − cψ)‖
W1

q′ (ΩR)
5 C‖∇ψ‖

L
q′ (Rn)

and therefore we have ‖gϕ‖
Ŵ
−1
q (Rn)

5 C[‖g‖
Ŵ
−1
q (Ω)

+ ‖u‖
Ẇ
−1
q (ΩR)

], which combined with

(5.13) and (5.14) implies that
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Iλ(u, p, D3δ) 5 C
[
‖f‖

Lq(Ω) + ‖g‖
W1

q (Ω)
+ |λ|‖g‖

Ŵ
−1
q (Ω)

+ ‖u‖
W1

q (ΩR)
+ |λ|‖u‖

Ẇ
−1
q (ΩR)

+ ‖p‖
Lq(ΩR)

]
. (5.15)

Combining (5.10) and (5.15) completes the proof of Theorem 5.3, because Ω′ ∪D3δ = Ω.
¤

A proof of Theorem 5.1. In view of Theorem 5.4, to prove Theorem 5.1 we
have to estimate the terms: ‖p‖

Lq(ΩR) and |λ|‖u‖
Ẇ
−1
q (ΩR)

. First of all, we shall estimate

‖p‖
Lq(ΩR) . For this purpose, we shall use the following two propositions.

Proposition 5.5. Let 1 < q < ∞ and D be a bounded domain whose boundary
∂D is a C1,1 compact hypersurface. Let f ∈ Lq(D) and g ∈ W 1

q (D) and assume that∫
D

f dx =
∫

∂D
g dσ. Then, there exists a unique u ∈ W 2

q (D) which solves the equation:
∆u = f in D and ∂νu = g on ∂D with side condition:

∫
D

u dx = 0, and satisfies the
estimate: ‖u‖

W2
q (D)

5 Cq{‖f‖Lq(D) + ‖g‖
W1

q (D)
}. Here, ν denotes the unit outer normal

to ∂D and ∂ν = ν · ∇.

Proposition 5.6. Let 1 < q < ∞ and assume that Ω is an exterior domain whose
boundary is a C1,1 compact hypersurface. Set

Ŵ 2
q (Ω) =

{
u ∈ Lq,loc(Ω) | ∇u ∈ W 1

q (Ω)
}

L̂q,R−1(Ω) =
{

f ∈ Lq(Ω) | f(x) = 0 for |x| = R− 1 and
∫

Ω

f dx = 0
}

.

Then, for every f ∈ L̂q,R−1(Ω) there exists a u ∈ Ŵ 2
q (Ω) which uniquely solves the

equation: ∆u = f in Ω and ∂νu = 0 on Γ and satisfies the estimate:

‖u‖
Lq(Ω∩BR) + sup

|x|=R

|x|n−1|u(x)|+ ‖∇u‖
W1

q (Ω)
5 C‖f‖

Lq(Ω) . (5.16)

Here, ν denotes the unit outer normal to Γ and ∂ν = ν · ∇.

Propositions 5.5 and 5.6 seems to be well-known. But, to make the paper self-
contained as much as possible, we shall prove both propositions in the appendix, because
we could not find any proofs in the literatures.

First, we consider the case where Ω is a bounded domain. From the definition
of Ŵ 1

q (Ω) we may assume that
∫
Ω

p dx = 0. Given ϕ ∈ C∞0 (Ω), we set ϕ0 = ϕ −
µ(Ω)−1

∫
Ω

ϕdx and observe that (p, ϕ)Ω = (p, ϕ0)Ω. Since
∫
Ω

ϕ0 dx = 0, by Proposition
5.5 there exists a ψ ∈ W 2

q′(Ω) which satisfies the equation: ∆ψ = ϕ0 in Ω and ∂νψ = 0
on Γ, the side condition:

∫
Ω

ψ dx = 0 and the estimate: ‖ψ‖
W2

q′ (Ω)
5 C‖ϕ‖

L
q′ (Ω) . Using

such ψ, we have (p, ϕ0)Ω = (p, ∆ψ)Ω = −(∇p,∇ψ)Ω. Now, we use the relations: ∇p =
f − λu + Div D(u) in Ω and ν · u = 0 on Γ, and then we proceed the observation as
follows:
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(p, ϕ)Ω = −λ(div u, ψ)Ω − (D(u)ν,∇ψ)Γ +
n∑

j,k=1

(Djk(u), ∂j∂kψ)Ω − (f,∇ψ)Ω.

That
∫
Ω

ψ dx = 0 implies that ψ ∈ Ŵ 1
q′(Ω), and therefore using the relation: div u = g

in Ω, we have

|λ(div u, ψ)Ω| 5 |λ|‖g‖
Ŵ
−1
q (Ω)

‖∇ψ‖
Lq(Ω) .

Using the trace theorem, we have

|(D(u)ν,∇ψ)Γ| 5 C‖D(u)‖
Lq(Γ)‖ψ‖W2

q (Ω)
.

Since (Sqf,∇ψ)Ω = 0, we arrive at the estimate:

|(p, ϕ)Ω| 5 C
(
|λ|‖g‖

Ŵ
−1
q (Ω)

+ ‖∇u‖
Lq(Γ) + ‖∇u‖

Lq(Ω) + ‖Gqf‖Lq(Ω)

)
‖ϕ‖

L
q′ (Ω)

which implies that

‖p‖
Lq(Ω) 5 C

(
‖Gqf‖Lq(Ω) + |λ|‖g‖

Ŵ
−1
q (Ω)

+ ‖∇u‖
Lq(Γ) + ‖∇u‖

Lq(Ω)

)
. (5.17)

To estimate ‖u‖
Ẇ
−1
q (ΩR)

, we take ϕ ∈ W 1
q′(Ω)n arbitrarily and observe that

(λu, ϕ)Ω = (Div T (u, p), ϕ)Ω + (f, ϕ)Ω

= (T (u, p)ν, ϕ)Γ − (1/2)(D(u), D(ϕ))Ω + (p, div ϕ)Ω + (f, ϕ)Ω

and therefore we have

|(λu, ϕ)Ω| 5 C
[‖(D(u), p)‖Lq(Γ) + ‖(∇u, p)‖

Lq(Ω) + ‖f‖
Lq(Ω)

]‖ϕ‖
W1

q′ (Ω)

which implies that

|λ|‖u‖
Ẇ
−1
q (ΩR)

5 C
(‖(∇u, p)‖

Lq(Γ) + ‖(∇u, p, f)‖
Lq(Ω)

)
. (5.18)

When Ω is a bounded domain or an exterior domain, we know that

‖v‖
Lq(Γ) 5 Cq,R

(
‖∇v‖1/q

Lq(ΩR)
‖v‖1−1/q

Lq(ΩR)
+ ‖v‖

Lq(ΩR)

)
(5.19)

which combined with Young’s inequality implies that

‖v‖
Lq(Γ) 5 σ‖∇v‖

Lq(ΩR) + Cσ,q‖v‖Lq(ΩR) (5.20)
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for any σ > 0 with some constant Cσ,q that depends on σ and q. Combining (5.17),
(5.18) and (5.20), for any σ1, σ2 > 0 we have

|λ|‖u‖
Ẇ
−1
q (ΩR)

+ ‖p‖
Lq(Ω) 5 Cσ1‖∇p‖

Lq(Ω) + σ2Cσ1,q‖∇2u‖
Lq(Ω)

+ Cσ1,σ2,q

[
‖∇u‖

Lq(Ω) + ‖f‖
Lq(Ω) + |λ|‖g‖

Ŵ
−1
q (Ω)

]

which combined with Theorem 5.4 implies that

|λ|‖u‖
Lq(Ω) + |λ|1/2‖∇u‖

Lq(Ω) + ‖∇2u‖
Lq(Ω) + ‖∇p‖

Lq(Ω)

5 Cσ1,σ2,ε,qDλ(f, g, h,Ω) + Cσ1‖∇p‖
Lq(Ω) + σ2Cσ1,q‖∇2u‖

Lq(Ω)

+ Cσ1,σ2,ε,q

(‖∇u‖
Lq(Ω) + |λ|1/2‖u‖

Lq(Ω)

)
(5.21)

provided that λ ∈ Σε and |λ| = 1. Choosing σ1, σ2 > 0 and λ1 = 1 in such a way that
Cσ1 5 1/2, σ2Cσ1,q 5 1/2 and Cσ1,σ2,ε,qλ

−1/2
1 5 1/2 in (5.21), we have

Iλ(u, p, Ω) 5 2Cσ1,σ2,ε,qDλ(f, g, h,Ω) (5.22)

provided that λ ∈ Σε and |λ| = λ1, which completes the proof of Theorem 5.1 when Ω is
bounded.

When Ω is an exterior domain, to estimate ‖p‖
Lq(ΩR) we shall use Proposition 5.6

instead of Proposition 5.5. Let ϕ be a function in C∞0 (ΩR) such that
∫
Ω

ϕdx = 1.
Subtracting a suitable constant from p if necessary, we may assume that

∫

Ω

ϕp dx = 0. (5.23)

To estimate ‖p‖
Lq(ΩR) for such p, we choose ψ ∈ C∞0 (ΩR) arbitrarily. Set c =

∫
Ω

ψ dx,

and then
∫
Ω
(ψ − cϕ)dx = 0. By Proposition 5.6 there exists a Ψ ∈ Ŵ 2

q′(Ω) such that

∆Ψ = ψ − cϕ in Ω
∂Ψ
∂ν

= 0 on Γ; (5.24)

‖Ψ‖
L

q′ (ΩR+1) + sup
|x|=R+1

|x|n−1|Ψ(x)|+ ‖∇Ψ‖
W1

q′ (Ω)
5 C‖ψ‖

L
q′ (Ω) . (5.25)

Using (5.23) and (5.24), we observe that (p, ψ)ΩR
= (p, ψ − cϕ)Ω = (p, ∆Ψ)Ω. Since

p ∈ Ŵ 1
q (Ω), there exists a constant c1 such that

‖(p− c1)d−1‖
Lq(Ω) 5 C‖∇p‖

Lq(Ω) (5.26)

where d denotes a weight function defined by the formula: d(x) = (1 + |x|) when q 6= n

and d(x) = (1 + |x|) log(2 + |x|) when q = n. This assertion is well-known as Hardy type
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inequality (cf. [7], [17]). Let ρ(t) be a function in C∞(R) such that ρ(t) = 1 for t 5 1/2
and ρ(t) = 0 for t = 1 and set ρ

L
(x) = ρ(ln ln |x|/ ln lnL) which is called Sobolev’s cut-off

function. Since

|∇ρ
L
(x)| 5 C((ln lnL)|x| ln |x|)−1, |∇2ρ

L
(x)| 5 C((ln lnL)|x|2 ln |x|)−1 (5.27)

for e
√

log L 5 |x| 5 L with large L, it follows from (5.24), (5.25), (5.26) and (5.27) that

(p, ψ)ΩR
= lim

L→∞
(ρ

L
p, ∆Ψ)Ω = − lim

L→∞
(ρ

L
∇p,∇Ψ)Ω

= lim
L→∞

(ρ
L
(λu−Div D(u)− f),∇Ψ)Ω

= −λ(g, Ψ)Ω − (D(u)ν,∇Ψ)Γ +
n∑

j,k=1

(D(u)jk, ∂j∂kΨ)Ω − (f,∇Ψ)Ω.

Since (Sqf,∇Ψ)Ω = 0, we have

|(p, ψ)ΩR
| 5 C

[
|λ|‖g‖

Ŵ
−1
q (Ω)

+ ‖∇u‖
Lq(Γ) + ‖∇u‖

Lq(Ω) + ‖Gqf‖Lq(Ω)

]
‖∇Ψ‖

W1
q′ (Ω)

which combined with (5.25) implies that

‖p‖
Lq(ΩR) 5 C

[
|λ|‖g‖

Ŵ
−1
q (Ω)

+ ‖∇u‖
Lq(Γ) + ‖∇u‖

Lq(Ω) + ‖Gqf‖Lq(Ω)

]
. (5.28)

To estimate |λ|‖u‖
Ẇ
−1
q (ΩR)

, we take ϕ ∈ Ẇ 1
q′(ΩR)n arbitrarily. Recalling that ϕ|SR

= 0

when Ω is an exterior domain, we have

|(λu, ϕ)ΩR
| 5 |(Div T (u, p), ϕ)ΩR

|+ |(f, ϕ)ΩR
|

5 |(T (u, p)ν, ϕ)Γ|+ (1/2)|(D(u), D(ϕ))ΩR
|+ |(p, div ϕ)ΩR

|+ |(f, ϕ)ΩR
|

5 C
[‖(∇u, p)‖

Lq(Γ) + ‖(∇u, p, f)‖
Lq(ΩR)

]‖ϕ‖
W1

q′ (ΩR)

which implies that

|λ|‖u‖
Ẇ
−1
q (ΩR)

5 C
[‖(∇u, p)‖

Lq(Γ) + ‖(∇u, p, f)‖
Lq(ΩR)

]
. (5.29)

Employing the same argument as in the case that Ω is bounded, by (5.28), (5.29), (5.20)
and Theorem 5.4 we see that there exists a λ1 = 1 depending on ε and q such that
Iλ(u, p, Ω) 5 CDλ(f, g, h,Ω) provided that λ ∈ Σε and |λ| = λ1 in the case where Ω is
an exterior domain. This completes the proof of Theorem 5.1. ¤

A proof of Theorem 5.2. Since K is a compact set in Σε and since Σε does
not contain {0}, there exists a σK > 0 such that σK 5 |λ| 5 (σK)−1 for any λ ∈ K.
Obviously, ‖u‖

Ẇ
−1
q (ΩR)

5 ‖u‖
Lq(ΩR) . Therefore, by Theorem 5.4 we have
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‖u‖
W2

q (Ω)
+ ‖∇p‖

Lq(Ω)

5 CK

[
‖f‖

Lq(Ω) + ‖(g, h)‖
W1

q (Ω)
+ ‖g‖

Ŵ
−1
q (ΩR)

+ ‖u‖
W1

q (ΩR)
+ ‖p‖

Lq(ΩR)

]
. (5.30)

By contradiction, we shall show that there exists a constant C such that

‖u‖
W1

q (ΩR)
+ ‖p‖

Lq(ΩR) 5 C
(
‖f‖

Lq(Ω) + ‖(g, h)‖
W1

q (Ω)
+ ‖g‖

Ŵ
−1
q (Ω)

)
(5.31)

Suppose that for any natural number m there exist λm ∈ K, fm ∈ Lq(Ω)n, gm ∈
W 1

q (Ω) ∩ Ŵ−1
q (Ω), hm ∈ W 1

q,∂(Ω), um ∈ W 2
q (Ω)n and pm ∈ Ŵ 1

q (Ω) such that

λmum −Div T (um, pm) = fm, div um = gm in Ω

ν · um = 0, Bα,β(um) = gm on Γ (5.32)

‖um‖W1
q (ΩR)

+ ‖pm‖Lq(ΩR) = 1 (5.33)

‖fm‖Lq(Ω) + ‖(gm, hm)‖
W1

q (Ω)
+ ‖gm‖

Ŵ
−1
q (Ω)

5 1/m. (5.34)

Combining (5.30), (5.33) and (5.34), we have ‖um‖W2
q (Ω)

+ ‖∇pm‖Lq(Ω) 5 2CK for any
m ∈ N . Therefore, passing to the subsequence if necessary, we may assume that there
exist λ ∈ K, u ∈ W 2

q (Ω)n and p ∈ Ŵ 1
q (Ω) such that λm → λ, um → u weakly in

W 2
q (Ω)n, ∇pm → ∇p weakly in Lq(Ω), um → u strongly in W 1

q (ΩR)n and pm → p

strongly in Lq(ΩR) as m → ∞. Letting m → ∞ in (5.32) and (5.33), we see that
(u, p) ∈ W 2

q (Ω)n × Ŵ 1
q (Ω) satisfies the homogeneous equation:

λu−Div T (u, p) = 0, div u = 0 in Ω

ν · u = 0, Bα,β(u) = 0 on Γ

and therefore by the uniqueness assumption we have u = 0 and p = c (c being a constant).
Since

∫
ΩR

pm dx = 0,
∫
ΩR

p dx = 0, which implies that p = c = 0. On the other hand, by
(5.33) we have ‖u‖

W1
q (ΩR)

+ ‖p‖
Lq(ΩR) = 1, which contradicts to the fact that u = 0 and

p = 0. This completes the proof of Theorem 5.2. ¤

A proof of Theorem 5.3. When Ω is bounded, by (1.3) we know that
‖g‖

Ŵ
−1
q (Ω)

5 Cq‖g‖Lq(Ω) , and therefore by Theorem 5.4 we have

‖u‖
W2

q (Ω)
+ ‖p‖

W1
q (Ω)

5 CK

[
‖f‖

Lq(Ω) + ‖(g, h)‖
W1

q (Ω)
+ ‖u‖

W1
q (Ω)

+ ‖p‖
Lq(Ω)

]
(5.35)

because ΩR = Ω in the bounded domain case. Employing the same argument as in the
proof of Theorem 5.2 by contradiction we can show that there exists a constant C such
that
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‖u‖
W1

q (Ω)
+ ‖p‖

Lq(Ω) 5 C
[
‖f‖

Lq(Ω) + ‖(g, h)‖
W1

q (Ω)

]

which combined with (5.35) implies the theorem. ¤

Finally, assuming that (1.4) holds we shall give

A proof of Theorem 1.4. Assume that (1.4) holds. If f ∈ Jq(Ω), g = 0 and
h = 0 in (1.1), then noting that Gqf = 0, by (5.17) and (5.28) we have

‖p‖
Lq(ΩR) 5 C

[‖∇u‖
Lq(Γ) + ‖∇u‖

Lq(Ω)

]

which combined with (5.19) and (1.4) implies that

‖p‖
Lq(ΩR) 5 Cε,q(|λ|−(1/2)(1−(1/q)) + |λ|−1/2)‖f‖

Lq(Ω)

5 Cε,q|λ|−(1/2)(1−(1/q))‖f‖
Lq(Ω)

provided that λ ∈ Σε and |λ| = 1. This completes the proof of Theorem 1.4. ¤

6. A proof of Theorem 1.3 in the bounded domain case.

Throughout this section, we always assume that Ω is a bounded domain and we
shall show Theorem 1.3. In order to prove Theorem 1.3, in view of Theorems 5.1 and 5.3
it suffices to show the unique existence of solutions to (1.1). First of all, we consider the
problem in the L2 framework. Set

H1
∂(Ω) =

{
u ∈ W 1

2 (Ω)n | ν · u|Γ = 0
}
, H1

σ(Ω) =
{
u ∈ H1

∂(Ω) | div u = 0 in Ω
}

L̂2(Ω) =
{

p ∈ L2(Ω) |
∫

Ω

p dx = 0
}

, ‖u‖ =
{ ∑

|α|51

‖∂α
x u‖2

L2(Ω)

}1/2

.

If (u, p) ∈ W 2
2 (Ω)n × Ŵ 1

2 (Ω) solves (1.1), then we have

λ(u, v)Ω + (1/2)(D(u), D(v))Ω + αβ−1(u, v)Γ − (p, div v)Ω = (f, v)Ω + β−1(h, v)Γ (6.1)

for every v ∈ H1
∂(Ω). In view of (6.1), we set

Bλ[u, v] = λ(u, v)Ω + (1/2)(D(u), D(v))Ω + αβ−1(u, v)Γ

and we consider the variational equation:

Bλ[u, v] = (f, v)Ω + β−1(h, v)Γ (6.2)

on H1
σ(Ω).
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Lemma 6.1.

(1) Let 0 < ε < π/2 and σ > 0. Then, there exists a positive constant cε,σ such that

Bλ[u, u] = cε,σ‖u‖2

for every λ ∈ Σε with |λ| = σ and u ∈ H1
∂(Ω).

(2) Assume that Ω is not rotationally symmetric when α = 0. Then, there exist positive
constants λ0 and c such that

|Bλ[u, u]| = c‖u‖2

for any λ ∈ C with |λ| 5 λ0 and u ∈ H1
σ(Ω).

Proof.

(1) We know Korn’s second inequality:

‖D(u)‖2
L2(Ω)

+ ‖u‖2
L2(Ω)

= c0‖u‖2 (6.3)

for every u ∈ W 1
2 (Ω) with some positive constant c0 (cf. [4], [19]). On the other hand,

to show that

|Bλ[u, u]| = sin(ε/2)
(|λ|‖u‖2

L2(Ω)
+ (1/2)‖D(u)‖2

L2(Ω)
+ αβ−1‖u‖2

L2(Γ)

)

for any λ ∈ Σε and u ∈ W 1
2 (Ω), we use an elementary calculus:

|Aλ + B| = sin(ε/2)(A|λ|+ B)

for every nonnegative numbers A, B and λ ∈ Σε. Therefore, setting

cε,σ = c0 sin(ε/2)min(σ, 1/2)

we have the first assertion.
(2) In view of Korn’s second inequality (6.3), by contradiction we shall show that there
exists a constant C > 0 such that

‖u‖2
L2(Ω)

5 C
(‖D(u)‖2

L2(Ω)
+ αβ−1‖u‖2

L2(Γ)

)
(6.4)

for any u ∈ H1
σ(Ω). Therefore, we assume that (6.4) does not hold, that is, there exists

a sequence {un}n=1,2,3,... ⊂ H1
σ(Ω) such that

‖un‖2L2(Ω)
= 1 (6.5)

‖D(un)‖2
L2(Ω)

+ αβ−1‖un‖2L2(Γ)
< 1/n (6.6)
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for all n. By (6.3), (6.5) and (6.6) we have ‖un‖ 5 C((1/n)+1) 5 2C for all n. Therefore,
passing to a subsequence if necessary, we see that there exists a u ∈ H1

σ(Ω) such that
un → u weakly in W 1

2 (Ω) and strongly in L2(Ω) as n →∞. By (6.6) we have D(u) = 0.
Furthermore, when α > 0 we have ‖u‖

L2(Γ) = 0, that is, u = 0 on Γ, and therefore we
have u = 0 (cf. [4]). On the other hand, when α = 0, the assumption that Ω is not
rotationally symmetric implies that u = 0 (cf. [19] and [11]). Therefore, we see that
u = 0. However, from (6.5) it follows that ‖u‖

L2(Ω) = 1, which contradicts the fact that
u = 0. Therefore, we have that (6.4) does hold with some constant C > 0.

Combining (6.3) and (6.4) implies that

|B0[u, u]| = d‖u‖2

for any u ∈ H1
σ(Ω) with some positive constant d, and therefore

Bλ[u, u] = |B0[u, u]| − |λ|‖u‖2
L2(Ω)

= d‖∇u‖2
L2(Ω)

+ (d− |λ|)‖u‖2
L2(Ω)

.

Taking λ0 = d/2 and c = d/2, we have the second assertion, which completes the proof
of the lemma. ¤

In view of Lemma 6.1, by the Lax-Milgram theorem (cf. [4]) we have the following
theorem.

Lemma 6.2.

(1) Let 0 < ε < π/2 and σ > 0. Then, for every λ ∈ Σε with |λ| = σ, f ∈ H1
σ(Ω)∗ and

h ∈ L2(Γ) the variational equation (6.2) admits a unique solution u ∈ H1
σ(Ω).

(2) Assume that Ω is not rotationally symmetric when α = 0. Let λ0 be the same
positive number as in Lemma 6.1 (2). Then, for every λ ∈ C with |λ| 5 λ0,
f ∈ H1

σ(Ω)∗ and h ∈ L2(Γ) the variational equation (6.2) admits a unique solution
u ∈ H1

σ(Ω).

Following the argument due to Solonnikov and Ščadilov [19] (cf. also [7, Theorem
5.2]), we have the following theorem.

Lemma 6.3.

(1) Let 0 < ε < π/2 and σ > 0. Then, for every λ ∈ Σε with |λ| = σ, f ∈ H1
σ(Ω)∗ and

h ∈ L2(Γ) there exists a unique (u, p) ∈ H1
σ(Ω)×L̂2(Ω) which solves the variational

equation:

Bλ[u, v]− (p, div v)Ω = (f, v)Ω + β−1(h, v)Γ

for every v ∈ H1
∂(Ω).

(2) Assume that Ω is not rotationally symmetric when α = 0. Let λ0 be the same
positive number as in Lemma 6.1 (2). Then, for every λ ∈ C with |λ| 5 λ0,
f ∈ H1

σ(Ω)∗ and h ∈ L2(Γ) there exists a unique (u, p) ∈ H1
σ(Ω) × L̂2(Ω) which

solves the variational equation:
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Bλ[u, v]− (p, div v)Ω = (f, v)Ω + β−1(h, v)Γ

for every v ∈ H1
∂(Ω).

Theorem 6.4.

(1) Let 0 < ε < π/2 and σ > 0. Then, for every λ ∈ Σε ∪ {λ ∈ C | |λ| = σ},
f ∈ H1

σ(Ω)∗, g ∈ L̂2(Ω) and h ∈ L2(Γ) there exists a unique (u, p) ∈ H1
σ(Ω)×L̂2(Ω)

such that div u = g and

Bλ[u, v]− (p, div v)Ω = (f, v)Ω + β−1(h, v)Γ (6.7)

for every v ∈ H1
∂(Ω).

(2) Assume that Ω is not rotationally symmetric when α = 0. Let λ0 be the same
positive number as in Lemma 6.1 (2). Then, for every λ ∈ C with |λ| 5 λ0,
f ∈ H1

σ(Ω)∗, g ∈ L̂2(Ω) and h ∈ L2(Γ) there exists a unique (u, p) ∈ H1
σ(Ω)×L̂2(Ω)

such that div u = g and

Bλ[u, v]− (p, div v)Ω = (f, v)Ω + β−1(h, v)Γ (6.8)

for every v ∈ H1
∂(Ω).

Proof. By Proposition 5.5 there exists a unique w ∈ L̂2(Ω) ∩W 2
2 (Ω) such that

∆w = g in Ω and ∂w/∂ν = 0 on Γ. Set u = ∇w + z, and then from (6.8) we have

Bλ[z, v]− (p, div v)Ω = (f, v)Ω + β−1(h, v)Γ −Bλ[∇w, v] (6.9)

for every v ∈ H1
∂(Ω). Since ∇w ∈ W 1

2 (Ω)n, the map v 7→ Bλ[∇w, v] belongs to H1
σ(Ω)∗,

and therefore by Lemma 6.3 we see the unique existence of solution (z, p) ∈ H1
σ(Ω)×L̂2(Ω)

of the variational equation (6.9), which completes the proof of the theorem. ¤

Now, we shall show the regularity of u and p obtained in Theorem 6.4.

Theorem 6.5.

(1) Let 0 < ε < π/2 and σ > 0. Then, for every λ ∈ Σε with |λ| = σ, f ∈ C∞(Ω)n,
g ∈ C∞(Ω) ∩ L̂2(Ω) and h ∈ C∞(Ω)n ∩ W 1

2,∂(Ω) there exists a unique solution
(u, p) ∈ ⋂

1<q<∞(W 2
q (Ω)n × Ŵ 1

q (Ω)) of the equation (1.1).
(2) Assume that Ω is not rotationally symmetric when α = 0. Let λ0 be the same

positive number as in Lemma 6.1 (2). Then, for every λ ∈ C with |λ| 5 λ0,
f ∈ C∞(Ω)n, g ∈ C∞(Ω) ∩ L̂2(Ω) and h ∈ C∞(Ω)n ∩ W 1

2,∂(Ω) there exists a
unique solution (u, p) ∈ ⋂

1<q<∞(W 2
q (Ω)n × Ŵ 1

q (Ω)) of the equation (1.1).

Proof. Since we can show the assertions (1) and (2) by employing the same
argument, in the course of the proof we assume that λ satisfies one of the following
conditions: λ ∈ Σε with |λ| = σ or λ ∈ C with |λ| 5 λ0. To show the theorem, we shall
use the same localization procedure as in the proof of Theorem 5.4. Since f ∈ H1

σ(Ω)∗,
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g ∈ L̂2(Ω) and h ∈ L2(Γ) by Theorem 6.4 we know the existence of (u, p) ∈ H1
σ(Ω)×L̂2(Ω)

that satisfies the equation: div u = g and solves (6.8) uniquely. First of all, we shall
show that (u, p) ∈ W 2

2 (Ω)n × W 1
2 (Ω). Since Ω is bounded, it is enough to show that

(u, p) ∈ W 2
2,loc(Ω)n ×W 1

2,loc(Ω). Pick x0 ∈ Γ up and let w, θ, F , G, F∂ , H, ∂H and νω

be the same as in (5.3). Then, from (6.8) we have

λ1(w, v)H + (1/2)(D(w), D(v))H + αβ−1(w, v)∂H − (θ, div v)H

= ((λ1 − λ)w, v)H + (F, v)H + β−1(F∂ , v)∂H (6.10)

for any v ∈ W 1
2 (H)n with νω ·v|∂H = 0. From the assumptions on f , g and h and the fact

that u ∈ W 1
2 (Ω)n and p ∈ L2(Ω) it follows that (λ1−λ)w+F ∈ L2(H)n, G ∈ W 1

2 (H) and
F∂ ∈ W 1

2 (H)n with νω · F∂ = 0 on ∂H. Moreover, from the discussion in Section 5 (cf.
(5.7)), we have G ∈ Ŵ−1

2 (H), because div u = g ∈ Ŵ 1
2 (Ω) and u ∈ W 1

2 (Ω) ⊂ Ẇ−1
2 (ΩR).

Therefore, in view of Theorem 4.1 we choose λ1 so large that there exists a solution
(U,Φ) ∈ W 2

2 (H)n × Ŵ 1
2 (H) of the equation:

λ1U −Div T (U,Φ) = F + (λ1 − λ)w, div U = G in H

νω · U = 0, αU + β(D(U)νω − 〈D(U)νω, νω〉νω) = F∂ on ∂H. (6.11)

Since the strong solutions are also the weak ones, by (6.11) we see that U and Φ satisfy
(6.11) too. Since div w = G in H and νω ·w = 0 on ∂H, setting V = w−U and Ψ = θ−Φ,
we have

λ1(V, v)H + (1/2)(D(V ), D(v))H + αβ−1(V, v)∂H − (Ψ,div v)H = 0 (6.12)

for any v ∈ W 1
2 (H)n with νω · v|∂H = 0, and div V = 0 in H and νω · V = 0 on ∂H.

Therefore, setting V = v in (6.12), we have

λ1‖V ‖2L2(H)
+ (1/2)‖D(V )‖2

L2(H)
+ αβ−1‖V ‖2

L2(∂H)
= 0

which implies that V = 0, and therefore (6.12) implies that (Ψ,div v)H = −(∇Ψ, v)H = 0
for any v ∈ W 1

2 (H)n with νω · v|∂H
= 0, which shows that ∇Ψ = 0 on H. Therefore, we

have w ∈ W 2
2 (H)n and ∇θ ∈ L2(H)n. In this way, we can show that u ∈ W 2

2 (Ω)n and
∇p ∈ L2(Ω)n.

Now, by Sobolev’s imbedding theorem we see that u ∈ W 1
q (Ω)n and p ∈ Lq(Ω) for

every q with n(1/2− 1/q) 5 1. Repeating the same argument as above, we can see that
u ∈ W 2

q (Ω)n and ∇p ∈ Lq(Ω)n, and therefore repeated use of this argument implies that

(u, p) ∈
⋂

1<q<∞

(
W 2

q (Ω)n ×W 1
q (Ω)

)

(cf. for more detailed proof we can refer to [5, pp. 629–630], [17, Proof of Lemma 7.1]
and [1, Proof of Lemma 6.2]).
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Finally, we shall show that (u, p) actually satisfies (1.1) in the strong sense. Let v

be an arbitrary function in C∞0 (Ω)n, then by (6.8) and the divergence theorem of Gauss
we have (λu − Div T (u, p) − f, v)Ω = 0, which combined with the fact that (u, p) ∈
W 2

2 (Ω)n ×W 1
2 (Ω) implies that

(λu−Div T (u, p)− f, ϕ)Ω = 0 (6.13)

for every ϕ ∈ L2(Ω)n. Let ψ be any vector in C1(Γ)n such that ν · ψ = 0 on Γ and ϕ be
a vector in H1

∂(Ω)n such that ϕ|Γ = ψ. By (6.13) and (6.8) we have

0 = λ(u, ϕ)Ω + (1/2)(D(u), D(ϕ))Ω + αβ−1(u, ϕ)Γ − β−1(Bα,β(u), ψ)Γ − (f, ϕ)Ω

= β−1(h−Bα,β(u), ψ)Γ. (6.14)

But, we see that (6.14) holds for any ψ ∈ C1(Γ)n. In fact, let ψ be any vector of C∞0 (Γ)n

functions and set ψ̃ = ψ − (ν · ψ)ν. Since (D(u)ν − 〈D(u)ν, ν〉ν) · ν = 0 identically on Γ
and since ν · ψ̃ = 0 on Γ, by (6.14) we have

(h−Bα,β(u), ψ)Γ = (h−Bα,β(u), (ν · ψ)ν)Γ = (h · ν − αu · ν, ν · ψ)Γ = 0 (6.15)

where we have used the facts that h · ν = u · ν = 0 on Γ. Therefore, the arbitrariness of
choice of ψ in (6.15) implies that h−Bα,β(u) = 0 on Γ, which completes the proof of the
theorem. ¤

A proof of Theorem 1.3 in the bounded domain case. Since we can show
the assertions (1) and (2) by employing the same argument, in the course of the proof
we assume that λ satisfies one of the following conditions: λ ∈ Σε with |λ| = σ or λ ∈ C

with |λ| 5 λ0. First of all, we shall prove the uniqueness of solutions to (1.1). Let
(u, p) ∈ W 2

q (Ω)n × Ŵ 1
q (Ω) satisfy the homogeneous equation:

λu−Div T (u, p) = 0, div u = 0 in Ω

ν · u = 0, Bα,β(u) = 0 on Γ. (6.16)

Given any ϕ ∈ C∞0 (Ω)n, by Theorem 6.5 we know the existence of solution (v, θ) ∈
W 2

q′(Ω)n × Ŵ 1
q′(Ω) to the equation:

λv −Div T (v, θ) = ϕ, div v = 0 in Ω

ν · v = 0, Bα,β(v) = 0 on Γ. (6.17)

Therefore, by (6.16) and (6.17) we have

(u, ϕ)Ω =
(
u, λv −Div T (v, θ)

)
Ω

= (λu−Div T (u, p), v)Ω = 0
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which shows that u = 0. By (6.16)∇p = 0, which combined with the fact that
∫
Ω

p dx = 0
implies that p = 0. Hence, we have shown the uniqueness, which combined with Theorems
5.1 and 5.3 implies the a priori estimates (1.4) and (1.5) of solutions to (1.1). To show the
existence of solutions, we define the map A : W 2

q,∂(Ω)× Ŵ 1
q (Ω) to Lq(Ω)n×Wq,div(Ω)×

W 1
q,∂(Ω) by the relation: A (u, p) = (λu − Div T (u, p),div u,Bα,β(u)). The a priori

estimates (1.4) and (1.5) implies that the range of A is closed. On the other hand,
by Theorem 6.5 implies that C∞(Ω)n × (C∞(Ω)n ∩ L̂2(Ω)) × (C∞(Ω)n ∩ W 1

2,∂(Ω)) is
contained in the range of A . Since C∞(Ω)n× (C∞(Ω)n ∩ L̂2(Ω))× (C∞(Ω)n ∩W 1

2,∂(Ω))
is dense in Lq(Ω)n×Wq,div(Ω)×W 1

q,∂(Ω), taking its closure implies that the range of A

coincides with Lq(Ω)n × Wq,div(Ω) × W 1
q,∂(Ω), which means the existence of solutions.

This completes the proof of Theorem 1.3 when Ω is a bounded domain. ¤

7. A proof of Theorem 1.3 in the exterior domain case.

To show Theorem 1.3, in view of Theorems 5.1 and 5.2 it suffices to show the unique
existence of solutions to (1.1). First of all, we reduce (1.1) to the case where f has
a compact support, g = 0 and h = 0. For this purpose, we shall use the following
well-known theorem (cf. [1], [5], [7], [9], [10] and [18]).

Proposition 7.1. Let 1 < q < ∞ and Ω be an exterior domain whose boundary
Γ is a C1,1 compact hypersurface. Set

Xq(Ω) =

{{
u ∈ W 1

q,loc(Ω) | ‖u‖
Xq(Ω) < ∞}

1 < q < n
{
u ∈ W 1

q,loc(Ω) | ∫
ΩR+3

u dx = 0, ‖u‖
Xq(Ω) < ∞}

n 5 q < ∞

‖u‖
Xq(Ω) = ‖∇u‖

Lq(Ω) + ‖u/d‖
Lq(Ω) , d = d(x) =

{
1 + |x| (q 6= n)

(1 + |x|) log(2 + |x|) (q = n).

Given F ∈ Lq(Ω)n with div F ∈ Lq(Ω) we consider the Laplace equation:

∆U = div F in Ω ∂U/∂ν = ν · F on Γ. (7.1)

Then, the equation (7.1) admits a unique solution U ∈ Xq(Ω) such that ∇2U ∈ Lq(Ω)
and

‖U‖
Xq(Ω) 5 C‖F‖

Lq(Ω) , ‖∇2U‖
Lq(Ω) 5 C

(‖F‖
Lq(Ω) + ‖div F‖

Lq(Ω)

)
.

To show the existence theorem for (1.1), let λ ∈ C \ (−∞, 0], f ∈ Lq(Ω)n, g =
div g̃ ∈ Wq,div(Ω) and h ∈ W 1

q,∂(Ω). Let U be a solution to the Laplace equation:
∆U = g = div g̃ in Ω and ∂U/∂ν = ν · g̃ = 0 on Γ. Since we assume that Γ is a
C2,1 compact hypersurface, the function u given in Proposition 7.1 actually satisfies the
regularity condition: ∇3u ∈ Lq(Ω) provided that div F ∈ W 1

q (Ω) in addition. And
therefore, if we set u = ∇U + v in (1.1), then we arrive at the zero divergence case.
However, we would like to consider the case that Γ is only assumed to be C1,1 a compact
hypersurface, because we would like to mention that our method can be applied to the
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non-slip boundary condition case that has been studied by Farwig and Sohr [5] under the
assumption that Γ ∈ C1,1. Therefore, we will use a different method based on a cut-off
technique.

Let ψ, ϕ0 and ϕ∞ be functions in C∞(Rn) such that

ψ(x) = 1 for |x| 5 R− 3 and ψ(x) = 0 for |x| = R− 2

ϕ0(x) = 1 for |x| 5 R− 2 and ϕ0(x) = 0 for |x| = R− 1

ϕ∞(x) = 1 for |x| = R− 3 and ϕ∞(x) = 0 for |x| 5 R− 4. (7.2)

Note that

ϕ0 = 1 on suppψ; ϕ∞ = 1 on supp (1− ψ); ϕ0 = ϕ∞ = 1 on supp∇ψ. (7.3)

Let (u0, p0) ∈ W 2
q (ΩR)n× Ŵ 1

q (ΩR) and (u∞, p∞) ∈ W 2
q (Rn)n× Ŵ 1

q (Rn) be solutions to
the equations:

{
λu0 −Div T (u0, p0) = ϕ0f, div u0 = div (ϕ0∇U) in ΩR

ν · u0 = 0, αu + β(D(u0)ν − 〈D(u0)ν, ν〉ν) = h on ∂ΩR

λu∞ −Div T (u∞, p∞) = ϕ∞f, div u∞ = div (ϕ∞∇U) in Rn

respectively. Here and hereafter, ν denotes not only the unit outer normal to Γ but also
that to ∂ΩR = Γ ∪ SR. Since

div (ϕ
N
∇U) = ϕ

N
∆U + (∇ϕ

N
) · (∇U) = ϕ

N
g + (∇ϕ

N
) · (∇U) (N = 0,∞)

noting that ν · ∇U = 0 on Γ, we see that div (ϕ0∇U) ∈ Ŵ 1
q (ΩR) and also that

div (ϕ∞∇U) ∈ Ŵ 1
q (Rn). Therefore, by Theorem 1.3 in the bounded domain case and

Theorem 2.1 we know the existence of such (u0, p0) and (u∞, p∞), respectively. From
(7.3) it follows that

div (ψu0 + (1− ψ)u∞) = ψdiv (ϕ0∇U) + (1− ψ)div (ϕ∞∇U) + (∇ψ) · (u0 − u∞)

= div g̃ + (∇ψ) · (u0 − u∞).

By Bogovskǐı’s theorem (cf. [2], [3] and [7]) there exists a linear map B from W 2
q,a(D)

into W 3
q (Rn)n such that suppB[w] ⊂ D, div B[w] = w in Rn and ‖B[w]‖

W3
q (Rn)

5
C‖w‖

W2
q (D)

, where D is any bounded domain with smooth boundary and we have set

W 2
q,a(D) =

{
w ∈ W 2

q,0(D) |
∫

D

w dx = 0
}

.

To apply the Bogovskǐı operator B to the term: (∇ψ) · (u0 − u∞), we have to observe
that
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∫

R−35|x|5R−2

(∇ψ) · (u0 − u∞)dx

=
∫

ΩR

(∇ψ) · u0 dx−
∫

BR

(∇ψ) · u∞ dx

=
∫

ΩR

div (ψu0)dx−
∫

ΩR

ψ div u0 dx−
∫

BR

div (ψu∞)dx +
∫

BR

ψ div u∞ dx

=
∫

ΩR

ψ div [(ϕ∞ − ϕ0)∇U ]dx = −
∫

ΩR

(∇ψ) · ((ϕ∞ − ϕ0)∇U)dx = 0

where we have used the facts: ν · u0 = 0 on ∂ΩR, ψ = 0 on SR, ν · ∇U = 0 on Γ and
(ϕ∞ − ϕ0) = 0 on supp∇ψ. If we set u = ψu0 + (1 − ψ)u∞ −B[(∇ψ) · (u0 − u∞)] + v

and p = ψp0 + (1− ψ)p∞ + θ in (1.1), then as the equation of (v, θ) we have

λv −Div T (v, θ) = F, div v = 0 in Ω

ν · v = 0, Bα,β(v) = 0 on Γ

where the i-th component Fi of n-th vector F is given by the following formula:

Fi = − ∂ψ

∂xi
(p0 − p∞) + λB[(∇ψ) · (u0 − u∞)]i −

n∑

j=1

∂

∂xj
D(B[(∇ψ) · (u0 − u∞)])ij

+
n∑

j=1

∂

∂xj

(
∂ψ

∂xi
(u0j − u∞j) +

∂ψ

∂xj
(u0i − u∞i)

)

+
n∑

j=1

∂ψ

∂xj

(
∂

∂xi
(u0j − u∞j) +

∂

∂xj
(u0i − u∞i)

)
.

Since suppFi ⊂ DR−3,R−2, to complete the proof of Theorem 1.3 in the exterior domain
case, it suffices to prove the following theorem.

Theorem 7.2. Let 1 < q < ∞. Set

Lq,R−1 = {f ∈ Lq(Ω)n | f(x) = 0 for |x| = R− 1}

Then, for every λ ∈ C \ (−∞, 0] and f ∈ Lq,R−1(Ω) there exists a unique (u, p) ∈
W 2

q (Ω)n × Ŵ 1
q (Ω) that solves the equation:

λu−Div (u, p) = f, div u = 0 in Ω

ν · u = 0, Bα,β(u) = 0 on Γ. (7.4)

Proof. Given f ∈ Lq,R−1(Ω), we set f0(x) = f(x) for x ∈ Ω and f0(x) = 0 for
x 6∈ Ω and γf denotes the restriction of f to ΩR. Let (v0, p0) ∈ W 2

q (ΩR)n× Ŵ 1
q (ΩR) and

(v∞, p∞) ∈ W 2
q (Rn)n × Ŵ 1

q (Rn) be solutions to the equations:
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{
λv0 −Div T (v0, p0) = γf, div v0 = 0 in ΩR,

ν · v0 = 0, Bα,β(v0) = 0 on ∂ΩR,

λv∞ −Div T (v∞, p∞) = f0, div v∞ = 0 in Rn,

respectively. Let us define the operator A0 : Lq,R−1(Ω) → W 2
q (ΩR)n, A∞ : Lq,R−1(Ω) →

W 2
q (Rn)n, B0 : Lq,R−1(Ω) → Ŵ 1

q (ΩR) and B∞ : Lq,R−1(Ω) → Ŵ 1
q (Rn) by the formulas:

A0f = v0, A∞f = v∞, B0f = p0 and B∞f = p∞, respectively. Let ϕ be a function in
C∞0 (Rn) such that ϕ(x) = 1 for |x| 5 R− 3 and ϕ(x) = 0 for |x| = R− 2, and set

Φf = (1− ϕ)A∞f + ϕA0f + B[(∇ϕ) · (A∞f −A0f)]

Ψf = (1− ϕ)B∞f + ϕB0f

where B : W 2
q,a(DR−3,R−2) → W 3

q (Rn)n is the Bogovskǐı operator. To apply B to
(∇ϕ) · (A∞f −A0f), we need the following observation:

∫

DR−3,R−2

(∇ϕ) · (A∞f −A0f)dx =
∫

BR

div (ϕA∞f)dx−
∫

ΩR

div (ϕA0f)dx

=
∫

SR

ν · (ϕA∞f)dσ −
∫

∂ΩR

ν · (ϕA0f)dσ = 0.

Subtracting suitable constants if necessary, we may assume that

∫

ΩR−3

B0f dx = 0,

∫

ΩR

(B∞f −B0f)dx = 0. (7.5)

We have

λΦf −Div T (Φf,Ψf) = f + Sf, div (Φf) = 0 in Ω,

ν · (Φf) = 0, Bα,β(Φf) = 0 on Γ (7.6)

where we have set

(Sf)i =
n∑

j=1

∂

∂xj

(
∂ϕ

∂xi
((A∞f)j − (A0f)j) +

∂ϕ

∂xj
((A∞f)i − (A0f)i)

)

+
n∑

j=1

∂ϕ

∂xj

(
∂

∂xi
((A∞f)j − (A0f)j) +

∂

∂xj
((A∞f)i − (A0f)i)

)

− ∂ϕ

∂xi
(B∞f −B0f) + λB[(∇ϕ) · (A∞f −A0f)]i

−
n∑

j=1

∂

∂xj
D(B[(∇ϕ) · (A∞f −A0f)])ij .
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Since the solution of (7.4) is given by the formula: u = Φ(I +S)−1f and p = Ψ(I +S)−1f

provided that (I+S)−1 exists, to prove Theorem 7.2 (and therefore to complete the proof
of Theorem 1.3 in the exterior domain case) we start with the following lemma.

Lemma 7.3. If the uniqueness of solutions to (7.4) holds, then (I + S)−1 exists.

Proof. Since Sf ∈ W 1
q (Ω) and suppSf ⊂ DR−3,R−2, S is a compact operator on

Lq,R−1(Ω). Therefore, to show the existence of (I+S)−1 it suffices to show the injectivity
of I + S. Let f ∈ Lq,R(Ω) satisfy the equation: (I + S)f = 0. We shall show that f = 0,
in what follows. Set u = Φf and p = Ψf , and then (u, p) ∈ W 2

q (Ω)n×Ŵ 1
q (Ω). Moreover,

from (7.6) it follows that (u, p) satisfies the homogeneous equation:

λu−Div T (u, p) = 0, div u = 0 in Ω,

ν · u = 0, Bα,β(u) = 0 on Γ (7.7)

because (I + S)f = 0. By the assumption we have u = 0 and p = c (c being a constant).
Since

∫

ΩR−3

p dx =
∫

ΩR−3

Ψf dx =
∫

ΩR−3

B0f dx = 0

as follows from (7.5) and the fact that ϕ = 1 on BR−3, we have c = 0. Therefore, we
have

0 = (1− ϕ)A∞f + ϕA0f + B[(∇ϕ) · (A∞f −A0f)]

0 = (1− ϕ)B∞f + ϕB0f (7.8)

in Ω, which in particular implies that

A∞f = 0, B∞f = 0 for |x| = R− 2

A0f = 0, B0f = 0 for |x| 5 R− 3. (7.9)

If we set w = A0f in ΩR and w = 0 on the outside of Ω and θ = B0f in ΩR and θ = 0
on the outside of Ω, then (w, θ) ∈ W 2

q (BR)n × Ŵ 1
q (BR) satisfies the equation:

λw −Div T (w, θ) = f0, div w = 0 in BR,

ν · w = 0, Bα,β(w) = 0 on SR. (7.10)

On the other hand, from (7.9) it follows that A∞f and B∞f also satisfy (7.10), and
therefore w = A∞f and θ −B∞f = c in BR where c is some constant. But, by (7.5) we
have

∫

ΩR

(θ −B∞f)dx =
∫

ΩR

(B0f −B∞f)dx = 0
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which implies that c = 0. Namely, A∞f = A0f and B∞f = B0f in ΩR, which combined
with (7.8) implies that

A∞f = ϕ(A∞f −A0f)−B[(∇ϕ) · (A∞f −A0f)] = 0, B∞f = ϕ(B∞f −B0f) = 0

in Ω. Therefore, f = λA∞f −Div T (A∞f,B∞f) = 0 in Ω, which completes the proof of
the lemma. ¤

In view of Lemma 7.3, to complete the proof of Theorem 7.2 our task is to show
the uniqueness of solutions to (7.4). Let λ ∈ C \ (−∞, 0] and (u, p) ∈ W 2

q (Ω)n × Ŵ 1
q (Ω)

satisfies the homogeneous equation (7.7). By a boot-strap argument we see that u ∈
W 2

2,loc(Ω)n and p ∈ W 1
2,loc(Ω), because we already know that Theorem 1.4 holds for any

bounded domains. Let ψ be a function in C∞(Rn) such that ψ = 1 for |x| = R− 2 and
ψ = 0 for |x| 5 R−3, and set w = ψu−B[(∇ψ) ·u] and θ = ψp. To apply the Bogovskǐı
operator B to (∇ψ) · u, we need the following observation:

∫

DR−3,R−2

(∇ψ) · u dx = −
∫

ΩR

div ((1− ψ)u)dx =
∫

Γ

ν · u dσ = 0.

Therefore, (w, θ) ∈ W 2
q (Rn)n × Ŵ 1

q (Rn) and (w, θ) satisfies the equation:

λw −Div T (w, θ) = F, div w = 0 in Rn (7.11)

where we have set

Fi = −
n∑

j=1

∂

∂xj

(
∂ψ

∂xi
uj +

∂ψ

∂xj
ui

)
−

n∑

j=1

∂ψ

∂xj
Dij(u) +

∂ψ

∂xi
p

− λB[(∇ψ) · u]i +
n∑

j=1

∂

∂xj
D(B[(∇ψ) · u])ij .

Since F ∈ Lq(Rn)n ∩ L2(Rn)n, by Theorem 2.1 there exists (w̃, θ̃) ∈ (W 2
2 (Rn)n ∩

W 2
q (Rn)n)× (Ŵ 1

2 (Rn) ∩ Ŵ 1
q (Rn)) that also satisfies (7.11). Since the uniqueness holds

in the whole space (cf. Theorem 2.1), we have w = w̃ and ∇θ = ∇θ̃, which implies that
u ∈ W 2

2 (Ω)n and p ∈ Ŵ 1
2 (Ω). Therefore, noting that C∞0 (Rn) is dense in Ŵ 1

2 (Ω) (cf. [5,
Lemma 5.1]) and using the divergence theorem of Gauss, by (7.7) we have

0 = (λu−Div T (u, p), u)Ω = λ‖u‖2
L2(Ω)

+ (1/2)‖D(u)‖2
L2(Ω)

+ αβ−1‖u‖2
L2(Γ)

(7.12)

which combined with the fact: λ ∈ C \ (−∞, 0] implies immediately that u = 0. And
therefore, by (7.7) we have also ∇p = 0, which shows the uniqueness. This completes
the proof of Theorem 1.3. ¤
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A. Proofs of Propositions 5.5 and 5.6.

A proof of Proposition 5.5. To prove Proposition 5.5, we shall use the fol-
lowing well-known lemma (cf. [9], [10]).

Lemma A.1. Let 1 < q < ∞ and D be a bounded domain whose boundary ∂D is a
C1,1 hypersurface. Then, for every f ∈ Lq(D) and g ∈ W 1

q (D) there exists a v ∈ W 2
q (D)

that uniquely solves the equation:

−v + ∆v = f in D, ∂νv = g on ∂D (A.1)

and satisfies the estimate:

‖v‖
W2

q (D)
5 C

(
‖f‖

Lq(D) + ‖g‖
W1

q (D)

)
. (A.2)

Given f ∈ Lq(D) and g ∈ W 1
q (D), let v ∈ W 2

q (D) be a solution to (A.1). If there
holds the relation:

∫
D

f dx =
∫

∂D
g dσ，then by (A.1) we have

∫

D

v dx =
∫

D

∆v dx−
∫

D

f dx =
∫

∂D

g dσ −
∫

D

f dx = 0. (A.3)

If we set u = v+w, then it suffices to solve the equation: ∆w = −v in D and ∂νw = 0 on
∂D with side condition:

∫
D

w dx = 0. Therefore, the following lemma implies Proposition
5.5 immediately.

Lemma A.2. Let 1 < q < ∞ and D be a bounded domain whose boundary ∂D is a
C1,1 hypersurface. Set L̂q(D) = {f ∈ Lq(D) | ∫

D
f dx = 0}. Then, for every f ∈ L̂q(D)

there exists a u ∈ W 2
q (D) ∩ L̂q(D) that uniquely solves the equation:

∆u = f in D ∂νu = 0 on ∂D (A.4)

and satisfies the estimate:

‖u‖
W2

q (D)
5 C‖f‖

Lq(D) . (A.5)

Proof. Set Ŵ 2
q (D) = {u ∈ W 2

q (D)∩ L̂q(D) | ∂νu = 0 on ∂D}. Given g ∈ L̂q(D),
let v ∈ Ŵ 2

q (D) be a solution to the equation: −v + ∆v = g in D. Let us define the
operator A : L̂q(D) → Ŵ 2

q (D) by the formula: Ag = v. Since ∆Ag = (I + A)g (I
being the identity map on L̂q(D)), if we show the existence of (I + A)−1, then we see
that u = A(I + A)−1f is a required solution to (A.4). Since A is a compact operator
on L̂q(D), to show the existence of (I + A)−1, it suffices to show the injectivity of the
operator I + A. Let f be a function in L̂q(D) such that (I + A)f = 0. Set u = Af , and
then u ∈ Ŵ 2

q (D) and u satisfies the equation: ∆u = 0 in D. By a boot-strap argument,
we see that u ∈ W 2

2 (D), and therefore by the divergence theorem of Gauss we have
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‖∇u‖
L2(D) = 0, which implies that u is a constant. But then, what

∫
D

u dx = 0 implies
that u = 0. Since f = −u+∆u = 0, we have the injectivity of the operator I +A, which
completes the proof of the lemma. ¤

A proof of Proposition 5.6. As in the proof of Theorem 7.2, we shall con-
struct a parametrix. Let E(x) be a fundamental soluiton of the Laplace operator ∆
given in the proof of Lemma 3.2. Given f ∈ L̂q,R−1(Ω), we set

Ef(x) =
∫

Rn

E(x− y)f0(y)dy

where f0(x) = f(x) for x ∈ Ω and f0(x) = 0 for x 6∈ Ω. We see easily that

‖Ef‖
Lq(BR) + sup

|x|=R

|x|n−1|Ef(x)|+ ‖∇Ef‖
Lq(Rn) 5 C‖f‖

Lq(Ω) . (A.6)

On the other hand, given f ∈ L̂q,R−1(Ω), γf denotes the restriction of f on ΩR

and let g be a function in W 1
q (ΩR) such that g(x) = ∂ν(Ef) on SR and g(x) = 0 on Γ.

Observe that

∫

∂ΩR

g dσ =
∫

SR

g dσ +
∫

Γ

g dσ =
∫

SR

∂ν(Ef)dσ =
∫

BR

∆(Ef)dx

=
∫

BR

f0 dx =
∫

Ω

f dx = 0.

Noting that
∫
ΩR

γf dx =
∫
Ω

f dx = 0, by Proposition 5.5 there exists a v ∈ W 2
q (Ω) that

solves the equation:

∆v = γf in ΩR, ∂νv = ∂νEf on SR and ∂νv = 0 on Γ (A.7)

and satisfies the estimate:

‖v‖
W2

q (ΩR)
5 C‖f‖

Lq(Ω) . (A.8)

Moreover, subtracting a suitable constant from v if necessary, we may assume that

∫

ΩR

(v − Ef)dx = 0. (A.9)

Let A be an operator from L̂q,R−1(Ω) into W 2
q (ΩR) defined by the formula: v = Af .

Let ϕ be a function in C∞0 (Rn) such that ϕ(x) = 1 for |x| 5 R − 3 and ϕ(x) = 0 for
|x| = R− 2, and set

Φf = (1− ϕ)Ef + ϕAf f ∈ L̂q,R−1(Ω).
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Then, we have

∆Φf = f + Sf in Ω ∂νΦf = 0 on Γ (A.10)

where we have set

Sf = −div [(∇ϕ)(Ef −Af)]− (∇ϕ) · ∇(Ef −Af).

We observe that Sf ∈ W 1
q (Ω), that suppSf ⊂ DR−3,R−2, and that

∫

Ω

Sf dx = −
∫

Ω

(∇ϕ) · ∇(Ef −Af)dx =
∫

ΩR

∇(1− ϕ) · ∇(Ef −Af)dx

=
∫

SR

∂ν(Ef −Af)dσ −
∫

ΩR

(1− ϕ)∆(Ef −Af)dx = 0

and therefore S is a compact operator on L̂q,R−1(Ω). If we show the existence of (I+S)−1,
then u = Φ(I + A)−1f ∈ Ŵ 2

q (Ω) solves the equation: ∆u = f in Ω and ∂νu = 0 on Γ.
Moreover, combining (A.6) and (A.8) we see that this u satisfies the estimate (5.16).
Since the uniqueness follows from the existence of solutions to the dual problem, to
complete the proof of Proposition 5.6 it suffice to show the existence of (I + S)−1.

Since S is a compact operator on L̂q,R−1(Ω), to show the existence of (I + S)−1, it
suffices to show the injectivity of the operator I + S. Let f be a function in L̂q,R−1(Ω)
such that (I + S)f = 0. Set u = Φf ∈ Ŵ 2

q (Ω), and then by (A.10), (A.6) and (A.8) we
see that u ∈ W 2

q (Ω) satisfies the homogeneous equation: ∆u = 0 in Ω and ∂νu = 0 on
Γ and the radiation condition: u(x) = O(|x|−(n−1)) as |x| → ∞. Therefore, u = 0 in Ω.
In fact, by using a boot-strap argument, u ∈ W 2

2,loc(Ω). Let ρ be a function in C∞0 (Rn)
such that ρ(x) = 1 for |x| 5 1 and ρ(x) = 0 for |x| = 2 and set ρ

L
(x) = ρ(x/L). By the

divergence theorem of Gauss and the radiation condition we have

0 = lim
L→∞

(∆u, ρ
L
u)Ω = lim

L→∞
{− (∇u, ρ

L
∇u)Ω + (1/2)(u, (∆ρ

L
)u)Ω

}
= ‖∇u‖

L2(Ω)

which implies that u is a constant. But then, by the radiation condition we have u = 0.
Therefore, we have

0 = (1− ϕ)Ef + ϕAf in Ω (A.11)

which in particular implies that

Ef = 0 for |x| = R− 2, Af = 0 for |x| 5 R− 3. (A.12)

If we define w(x) = Af(x) for x ∈ ΩR and w(x) = 0 for x 6∈ Ω, then by (A.12)
w ∈ W 2

q (BR) and w satisfies the equation: ∆w = f0 in BR and ∂νw = ∂νEf on SR,
which is also satisfied by Ef , and therefore w−Ef = c in BR (c being a constant). But
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then, by (A.9) we have
∫
ΩR

c dx =
∫
ΩR

(Af−Ef)dx = 0, which implies that c = 0, that is
Ef = Af in ΩR. Inserting this equality into (A.11) implies that Ef = ϕ(Ef −Af) = 0
in Ω, which shows that f = ∆Ef = 0 in Ω. This show the injectivity of the map I + S,
which completes the proof of Proposition 5.6. ¤
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[19] V. A. Solonnikov and V. E. Ščadilov, On a Boundary Value Problem for Stationary Navier-Stokes

Equations, 125, Tr. Math. Inst., Steklov, 1973, pp. 196–210; English Transl.: 125, Proc. Steklov

Math. Inst. 1973, pp. 186–199.

[20] O. Steiger, On Navier-Stokes Equations with First Order Boundary Conditions, Dissertation for

Dr. sc. nat., Universität Zürich, 2004.
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