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ABSTRACT. This paper aims at transferring the philosophy behind Heath-Jarrow-Morton
to the modelling of call options with all strikes and maturities. Contrary to a related con-
tribution by Carmona and Nadtochiy [7], the key parametrisation of our approach involves
time-inhomogeneous Lévy processes instead of local volatility models. We provide neces-
sary and sufficient conditions for absence of arbitrage. Moreover we discuss the construction
of arbitrage-free models. Specifically, we prove their existence and uniqueness given basic
building blocks.
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1. INTRODUCTION

The traditional approach to modelling stock options takes the underlying as a starting
point. If the dynamics of the stock are specified under a risk neutral measure for the whole
market (i.e. all discounted asset price processes are martingales), then options prices are
obtained as conditional expectations of their payoff. In reality standard options as calls and
puts are liquidly traded. If one wants to obtain vanilla option prices which are consistent
with observed market values, special care has to be taken. A common and also theoret-
ically reasonable way is calibration, i.e. to choose the parameters for the stock dynamics
such that the model approximates market values sufficiently well. After a while, models
typically have to be recalibrated, i.e. different parameters have to be chosen in order for
model prices to be still consistent with observed values. However, frequent recalibration is
unsatisfactory from a theoretical point of view because model parameters are meant to be
deterministic and constant. Its necessity indicates that the chosen class fails to describe the
market consistently.

A possible way out is to model the whole surface of call options as a state variable, i.e.
as a family of primary assets in their own right. This alternative perspective is motivated
from the Heath-Jarrow-Morton (HJM, see [13]) approach in interest rate theory. Rather than
considering bonds as derivatives on the short rate, HJM treat the whole family of zero bonds
or equivalently the forward rate curve as state variable in the first place. In the context of
HJM-type approaches for stock options, [24] and [22] consider the case of a single strike,
whereas [7] allows for all strikes and maturities. Further important references in this context
include [14, 23, 25]. The HJM approach has been adapted to other asset classes, e.g. credit
models [4, 22] and variance swaps [5], cf. [6] for an overview and further references.

Similar to [7] we aim at modelling the whole call option price surface using the HJM
methodology. However, our approach differs in the choice of the parametrisation or code-
book, which constitutes a crucial step in HJM-type setups. By relying on time-inhomo-
geneous Lévy processes rather than Dupire’s local volatility models, we can avoid some
intrinsic difficulties of the framework in [7]. Very recently and independently of the present
study, Carmona and Nadtochiy [8] have also put forward a HJM-type approach for the op-
tion price surface which is based on time-inhomogeneous Lévy processes. The similarities
and differences of their and our approach are discussed in Section 5.
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The paper is arranged as follows. We start in Section 2 with an informal discussion of
the HJM philosophy, as a motivation to its application to stock options. Section 3 provides
necessary and sufficient conditions for an option surface model to be arbitrage-free or, more
precisely, risk-neutral. Subsequently, we turn to the construction of option surface models
from basic building blocks. In particular, we provide a concrete example which turns out to
be related to the stochastic volatility model in [2]. Mathematical tools and some technical
proofs are relegated to the appendix.

Notation. Re and Im denote the real resp. imaginary part of a complex vector in Cd. We
write C− := {z ∈ C : Re(z) ≤ 0}. For a, b ∈ R we denote the closed interval [a, b] := {x ∈
R : a ≤ x ≤ b}, which is empty if a > b. We use the notations ∂u and D for partial and
total derivatives, respectively. We often write β • Xt =

∫ t
0
βsdXs for stochastic integrals.

L(X) denotes the set of X-integrable predictable processes for a semimartingale X . If we
talk about an m+ n-dimensional semimartingale (X, Y ), we mean that X is an Rm-valued
semimartingale and Y is an Rn-valued semimartingale. For u, v ∈ Cd we denote the scalar
product of u and v by uv :=

∑d
k=1 ukvk. Finally, I denotes the identity process, i.e. It = t.

The abbreviation PII stands for processes with independent increments in the sense of [15].
Further unexplained notation is used as in [15].

2. HEATH-JARROW-MORTON AND LÉVY MODELS

This section provides an informal discussion of the HJM philosophy and its application
to stock options.

2.1. The Heath-Jarrow-Morton philosophy. According to the fundamental theorem of
asset pricing, there exists at least one equivalent probability measure that turns discounted
prices of all traded securities into martingales or, more precisely, into σ-martingales. For
simplicity we take the point of view of risk-neutral modelling in this paper, i.e. we specify
the dynamics of all assets in the market directly under such an equivalent martingale measure
(EMM). Moreover, we assume the existence of a constant bank account. Put differently, all
prices are expressed in discounted terms.

Before we turn to our concrete setup, we want to highlight key features of the HJM
approach in general. For more background and examples we refer the reader to the brilliant
exposition [6], which greatly inspired our work. We proceed by stating seven informal
axioms or steps.

(1) In HJM-type setups there typically exists a canonical underlying asset or reference
process, namely the money market account in interest rate theory or the stock in the
present paper. The object of interest, namely bonds in interest rate theory or vanilla
options in stock markets, can be interpreted as derivatives on the canonical process.
HJM-type approaches typically focus on a whole manifold of such — at least in
theory — liquidly traded derivatives, e.g. the one-dimensional manifold of bonds
with all maturities or the two-dimensional manifold of call options with all strikes
and maturities. As first and probably most important HJM axiom we claim that this
manifold of liquid derivatives is to be treated as the set of primary assets. It — rather
than the canonical reference asset — constitutes the object whose dynamics should
be modelled in the first place.

(2) The first axiom immediately leads to the second one: do not model the canonical ref-
erence asset in detail under the market’s risk-neutral measure. Indeed, otherwise all
derivative prices would be entirely determined, leaving no room for a specification
of their dynamics.
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(3) Direct modelling of the above manifold typically leads to awkward constraints. Zero
bond price processes must terminate in 1, vanilla options in their respective payoff.
Rather than prices themselves one should therefore consider a convenient parametri-
sation (or codebook in the language of [6]), e.g. instantaneous forward rates in in-
terest rate theory. Specifying the dynamics of this codebook leads immediately to a
model for the manifold of primary assets. If the codebook is properly chosen, then
the above awkward constraints are satisfied automatically.

(4) It is generally understood that choosing a convenient parametrisation constitutes
a crucial step for a successful HJM-type approach. This is particularly obvious
in the context of call options. Their prices are linked by a number of non-trivial
static arbitrage constraints, which must hold independently of any particular model,
cf. [11]. These static constraints have to be respected by any codebook dynamics.
Specifying the latter properly may therefore be a difficult task unless the codebook
is chosen such that the constraints naturally hold. We now suggest a way to choose
such a codebock.

The starting point is a family of simple risk-neutral models for the canonical un-
derlying whose parameter space has the same dimension as the manifold of the liquid
derivatives. Provided sufficient regularity holds, the presently observed manifold of
derivative prices is explained by one and only one of these models.

Example 1. In interest rate theory consider bank accounts of the form

S0
t = exp

(∫ t

0

r(s)ds

)
with deterministic short rate r(T ), T ∈ R+. A differentiable curve of bond prices
B(t, T ), T ∈ R+ at a given time t ∈ R+ is consistent with one and only one of these
models, namely for

r(T ) := −∂T log(B(t, T )). (2.1)

Example 2. Consider Dupire’s local volatility models

dSt = Stσ(St, t)dWt

for a discounted stock, where W denotes standard Brownian motion and σ : R2
+ →

R a deterministic function. Up to regularity, any surface of discounted call option
prices Ct(T,K) with varying maturity T and strike K and fixed current date t ∈ R+

is obtained by one and only one local volatility function σ, namely by

σ(T,K) :=
2∂TCt(T,K)

K2∂KKCt(T,K)
(2.2)

If market data follows the simple model, the parameter manifold, e.g. (r(T ))T∈R+

in Example 1, is deterministic and does not depend on the time when the derivative
prices are observed. Generally, however, market data does not follow such a simple
model as in the two examples. Hence, evaluation of the right-hand side of (2.1) and
(2.2) leads to a parameter manifold which changes randomly over time.

Example 1. The instantaneous forward rate curve

f(t, T ) := −∂T log(B(t, T )), T ∈ R+

for fixed t ∈ R+ can be interpreted as the family of deterministic short rates that is
consistent with the presently observed bond price curve B(t, T ), T ∈ R+.
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Example 2. The implied local volatility

σt(T,K) :=
2∂TCt(T,K)

K2∂KKCt(T,K)
, T ∈ R+, K > 0

for fixed t ∈ R+ can be interpreted as the unique local volatility function that is
consistent with the presently observed discounted call prices Ct(T,K), T ∈ R+,
K > 0.

The idea now is to take this present parameter manifold as a parametrisation or
codebook for the manifold of derivatives.

(5) In a next step, we set this parameter manifold “in motion.” We consider the code-
book, e.g. the instantaneous forward curve f(t, T ) or the implied local volatility
σt(T,K), as an infinite-dimensional stochastic process. It is typically modelled by
a stochastic differential equation, e.g.

df(t, T ) = α(t, T )dt+ β(t, T )dWt,

whereW denotes standard Brownian motion. As long as the solution to this equation
moves within the parameter space for the family of small models, one automatically
obtains derivative prices that satisfy any static arbitrage constraints. Indeed, since the
current bond prices resp. call prices coincide with the prices from an arbitrage-free
model, they cannot violate any such constraints, however complicated they might be.
This automatic absence of static arbitrage motivates the codebook choice in Step 4.

(6) Absence of static arbitrage does not imply absence of arbitrage altogether. Under
the risk neutral modelling paradigm, all discounted assets must be martingales. In
interest rate theory this leads to the well known HJM drift condition. More generally
it means that the drift part of the codebook dynamics of Step 5 is determined by its
diffusive component.

(7) Finally we come back to Step 2. The dynamics of the canonical reference asset
process is typically implied by the current state of the codebook. E.g. in interest rate
theory the short rate is determined by the so called consistency condition

r(t) = f(t, t).

Similar conditions determine the current stock volatility in [24, 25, 7].

2.2. Time-inhomogeneous Lévy models. According to the above interpretation, the ap-
proach of [7] to option surface modelling relies on the family of Dupire’s local volatility
models. We suggest another family of simple models for the stock, also relying on a two-
dimensional parameter manifold. To this end, suppose that the discounted stock is a martin-
gale of the form S = eX , where the return process X denotes a process with independent
increments (or time-inhomogeneous Lévy process, henceforth PII) on some filtered proba-
bility space (Ω,F , (Ft)t∈R+ , P ) and P denotes a risk neutral measure. More specifically,
the characteristic function of X is assumed to be absolutely continuous in time, i.e.

E(eiuXt) = exp

(
iuX0 +

∫ t

0

Ψ(s, u)ds

)
(2.3)

with some function Ψ : R+ × R→ C.
We assume call options of all strikes and maturities to be liquidly traded. Specifically, we

writeCt(T,K) for the discounted price at time t of a call which expires at T with discounted
strike K. A slight extension of [3, Proposition 1] shows that option prices can be expressed
in terms of Ψ. To this end, we define modified option prices

Ot(T, x) := e−(x+Xt)Ct(T, e
x+Xt)− (e−x − 1)+.
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Since call option prices are obtained fromCt(T,K) = E((ST−K)+|Ft), by call-put parity,
and by E(ST |Ft) = St, we have

Ot(T, x) =

{
E((e(XT−Xt)−x − 1)+|Ft) if x ≥ 0,

E((1− e(XT−Xt)−x)+|Ft) if x < 0.

Proposition B.4 yields

Ot(T, x) = F−1

{
u 7→ 1− E(eiu(XT−Xt)|Ft)

u2 + iu

}
(x), (2.4)

F{x 7→ Ot(T, x)}(u) =
1− E(eiu(XT−Xt)|Ft)

u2 + iu
(2.5)

where F−1 and F denote the improper inverse Fourier transform and the improper Fourier
transform, respectively, in the sense of (B.1, B.2) in Section B.1 in the appendix. Since

Ct(T,K) = (St −K)+ +KOt

(
T, log

K

St

)
(2.6)

and

E(eiu(XT−Xt)|Ft) = exp

(∫ T

t

Ψ(s, u)ds

)
, (2.7)

we can compute option prices according to the following diagram:

Ψ→ exp

(∫ T

t

Ψ(s, ·)ds
)
→ Ot(T, ·)→ Ct(T, ·).

For the last step we also need the current stock price St. Under sufficient smoothness we
can invert all transformations. Indeed, we have

Ψ(T, u) = ∂T log

(
1− (u2 + iu)F{x 7→ Ot(T, x)}(u)

)
. (2.8)

Hence we obtain option prices from Ψ and vice versa as long as we know the current stock
price.

2.3. Setting Lévy in motion. Generally we do not assume that the return process

X := log(S) (2.9)

follows a time-inhomogeneous Lévy process. Hence the right-hand side of Equation (2.8)
will typically change randomly over time. In line with Step 4 above, we define modified
option prices

Ot(T, x) := e−(x+Xt)Ct(T, e
x+Xt)− (e−x − 1)+ (2.10)

as before and

Ψt(T, u) := ∂T log

(
1− (u2 + iu)F{x 7→ Ot(T, x)}(u)

)
. (2.11)

This constitutes our codebook process for the surface of discounted option prices. As in
Section 2.2 the asset price processes S and C(T,K) can be recovered from X and Ψ(T, u)
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via

S = exp(X),

Ot(T, x) = F−1

{
u 7→

1− exp(
∫ T
t

Ψt(s, u)ds)

u2 + iu

}
(x),

Ct(T,K) = (St −K)+ +KOt

(
T, log

K

St

)
.

In the remainder of this paper we assume that the infinite-dimensional codebook process
satisfies an equation of the form

dΨt(T, u) = αt(T, u)dt+ βt(T, u)dMt, (2.12)

driven by some finite-dimensional semimartingale M .

3. MODEL SETUP AND RISK NEUTRALITY

As before we fix a filtered probability space (Ω,F , (Ft)t∈R+ , P ) with trivial initial σ-
field F0. In this section we single out conditions such that a given pair (X,Ψ) corresponds
via (2.9 – 2.11) to a risk neutral model for the stock and its call options.

3.1. Option surface models. We denote by Π the set of characteristic exponents of Lévy
processes L such that E(eL1) = 1 . More precisely, Π contains all functions ψ : R → C of
the form

ψ(u) = −u
2 + iu

2
c+

∫
(eiux − 1− iu(ex − 1))K(dx),

where c ∈ R+ and K denotes a Lévy measure on R satisfying
∫
{x>1} e

xK(dx) <∞.

Definition 3.1. A quintuple (X,Ψ0, α, β,M) is an option surface model if

• (X,M) is a 1 + d-dimensional semimartingale that allows for local characteristics
in the sense of Section A.1,
• Ψ0 : R+ × R→ C with

∫ T
0
|Ψ0(r, u)|dr <∞ for any T ∈ R+, u ∈ R,

• α(T, u), β(T, u) are R- resp. Rd-valued predictable processes for any T ∈ R+, u ∈
R,
• (ω, t, T, u) 7→ αt(T, u)(ω), βt(T, u)(ω) are P ⊗ B(R+) ⊗ B-measurable, where

P denotes the predictable σ-field on Ω× R+,
•
∫ t

0

∫ T
0
|αs(r, u)|drds <∞ for any t, T ∈ R+, u ∈ R,

•
∫ T

0
(βt(r, u))2dr <∞ for any t, T ∈ R+, u ∈ R,

•
(
(
∫ T

0
(βt(r, u))2dr)

1
2

)
t∈R+

∈ L(M) for any fixed T ∈ R+, u ∈ R,
• the corresponding codebook process

Ψt(T, u) := Ψ0(T, u) +

∫ t∧T

0

αs(T, u)ds+

∫ t∧T

0

βs(T, u)dMs (3.1)

has the following properties:
(1) (ω, t, T, u) 7→ Ψt(T, u)(ω) is O ⊗B(R+) ⊗B-measurable, where O denotes

the optional σ-field on Ω× R+,
(2) u 7→

∫ T
t

Ψs(r, u)dr(ω) is in Π for any T ∈ R+, t ∈ [0, T ], s ∈ [0, t], ω ∈ Ω.
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In line with Section 2.3, the discounted stock and call price processes associated with an
option surface model are defined by

St := exp(Xt), (3.2)

Ot(T, x) := F−1

{
u 7→

1− exp
( ∫ T

t
Ψt(r, u)dr

)
u2 + iu

}
(x), (3.3)

Ct(T,K) := (St −K)+ +KOt

(
T, log

K

St

)
(3.4)

for any T ∈ R+, t ∈ [0, T ], x ∈ R, K ∈ R+, where F−1 denotes the improper inverse
Fourier transform in the sense of Section B.1. We denote the local exponents of (X,M), X
by ψ(X,M), ψX and their domains by U (X,M),U X , cf. Definitions A.4 and A.6.

Remark 3.2. The existence of these processes is implied by the assumptions above. Indeed,
by Fubini’s theorem for ordinary and stochastic integrals [20, Theorem IV.65], we have∫ T

0

|Ψt(r, u)|dr <∞.

Since u 7→
∫ T
t

Ψt(r, u)dr(ω) ∈ Π, there is an infinitely divisible distribution Q on (R,B)
such that ∫

eiuxQ(dx) = exp

(∫ T

t

Ψt(r, u)dr(ω)

)
,

where ω ∈ Ω is fixed. The random variable Y : R → R, t 7→ t has the property
that eY is Q-integrable with expectation 1 because the characteristic function of Y is in
Π. Thus Proposition B.4 yields the existence of the inverse Fourier transform in Equa-
tion (3.3). Moreover, it implies Ct(T,K)(ω) = EQ((St(ω)eY − K)+) and thus we have
0 ≤ Ct(T,K)(ω) ≤ St(ω) and 0 ≤ Pt(T,K)(ω) ≤ K for any K ∈ R+, T ∈ R+,
t ∈ [0, T ], where Pt(T,K) := Ct(T,K) +K − St for any K ∈ R+, T ∈ R+, t ∈ [0, T ].

As noted above, we model asset prices under a risk neutral measure for the whole market.
Put differently, we are interested in risk-neutral option surface models in the following sense.

Definition 3.3. An option surface model (X,Ψ0, α, β,M) is called risk neutral if the corre-
sponding stock S and all European call options C(T,K), T ∈ R+, K > 0 are σ-martingales
or, equivalently, local martingales (cf. [16, Proposition 3.1 and Corollary 3.1]). It is called
strongly risk neutral if S and all C(T,K) are martingales.

Below, risk-neutral option surface models are characterized in terms of the following
properties.

Definition 3.4. An option surface model (X,Ψ0, α, β,M) satisfies the consistency condition
if

ψXt (u) = Ψt−(t, u), u ∈ R.
outside some dP ⊗ dt-null set. Moreover, it satisfies the drift condition if(

u,−i
∫ T

t

βt(r, u)dr

)
t∈R+

∈ U (X,M)

and ∫ T

t

αt(r, u)dr = ψXt (u)− ψ(X,M)
t

(
u,−i

∫ T

t

βt(r, u)dr

)
(3.5)
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outside some dP ⊗ dt null set for any T ∈ R+, u ∈ R. Finally, the option surface model
satisfies the conditional expectation condition if

exp

(∫ T

t

Ψt(r, u)dr

)
= E(eiu(XT−Xt)|Ft)

for any T ∈ R+, t ∈ [0, T ], u ∈ R.

Remark 3.5. The drift condition can be rewritten as

αt(T, u) = −∂T
(
ψ

(X,M)
t

(
u,−i

∫ T

t

βt(r, u)dr

))
for almost all T ∈ R+. It gets even simpler if X and M are assumed to be locally indepen-
dent in the sense of Definition A.10:

αt(T, u) = −∂T
(
ψMt

(
− i
∫ T

t

βt(r, u)dr

))
.

If the derivative ψ′t(u) := ∂uψ
M
t (u) exists as well, the drift condition simplifies once more

and turns into

αt(T, u) = iψ′t

(
− i
∫ T

t

βt(r, u)dr

)
βt(T, u).

Now consider the situation that M is a one-dimensional Brownian motion which is locally
independent of the return process X . Then ψM(u) = −u2

2
and the drift condition reads as

αt(T, u) = −βt(T, u)

∫ T

t

βt(r, u)dr.

Thus the drift condition for option surface models is similar to the HJM drift condition (cf.
[13]).

3.2. Necessary and sufficient conditions. The goal of this section is to prove the following
characterisation of risk-neutral option surface models.

Theorem 3.6. For any option surface model (X,Ψ0, α, β,M) the following statements are
equivalent.

(1) It is strongly risk neutral.
(2) It is risk neutral.
(3) It satisfies the conditional expectation condition.
(4) It satisfies the consistency and drift conditions.

The remainder of this section is devoted to the proof of Theorem 3.6. We proceed accord-
ing to the following scheme

(1)⇒ (2)⇒ (3)⇒ (4)⇒ (3)⇒ (1).

We use the notation

δt(T, u) :=

∫ T

t

αt(r, u)dr − ψXt (u),

σt(T, u) :=

∫ T

t

βt(r, u)dr,

Γt(T, u) :=

∫ T

0

Ψ0(r, u)dr +

∫ t

0

δs(T, u)ds+

∫ t

0

σs(T, u)dMs.
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δ, σ correspond to the integrated drift and diffusion parts in the original HJM setup. The
existence of the integrals above are implied by the condition for option surface models.
Observe that Γ(T, u) is a semimartingale.

Lemma 3.7. For all u ∈ R, T ∈ R+, t ∈ [0, T ] we have

Γt(T, u)− Γt(t, u) =

∫ T

t

Ψt(r, u)dr.

Proof. Using the definition of Γ, δ, σ and applying Fubini’s theorem as in [20, Theorem
IV.65] yields

Γt(T, u)− Γt(t, u) =

∫ T

t

Ψ0(r, u)dr +

∫ T

t

∫ t

0

αs(r, u)dsdr +

∫ T

t

∫ t

0

βs(r, u)dMsdr

=

∫ T

t

Ψt(r, u)dr.

�

Lemma 3.8. Let u ∈ R, t ∈ R+ and Yt := Γt(t, u). Then

Yt =

∫ t

0

(
Ψs−(s, u)− ψXs (u)

)
ds.

Proof. Observe that

Yt =

∫ t

0

Ψ0(r, u)dr +

∫ t

0

δs(t, u)ds+

∫ t

0

σs(t, u)dMs

=

∫ t

0

(
Ψ0(r, u) +

∫ r

0

αs(r, u)ds− ψXr (u)

)
dr +

∫ t

0

∫ t

s

βs(r, u)drdMs.

By Fubini’s theorem for stochastic integrals the last term equals
∫ t

0

∫ r
0
βs(r, u)dMsdr. This

yields the claim. �

Lemma 3.9. If (X,Ψ0, α, β,M) is risk neutral, then it satisfies the conditional expectation
condition.

Proof. Let T ∈ R+. We define

Ot(T, x) :=

{
e−xCt(T, e

x) if x ≥ 0,

e−xPt(T, e
x) if x < 0,

where Pt(T,K) := Ct(T,K) +K − St for any K ∈ R+, t ∈ [0, T ], x ∈ R. Then we have

Ot(T, x) =

{
(eXt−x − 1)+ + Ot(T, x−Xt) if x ≥ 0,

(1− eXt−x)+ + Ot(T, x−Xt) if x < 0.

We calculate the Fourier transform of Ot(T, x) in two steps by considering the summands
separately. The improper Fourier transform of the second summand Ot(T, x − Xt) exists
and satisfies

F{x 7→ Ot(T, x−Xt)}(u) = F{x 7→ Ot(T, x)}(u)eiuXt

=
1− exp

(∫ T
t

Ψt(r, u)dr
)

u2 + iu
eiuXt
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for any u ∈ R\{0} by Remark 3.2, Proposition B.4 and the translation property for the
Fourier transform, which holds for the improper Fourier transform as well. The Fourier
transform of the first summand At(T, x) := Ot(T, x)− Ot(T, x−Xt) exists and equals

F{x 7→ At(T, x)}(u) =
1

iu
− eXt

iu− 1
− eiuXt

u2 + iu

for any u ∈ R\{0}. Therefore the improper Fourier transform of x 7→ Ot(T, x) exists and
is given by

F{x 7→ Ot(T, x)}(u) =
1

iu
− eXt

iu− 1
−

exp(iuXt +
∫ T
t

Ψt(r, u)dr)

u2 + iu
, (3.6)

for any u ∈ R\{0}. By Lemmas 3.7 and 3.8 we have that the right-hand side of (3.6) is a
semimartingale, in particular it has càdlàg paths. Remark 3.2 yields that 0 ≤ Pt(T,K) ≤ K.
Hence (Pt(T,K))t∈[0,T ] is a martingale because it is a bounded local martingale. Let (τn)n∈N
denote a common localising sequence for (Ct(T, 1))t∈[0,T ] and S, i.e. Sτn , Cτn(T, 1) are
uniformly integrable martingales for any n ∈ N. Since Cτn

t (T,K) ≤ Cτn
t (T, 1) for K ∈

[1,∞), we have that (τn)n∈N is a common localising sequence for all European calls with
maturity T and strike K ≥ 1. The definition of Ot(T, x) yields that it is a local martingale
for any x ∈ R and (τn)n∈N is a common localising sequence for (Ot(T, x))t∈[0,T ], x ∈ R.

Fix ω ∈ Ω. Since u 7→
∫ T
t

Ψt(r, u)(ω)dr is in Π for any t ∈ [0, T ], there is an infinitely
divisible distribution Q on (R,B) such that∫

eiuxQ(dx) = exp

(∫ T

t

Ψt(r, u)(ω)dr

)
.

Then
∫
eyQ(dy) = 1 and

Ot(T, x)(ω) =

{∫
(St(ω)ey−x − 1)+Q(dy) if x ≥ 0,∫
(1− St(ω)ey−x)+Q(dy) if x < 0,

cf. Remark 3.2. By Corollary B.3 we have |
∫∞
−C e

iuxOt(T, x)dx| ≤ St(ω) + 1+2|u|
u2 . Propo-

sition B.5 yields that
(F{x 7→ Ot(T, x)}(u))t∈[0,T ]

and hence (Φt(u))t∈[0,T ] given by

Φ : Ω× [0, T ]× R→ C, (ω, t, u) 7→ Φt(u)(ω) := exp

(
iuXt(ω) +

∫ T

t

Ψt(r, u)(ω)dr

)
are local martingales for any u ∈ R\{0}. Since u 7→

∫ T
t

Ψt(r, u)dr(ω) is in Π for any
t ∈ [0, T ], ω ∈ Ω, its real part is bounded by 0 from above cf. Lemma A.14. Hence
|Φt(u)| ≤ 1 and thus (ω, t) 7→ Φt(u)(ω) is a true martingale for any u ∈ R\{0}. By
Φt(0) = 1 it is a martingale for u = 0 as well. Since ΦT (u) = exp(iuXT ), the two
martingales (Φt(u))t∈[0,T ] and (E(exp(iuXT )|Ft))t∈[0,T ] coincide for any u ∈ R. Thus we
have

exp

(∫ T

t

Ψt(r, u)dr

)
= exp(−iuXt)Φt(u) = E(eiu(XT−Xt)|Ft)

for any u ∈ R, t ∈ [0, T ]. �
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Lemma 3.10 (Drift condition in terms of δ and σ). If (X,Ψ0, α, β,M) satisfies the condi-
tional expectation condition, we have the drift condition

δt(T, u) = Ψt−(t, u)− ψXt (u)− ψ(X,M)
t (u,−iσt(T, u))

outside some dP ⊗ dt-null set for T ∈ R+, u ∈ R. In particular, (u,−iσ(T, u)) ∈ U (X,M).

Proof. For u ∈ R and T ∈ R+ define the process Zt := iuXt +
∫ T
t

Ψt(r, u)dr. The con-
ditional expectation condition yields that exp(Zt) = E(eiuXT |Ft) is a martingale. Hence
−i ∈ U Z and ψZt (−i) = 0 by Proposition A.16. With Yt := Γt(t, u) we obtain

0 = ψZt (−i)
= ψ

iuX+Γ(T,u)−Y
t (−i)

= ψ
iuX+Γ(T,u)
t (−i)−

(
Ψt−(t, u)− ψXt (u)

)
= ψ

(iuX,Γ(T,u))
t (−i,−i)−Ψt−(t, u) + ψXt (u)

= ψ
(X,M)
t (u,−iσt(T, u)) + δt(T, u)−Ψt−(t, u) + ψXt (u),

where the second equation follows from Lemma 3.7, the third from Lemmas 3.8 and A.19,
the fourth from Lemma A.18 and the last from Lemmas A.17 and A.19. �

Corollary 3.11 (Consistency condition). If (X,Ψ0, α, β,M) satisfies the conditional expec-
tation condition, then it satisfies the consistency condition.

Proof. Lemma 3.10 and the definition of δ yield

Ψt−(t, u) = δt(t, u) + ψXt (u) + ψ
(X,M)
t (u, 0) = ψXt (u).

�

Corollary 3.12 (Drift condition). If (X,Ψ0, α, β,M) satisfies the conditional expectation
condition, then it satisfies the drift condition.

Proof. This follows from Lemma 3.10 and Corollary 3.11. �

Lemma 3.13. If the option surface model satisfies the consistency condition, then

Γt(T, u) =

∫ T

t

Ψt(r, u)dr

for any T ∈ R+, t ∈ [0, T ], u ∈ R.

Proof. This is a direct consequence of Lemmas 3.7 and 3.8. �

Lemma 3.14. If the option surface model satisfies the drift condition, then (Φt(T, u))t∈[0,T ]

defined by
Φt(T, u) := exp(iuXt + Γt(T, u))

is a local martingale for any u ∈ R, T ∈ R+.

Proof. Fix T, u and define Zt := iuXt + Γt(T, u). By the drift condition and Lemmas A.17
– A.19 we have

0 = ψ
(X,M)
t (u,−iσt(T, u)) + δt(T, u)

= ψ
(X,σ(T,u).M)
t (u,−i) + δt(T, u)

= ψ
(iuX,Γ(T,u))
t (−i,−i)

= ψ
iuX+Γ(T,u)
t (−i)

= ψZt (−i).
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Hence exp(Y ) is a local martingale by Proposition A.16. �

Lemma 3.15. (X,Ψ0, α, β,M) satisfies the drift and consistency conditions if and only if it
satisfies the conditional expectation condition.

Proof. ⇐: This is a restatement of Corollaries 3.12 and 3.11.
⇒: Fix u ∈ R, T ∈ R+. Lemma A.14 implies that the absolute value of

Φt(T, u) := exp

(
iuXt +

∫ T

t

Ψt(r, u)dr

)
is bounded by 1. By Lemmas 3.13 and 3.14, Φ(T, u) is a local martingale and hence a
martingale. This yields

Φt(T, u) = E(ΦT (T, u)|Ft) = E(eiuXT |Ft).

�

Lemma 3.16. If the option surface model (X,Ψ0, α, β,M) satisfies the conditional expec-
tation condition, then S = eX is a martingale.

Proof. For T ∈ R+, t ∈ [0, T ] define Y := XT − Xt. Let P Y |Ft denote the conditional
distribution of Y given Ft. Moreover, let

Φ(u) := E(eiuY |Ft) = exp

(∫ T

t

Ψt(r, u)dr

)
.

Fix ω ∈ Ω. Since u 7→
∫ T
t

Ψt(r, u)dr(ω) is in Π, we have

E eP (eiuL1) = exp

(∫ T

t

Ψt(r, u)dr

)
(ω)

for some Lévy process L on some filtered probability space (Ω̃, F̃ , (F̃t)t∈R+ , P̃ ). Conse-
quently, we have P Y |Ft(ω) = P̃ , which in turn implies

E(eY |Ft)(ω) = E eP (eL1) = 1.

�

Lemma 3.17. If the option surface model (X,Ψ0, α, β,M) satisfies the conditional expec-
tation condition, it is strongly risk neutral.

Proof. Lemma 3.16 implies that eX is a martingale and in particular that eXt is integrable
for any t ∈ R+. Let T ∈ R+, t ∈ [0, T ]. We define

C̃(K) := E((eXT −K)+|Ft),

Õ(x) := e−(x+Xt)C̃(ex+Xt)− (e−x − 1)+,

Y := XT −Xt

for any K ∈ R+. Obviously we have

Õ(x) =

{
E((eY−x − 1)+|Ft) if x ≥ 0,

E((1− eY−x)+|Ft) if x < 0
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and E(eY |Ft) = 1. Hence Corollary B.4, the conditional expectation condition, and the
definition of O yield

F{x 7→ Õ(x)}(u) =
1− E(eiuY |Ft)

u2 + iu

=
1− exp

(∫ T
t

Ψt(r, u)dr
)

u2 + iu

as well as

Õ(x) = F−1

u 7→ 1− exp
(∫ T

t
Ψt(r, u)dr

)
u2 + iu

 (x)

= Ot(T, x).

Thus we have
C̃(K) = Ct(T,K)

for any K ∈ R+. Consequently, the option surface model (X,Ψ0, α, β,M) is strongly risk
neutral. �

Proof of Theorem 3.6. (1)⇒ (2) is obvious.
(2)⇒ (3) has been shown in Lemma 3.9.
(3)⇔ (4) is the conclusion of Lemma 3.15.
(3)⇒ (1) has been shown in Lemma 3.17. �

4. EXAMPLES AND EXISTENCE RESULTS

4.1. Building blocks. The goal in this section is to construct risk-neutral option surface
models from basic building blocks. In order to model the forward rate

f(t, T ) = f(0, T ) +

∫ t

0

α(s, T )ds+

∫ t

0

β(s, T )dWs (4.1)

in the original HJM setup, one specifies the initial state f(0, T ), T ∈ R+, the driving Brow-
nian motion (or a more general process) W , and the volatility processes (β(t, T ))t∈[0,T ],
T ∈ R+ of the forward rate curve. The drift process, however, is determined by the HJM
drift condition

α(t, T ) = β(t, T )

∫ T

t

β(t, r)dr,

cf. [13]. Therefore, it should not be fixed beforehand. Moreover, the short rate is determined
by the present forward rate through the consistency condition

r(t) = f(t, t).

Put differently, the initial forward rate curve f(0, ·), the volatility process β and the driving
process W constitute the “right” building blocks for a HJM model. In line with the original
HJM approach, we suggest that the building blocks in our setup should include the initial
state of the codebook Ψ0(T, u), T ∈ R+, u ∈ R, a driving Lévy process M , and the
volatility processes (βt(T, u))t∈[0,T ], T ∈ R+, u ∈ R. Moreover, we fix the initial stock
price X0, which has no counterpart in interest rate theory. However, X0,Ψ0, β,M do not
fully determine the model unless the local dependency ofX andM is specified as well. This
is done by also providing the dependent part X‖ of X relative to M as defined in Section
A.3.
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The drift and consistency conditions in terms of X0,Ψ0, β,M,X‖ read as

αt(T, u) = ∂T

(
ψ(X‖,M)

(
u,−i

∫ T

t

βt(r, u)dr

))
, (4.2)

ψXt (u) = Ψ0(t−, u) +

∫ t

0

αs(t, u)ds+

∫ t−

0

βs(t, u)dMs,

if the differentiation of the right hand side of the first equation exists, cf. Remark 3.5 and
Lemma 4.2 below. Hence we propose X0,Ψ0, β,M,X‖ as building blocks for our model.

Definition 4.1. We call a risk-neutral option surface model (X,Ψ0, α, β,M) consistent with
X0,Ψ0, β,M,X‖ if X0 is the initial value of X and X‖ equals the dependent part of X
relative to M .

Lemma 4.2 (Modified drift condition). The drift condition (3.5) is equivalent to(
u,−i

∫ T

t

βt(r, u)dr

)
t∈[0,T ]

∈ U (X‖,M)

and ∫ T

t

αt(r, u)dr = ψX
‖

t (u)− ψ(X‖,M)
t

(
u,−i

∫ T

t

βt(r, u)dr

)
(4.3)

outside some dP ⊗ dt-null set for any T ∈ R+, u ∈ R.

Proof. Let X⊥ denote the independent part of X relative to M in the sense of Section A.3.
Lemmas A.18 and A.21 yield

ψ
(X,M)
t

(
u,−i

∫ T

t

βt(r, u)dr

)
= ψ

(X‖,M,X⊥,0)
t

(
u,−i

∫ T

t

βt(r, u)dr, u,−i
∫ T

t

βt(r, u)dr

)
= ψ

(X‖,M,X⊥)
t

(
u,−i

∫ T

t

βt(r, u)dr, u

)
= ψ

(X‖,M)
t

(
u,−i

∫ T

t

βt(r, u)dr

)
+ ψX

⊥

t (u)

and similarly

ψXt (u) = ψ
(X‖,X⊥)
t (u, u) = ψX

‖

t (u) + ψX
⊥

t (u).

This implies

ψXt (u)− ψ(X,M)
t

(
u,−i

∫ T

t

βt(r, u)dr

)
= ψX

‖

t (u)− ψ(X‖,M)
t

(
u,−i

∫ T

t

βt(r, u)dr

)
for any T ∈ R+, t ∈ [0, T ], u ∈ R. �

4.2. The minimum value condition. Since our codebook space is a convex cone rather
than a vector space, we must ensure that we do not leave the cone at any time. It turns out that
the initial state of the codebook Ψ0 must be ’large’ enough for this purpose. Throughout this
section let (X,Ψ0, α, β,M) be a risk-neutral option surface model and denote by X‖, X⊥

the dependent resp. independent part of X relative to M as defined in Section A.3. Ek
t :=
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ess inf Mk
t are the componentwise essential infimums of Mt, which may attain the value

−∞. As in Section 3.2 we set

δt(T, u) :=

∫ T

t

αt(r, u)dr − ψXt (u),

σt(T, u) :=

∫ T

t

βt(r, u)dr,

Γt(T, u) :=

∫ T

0

Ψ0(r, u)dr +

∫ t

0

δs(T, u)ds+

∫ t

0

σs(T, u)dMs

for any T ∈ R+, t ∈ [0, T ], u ∈ R. Let Υ be the convex cone of all functions f : R+ → Π
such that f(0) = 0 and f(t) − f(s) ∈ Π for any s ≤ t, denote by Ῡ the vector space
generated by Υ, and let ≤ be the partial order on Ῡ which is generated by the convex cone
Υ (i.e. f ≤ g if f − g ∈ Υ). By slight abuse of notation, we also write f ∈ Υ (resp. Ῡ)
almost surely if f : Ω × R+ × R → C and t 7→ f(ω, t, ·) is in Υ (resp. Ῡ) for almost all
ω ∈ Ω. The notation f ≤ g a.s. is used accordingly. Since u 7→

∫ T
t

Ψ0(r, u)dr is in Π for
any T ∈ R+, t ∈ [0, T ], we conclude that Γ0 ∈ Υ.

Remark 4.3. For any (deterministic) f ∈ Υ there is a filtered probability space
(Ω,F , (Ft)t∈R+ , P ) and a PII L such that eL is a martingale and E(eiuLT ) = exp(f(T, u))
for any T ∈ R+, u ∈ R, cf. [15, III.2.16]. Conversely, if L is a PII which allows for local
characteristics and such that eL is a martingale, there is a (deterministic) f ∈ Υ such that
E(eiuLT ) = exp(f(T, u)) for any T ∈ R+, u ∈ R.

The following result shows that the initial state of the codebook has a nontrivial lower
bound in any risk-neutral option surface model.

Proposition 4.4 (Minimum value condition). Let f : Ω× R+ × R→ C,

(ω, T, u) 7→
(∫ T

0

ψ(X‖,M)
s (u,−iσs(T, u)) ds−

∫ T

0

σs(T, u)dMs

)
(ω).

Then f ∈ Ῡ a.s. and Γ0 satisfies the stochastic minimum value condition

Γ0 ≥ f almost surely.

Proof. Since eX is a martingale, Lemma A.21 yields that eX⊥ is a martingale as well. Hence
ψX

⊥
t (−i) = 0 by Proposition A.16. Together with Proposition A.8 we have that u 7→
ψX

⊥
(u) is in Π. Let T ∈ R+, t ∈ [0, t]. Then u 7→

∫ T
t
ψX

⊥
s (u)ds is in Π as well. Using

the consistency condition, the definition of Ψt−(t, ·), Fubini’s theorem as in [20, Theorem
IV.65], and the modified drift condition (4.3), we obtain∫ T

0

ψX
⊥

r (u)dr =

∫ T

0

(
ψXr (u)− ψX‖r (u)

)
dr

=

∫ T

0

(
Ψ0(r, u) +

∫ r

0

αs(r, u)ds+

∫ r

0

βs(r, u)dMs − ψX
‖

r (u)

)
dr

= Γ0(T, u) +

∫ T

0

∫ T

s

αs(r, u)drds+

∫ T

0

σs(T, u)dMs −
∫ T

0

ψX
‖

s (u)ds

= Γ0(T, u)−
∫ T

0

ψ(X‖,M)
s

(
u,−iσs(T, u)

)
ds+

∫ T

0

σs(T, u)dMs.

= Γ0(T, u)− f(T, u).

�
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In more specific setups the stochastic lower bound f in the previous result can be replaced
by a deterministic bound g. We will see in Theorem 4.11 that the corresponding condition
(4.4) is also sufficient in some sense.

Proposition 4.5. Assume that E = (E1, . . . , Ed) = 0, the local exponent ψ(X‖,M) is de-
terministic, M a Lévy process and t 7→ σt(T, u) is deterministic and bounded for any
T ∈ R+, u ∈ R. Furthermore we suppose that u 7→ σt(T, u) is continuous and that
u 7→

∫ T
0
σs(T, u)dMs is continuous in 0. Set

g : R+ × R→ C, (T, u) 7→
∫ T

0

ψ(X‖,M)
s (u,−iσs(T, u)) ds.

Then g ∈ Ῡ and
Γ0 ≥ g. (4.4)

Proof. Let f be the function defined in Proposition 4.4 and T ∈ R+, u ∈ R. Then Γ0− f ∈
Υ a.s. and

Γ0(T, u)− f(T, u) = Γ0(T, u)− g(T, u)−
∫ T

0

σs(T, u)dMs. (4.5)

Corollary B.9 yields ∣∣∣∣ ∫ T

0

σs(T, u)dMs

∣∣∣∣(ωn) −→
n→∞

0

for some sequence (ωn)n∈N in Ω. The proof actually shows that the same sequence can be
chosen for all u ∈ R. Hence there is a sequence (ωn)n∈N in Ω such that

(Γ0(T, ·)− f(T, ·)) (ωn) ∈ Π

for all n ∈ N and (Γ0(T, u)− f(T, u)) (ωn) → Γ0(T, u) − g(T, u) for all u ∈ R. The
mapping u 7→ Γ0(T, u) − g(T, u) is continuous in 0 by Equation (4.5), Proposition 4.4
and assumption. We have shown that u 7→ (Γ0(T, u) − g(T, u)) is the pointwise limit
of characteristic exponents of infinitely divisible distribution and thus [19, Theorem 5.3.3]
yields that it is a characteristic exponent of an infinitely divisible distribution. Denote by Qn

resp. Q the infinitely divisible laws with Fourier transform u 7→ (Γ0(T, ·)− f(T, ·)) (ωn)
and u 7→ Γ0(T, u)− g(T, u), respectively. [19, Corollary 3.5.2] yields∫

exQ(dx) = lim
n→∞

∫
exQn(dx) = 1

and thus Γ0(T, ·)− g(T, ·) ∈ Π. The same is true for u 7→ (Γ0(T, u)− g(T, u)− (Γ0(t, u)−
g(t, u))) for all t ∈ [0, T ] and thus we have Γ0 − g ∈ Υ. �

Above we suggested that risk-neutral option surface models will typically be constructed
from building blocks X0,Ψ0, β,M,X‖. Proposition 4.4 shows that Ψ0 must be sufficiently
large for that purpose. In the corollary to the following lemma, we see that increasing Ψ0

does not lead to problems as far as existence of (X,Ψ0, α, β,M) is concerned.

Lemma 4.6. Let L be a PII with local exponent ψL such that eL is a martingale and L is
locally independent of (X,M). Then (X + L,Ψ0 + ψL, α, β,M) is a risk-neutral option
surface model.

Proof. This is an immediate consequence of Theorem 3.6. �
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Corollary 4.7. Suppose that there exists a risk-neutral option surface model
(X,Ψ0, α, β,M) that is consistent with given building blocks X0,Ψ0, β,M,X‖. Moreover,
let Ψ̃0 : R+ × R→ C be such that

Γ̃0 : R+ × R→ C, (t, u) 7→
∫ t

0

Ψ̃0(r, u)dr

exists, is in Υ, and satisfies Γ0 ≤ Γ̃0. On a possibly enlarged filtered probability space, there
exists a risk-neutral option surface model that is consistent with X0, Ψ̃0, β,M,X‖.

Proof. By Remark 4.3 there exists a PII U with characteristic function

E(eiuUT ) = exp
(

Γ̃0(T, u)− Γ0(T, u)
)
.

By possibly enlarging the probability space, we may assume U to be defined on Ω and to be
locally independent (and in fact also independent) of (X,M). Lemma 4.6 now yields the
claim. �

4.3. Vanishing coefficient process β. The simplest conceivable codebook model (2.12) is
obtained for β = 0 or, equivalently, M = 0. Not surprisingly, it leads to constant code-
book processes and hence to the simple model class that we used to motivate option surface
models in Section 2.2.

Theorem 4.8. Let X0 ∈ R; βt(T, u) = 0 for t, T ∈ R+, u ∈ R; Ψ0 : R+ × R → C with∫ T
t

Ψ0(r, ·)dr ∈ Π for any T ∈ R+, t ∈ [0, T ]. Moreover, let M = 0 and hence X‖ = 0.
On a possibly enlarged filtered probability space, there exists a risk-neutral option surface
model (X,Ψ0, α, β,M) that is consistent with X0,Ψ0, β,M,X‖. For any such model we
have

• αt(T, u) = 0 for any T ∈ R+, t ∈ [0, T ], u ∈ R,
• X −X0 is a PII with characteristic function E(eiu(XT−X0)) = exp(

∫ T
0

Ψ0(r, u)dr),
T ∈ R+, u ∈ R.

In particular, the law of X is uniquely determined.

Proof. By [15, III.2.16] and straightforward arguments there exists a PII X with local ex-
ponent ψX = Ψ0. By possibly enlarging the probability space, we may assume that X is
defined on the given filtered space. Since M = 0, the dependent part of X relative to M
is obviously 0. We define α := 0 and Ψt(T, u) := Ψ0(T, u) for any T ∈ R+, t ∈ [0, T ],
u ∈ R. Then (X,Ψ0, α, β,M) is a risk-neutral option surface model because it satisfies the
drift and consistency conditions.

If (X̃,Ψ0, α̃, β,M) denotes another risk-neutral option surface model with X̃0 = X0, the
drift condition implies α̃ = 0 = α. Hence Ψ̃ = Ψ and the consistency condition yields
ψ

eX
t (u) = Ψ̃t−(t, u) = Ψt−(t, u) = ψXt (u) for any t ∈ R+, u ∈ R. Therefore ψ eX is

deterministic and X̃ is a PII with the same law as X . �

Remark 4.9. In principle, one could start with an arbitrary process M . However, since M
enters the model only through the trivial second integral in (3.1), this does not lead to a more
general setup.

The Black-Scholes model is obtained for a particular choice of the initial state of the
codebook.
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Example 4.10 (Black-Scholes model). If we choose Ψ0(T, u) := − iu+u2

2
σ2 in Theorem

4.8 for some σ > 0, we obtain E(eiuXT ) = exp(iuX0 − iuσ
2

2
T − u2

2
σ2T ), which means

XT ∼ N(X0 − σ2

2
T, σ2T ), T ∈ R+. Put differently, the return process X is Brownian

motion with drift rate −σ2

2
and volatility σ.

4.4. Deterministic coefficient process β. In this section we consider risk-neutral option
surface models (X,Ψ0, α, β,M) with deterministic β. Throughout this section let

• X0 ∈ (0,∞),
• Ψ0 : R+ × R→ C such that u 7→

∫ T
t

Ψ0(r, u)dr is in Π for any T ∈ R+, t ∈ [0, T ],
• (X‖,M) is a 1 + d-dimensional Lévy process such that Mk

1 is bounded from below
for k = 1, . . . , d and (X‖)‖ = X‖ relative to M , i.e. X‖ equals its dependent part
relative to M ,
• f ∈ Πd (i.e. f = (f 1, . . . , fd) : R→ Cd with fk ∈ Π for k = 1, . . . , d),
• λ : R+ → Rd×d is continuous with λ(r)λ(s) = λ(s)λ(r) for any r, s ∈ R+,
• βt(T, u) := f(u) exp(−

∫ T
t
λ(r)dr),

• g : R+×R→ C, (T, u) 7→
∫ T

0
ψ(X‖,M)(u,−i

∫ T
t
βt(r, u)dr)dt (cf. Proposition 4.5).

The Lévy exponent of (X‖,M) is denoted by ψ(X‖,M). Moreover, we set

Γ0(T, u) :=

∫ T

0

Ψ0(r, u)dr, (4.6)

σt(T, u) :=

∫ T

t

βt(r, u)dr =

∫ T

t

exp
(
−
∫ r

t

λ(s)ds
)
drf(u) (4.7)

for any T ∈ R+, t ∈ [0, T ], u ∈ R. W.l.o.g. we assume that the one-dimensional Lévy
processes Mk are subordinators with essential infimum ess inf Mk

t = 0. Changing the drift
of M leads to the same model as it is offset by the drift condition. Corollary A.9 and (A.2)
imply that −∂Tψ(X‖,M)(u,−iσt(T, u)) exists for any T ∈ R+, t ∈ [0, T ], u ∈ R. The
key assumption in the above list is that β is deterministic and factorises with respect to
dependence on (t, T ) resp. u.

Theorem 4.11. (1) On a possibly enlarged probability space, there exists a risk-neutral
option surface model (X,Ψ0, α, β,M) that is consistent with X0,Ψ0, β,M,X‖ if
and only if

Γ0 ≥ g.

(2) Let (X,Ψ0, α, β,M) denote any risk-neutral option surface model that is consistent
with X0,Ψ0, β,M,X‖ and set

Zt :=

∫ t

0

exp
(
−
∫ t

s

λ(r)dr
)
dMs, t ∈ R+. (4.8)

If T 7→ Ψ0(T, u) is continuous in T for any fixed u ∈ R, then (X,M,Z) is a time-
inhomogeneous affine process in the sense of [12] and its law is uniquely determined.

In the following more specific setup, we provide an explicit representation of the stock
price dynamics.

Theorem 4.12. Let d = 1; X‖ = δM for some δ ∈ R+; f(u) := −u2+iu
2

; λ(r) := λ for
some λ ∈ R+, and suppose that Γ0 ≥ g.

(1) On a possibly enlarged probability space, there exists a risk-neutral option sur-
face model (X,Ψ0, α, β,M) which is consistent with X0,Ψ0, β,M,X‖. Moreover,
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it can be chosen such that there is a standard Wiener process W and a time-
inhomogeneous Lévy process L with characteristic function

E(eiuLT ) = exp(Γ0(T, u)− g(T, u)), T ∈ R+, u ∈ R

such that W,L,M are independent and

dXt = dLt −
1

2
Ztdt+

√
ZtdWt + δdMt, (4.9)

dZt = −λZtdt+ dMt (4.10)

with Z0 = 0.
(2) Let (X,Ψ0, α, β,M) denote any risk-neutral option surface model that is consistent

with X0,Ψ0, β,M,X‖ and set

Zt :=

∫ t

0

e−λ(t−s)dMs, t ∈ R+.

If T 7→ Ψ0(T, u) is continuous in T for any fixed u ∈ R, then (X,M,Z) is a time-
inhomogeneous affine process in the sense of [12]. Its law is uniquely determined by
X0,Ψ0, λ, δ and the law of M .

Remark 4.13. (1) Up to the additional time-inhomogeneous Lévy process L, the stock price
model in (4.9, 4.10) is a special case of the so-called BNS model of [2]. If we consider
more general functions f , then, again up to the additional PII L, we end up with the CGMY
extension of the BNS model from [9], cf. also [17]. This follows from (4.13, 4.14) in the
proof of Theorem 4.11.

(2) To be more precise, (X,M,Z) in Theorems 4.11, 4.12 are weakly regular affine time-
inhomogeneous Markov processes in the language of [12]. Moreover, the conclusions of
[12, Theorem 2.13] hold, in particular (Θ, X,M,Z) is a Feller process for Θt = t. We
do not know whether continuity of Ψ0 is really needed for the uniqueness statement in
Theorems 4.11, 4.12 to hold.

The proof of both theorems is based on the following

Lemma 4.14. Define Z as in (4.8). Assume the existence of a semimartingale X such that
X‖ is the dependent part of X relative to M and

ψ
(X,M)
t (u, v) = f(u)Zt− + ψ(X‖,M)(u, v) (4.11)

outside some dP ⊗ dt-null set for any u ∈ R, v ∈ Rd. Then the option surface model
(X, Ψ̃0, α, β,M) is risk neutral, where

αt(T, u) := −∂T
(
ψ(X‖,M)(u,−iσt(T, u))

)
,

Ψ̃0(T, u) := ψX
‖
(u)−

∫ T

0

αs(T, u)ds

for any T ∈ R+, t ∈ [0, T ], u ∈ R. Moreover, we have g = Γ̃0 ∈ Υ for

Γ̃0(T, u) :=

∫ T

0

Ψ̃0(r, u)dr, T ∈ R+, u ∈ R.

(Compare Section 4.2 for the definition of Υ.)
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Proof. Observe that

Zt =

∫ t

0

exp

(
−
∫ t

s

λ(r)dr

)
dMs

=

∫ t

0

(
1d×d −

∫ t

s

λ(r) exp

(
−
∫ r

s

λ(r̃)dr̃

)
dr

)
dMs

= Mt −
∫ t

0

∫ r

0

λ(r) exp

(
−
∫ r

s

λ(r̃)dr̃

)
dMsdr

= Mt −
∫ t

0

λ(r)Zr−dr

by Fubini’s theorem as in [20, Theorem IV.65]. In view of Lemma A.19, we obtain

ψ
(X,M,Z)
t (u, v, w) = ψ

(X,M,M)
t (u, v, w)− iwλ(t)Zt−

= ψ
(X,M)
t (u, v + w)− iwλ(t)Zt− (4.12)

= ψ(X‖,M)(u, v + w) + (f(u)− iwλ(t))Zt−

and in particular

αt(T, u) = −∂T
(
ψ(X‖,M)(u,−iσt(T, u))

)
= −∂T

(
ψ(X,M)(u,−iσt(T, u))− f(u)Zt−)

)
= −∂T

(
ψ(X,M)(u,−iσt(T, u))

)
for any t ∈ R+, u ∈ R, v, w ∈ Rd. If we define Ψ̃ as in (3.1) relative to Ψ̃0 instead of Ψ0,
we get

Ψ̃t−(t, u) = ψX
‖
(u)−

∫ t

0

αs(t, u)ds+

∫ t

0

αs(t, u)ds+

∫ t

0

βs(t, u)dMs

= ψX
‖
(u) + f(u)Zt−

= ψXt (u)

for any t ∈ R+, u ∈ R. Thus the consistency and the drift condition hold. Theorem 3.6
completes the first part of the proof. Since (X, Ψ̃0, α, β,M) is risk neutral, we have Γ̃0 ∈ Υ.
A short computation yields Γ̃0 = g. �

Proof of Theorem 4.11. (1) Step 1: By [15, III.2.16] there is a Lévy process Y on some
probability space (Ω′,G ′, (G ′τ )τ∈R+ , P

′) such that its Lévy exponent equals ψY = f . Let Z
be as in (4.8). Define an extension (Ω̃, F̃ , (F̃t)t∈R+ , P̃ ) of (Ω,F , (Ft)t∈R+ , P ) via Ω̃ :=

Ω×Ω′, F̃ := F ⊗G ′, P̃ := P ⊗P ′. Let F̃ 0
t be the smallest σ-field such that the projection

Ω̃→ Ω, (ω, ω′) 7→ ω is F̃ 0
t -Ft-measurable and

X⊥s : Ω̃→ R, (ω, ω′) 7→ X⊥s (ω, ω′) := YR s
0 Zr(ω)dr(ω

′)

is F̃ 0
t -measurable for any s ≤ t. As usual, we consider right-continuous filtrations by

setting F̃t :=
⋂
s>t F̃

0
s for any t ∈ R+. By slight abuse of notation, we use the same letter

for processes on Ω and their natural counterpart on Ω̃, i.e. M(ω, ω′) := M(ω) etc.
Step 2: (X‖,M) is a Lévy process also relative to the filtration (F̃ 0

t )t∈R+ on Ω̃. Indeed,
adaptedness is obvious. It remains to be shown that the increment (X‖,M)t − (X‖,M)s is
independent of F̃ 0

s for any s ≤ t. This follows from the fact that it is independent of the
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even larger σ-field Fs ⊗ G ′ ⊃ F̃ 0
s . A simple argument shows that the Lévy property of

(X‖,M) still holds relative to the right-continuous extension (F̃t)t∈R+ of (F̃ 0
t )t∈R+ .

Step 3: We show that X⊥ is a semimartingale with local exponent ψX⊥t (u) = f(u)Zt−
for t ∈ R+, u ∈ R. In view of [15, II.2.48] it suffices to show that exp(iuX⊥ − f(u)Z • I)

is a local martingale for any u ∈ R. Define a filtration (G̃τ )τ∈R+ on Ω̃ by G̃τ := F ⊗ G ′τ
or, more precisely, its right-continuous extension. Relative to this filtration, the counterpart
of Y on Ω̃ (i.e. Yτ (ω, ω′) := Yτ (ω

′)) is a Lévy process with Lévy exponent f , which means
that (Lτ )τ∈R+ := (exp(iuYτ −f(u)τ))τ∈R+ is a P̃ -martingale relative to (G̃τ )τ∈R+ . The ran-
dom variables

∫ s
0
Zr(ω)dr,

∫ t
0
Zr(ω)dr are (G̃τ )τ∈R+-stopping times for s ≤ t. By Doob’s

optional stopping theorem (cf. [15, I.1.39]) we have that

E
(
LR t

0 Zr(ω)dr∧τn − L
R s
0 Zr(ω)dr∧τn

∣∣∣ G̃R s
0 Zrdr

)
= 0

for τn := inf{r ∈ R+ :
∫ r

0
Zr̃dr̃ ≥ n} and any n ∈ N. Since F̃s ⊂ G̃R s

0 Zrdr, this implies

E
(
LR t

0 Zr(ω)dr∧τn − L
R s
0 Zr(ω)dr∧τn

∣∣∣ F̃s

)
= 0,

which means that the asserted local martingale property holds.
Step 4: Let X := X‖ + X⊥. We show that (X‖,M) and X⊥ are locally independent,

which implies (4.11) by Steps 2 and 3. Indeed, (X‖,M) does not have a continuous local
martingale part. By independence of (X‖,M) and Y , the processes (X‖,M) and X⊥ never
jump at the same time (up to an evanescent set). By Proposition A.11 this implies that local
independence holds.

By Lemma A.20, X‖ is the dependent part of X relative to M . From Lemma 4.14 we
obtain that a consistent risk-neutral option surface model exists for Γ0 = g. For Γ0 ≥ g,
Corollary 4.7 and its proof yield that (X + U,Ψ0, α, β,M) has the required properties for
some PII U which is independent of (X,M).

The necessary condition Γ0 ≥ g is shown in Proposition 4.5.

(2) Step 1: Denote by X‖, X⊥ the dependent resp. independent part of X relative to M .
The local exponent of X⊥ satisfies

ψX
⊥

t (u) = ψXt (u)− ψX‖(u)

= Ψ0(t, u) +

∫ t

0

αs(t, u)ds+

∫ t−

0

βs(t, u)dMs − ψX
‖
(u)

= Ψ0(t, u) +

∫ t

0

αs(t, u)ds+ f(u)Zt− − ψX
‖
(u)

= Ψ0(t, u)−
∫ t

0

∂t

(
ψ(X‖,M)

(
u,−i

∫ t

s

βs(r, u)dr

))
ds

+ f(u)Zt− − ψX
‖
(u),

where we used the consistency condition in the first and the drift condition (4.2) in the last
step. As in (4.12) we obtain for the local exponent of (X,M,Z)

ψ
(X,M,Z)
t (u, v, w) = ψ

(X,M)
t (u, v + w)− iwλ(t)Zt−

= ψ(X‖,M)(u, v + w)− iwλ(t)Zt− + ψX
⊥

t (u)

= Φ0(t;u, v, w) + Φ1(t;u, v, w)Zt−
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with

Φ0(t;u, v, w) := ψ(X‖,M)(u, v + w)− ψX‖(u)

+ Ψ0(t, u)−
∫ t

0

∂t

(
ψ(X‖,M)

(
u,−i

∫ t

s

βs(r, u)dr

))
ds, (4.13)

Φ1(t;u, v, w) := f(u)− iwλ(t). (4.14)

which implies that (u, v, w) 7→ Φ0(t;u, v, w) + f(u)Zt−(u) is a Lévy exponent on R1+2d.
Since ess inf (Mk) = 0 for all k ∈ {1, . . . , d} we have ess inf (Zk) = 0 for all
k ∈ {1, . . . , d} by Corollary B.9. The same argument as in the proof of Proposition 4.5
yields that (u, v, w) 7→ Φ0(t;u, v, w) is a Lévy exponent for fixed t. The same is true for
Φ1

1, . . . ,Φ
d
1. Relative to some truncation function h, denote by (β

(i)
t , γ

(i)
t , κ

(i)
t ), i = 0, . . . , d

Lévy Khintchine triplets on R1+2d which correspond to Φ0(t; ·),Φ1
1(t; ·), . . . ,Φd

1(t; ·) re-
spectively. Observe that Φ0(t;u, v, w) is continuous in t for fixed (u, v, w) and likewise
Φ1

1, . . . ,Φ
d
1. Lévy continuity theorem and [15, VII.2.9] imply that (β

(i)
t , γ

(i)
t , κ

(i)
t ), i =

0, . . . , d are continuous in t in the sense of [β1], [γ1] and [δ1,3] as in [15, VII.2.9]. A de-
tailed inspection of the arguments shows this weaker continuity suffices for the proof of [12,
Proposition 4.1]. The assertion follows now from [12, Proposition 5.4].

Proof of Theorem 4.12. (1) By Remark 4.3 there is a PII L with characteristic function

E(eiuLT ) = exp(Γ0(T, u)− g(T, u)), T ∈ R+, u ∈ R.
By possibly enlarging the probability space, we may assume that L and a standard Wiener
process W are defined on (Ω,F , (Ft)t∈R+ , P ) and that W,L,M are independent and thus
locally independent. Define (X,Z) as in (4.9, 4.10). Lemma A.20 yields that X‖ = δM is
the dependent part of X relative to M . Consequently, ψ(X,M) = ψ(X‖,M) + ψX

⊥ with

dX⊥t = dLt −
1

2
Ztdt+

√
ZtdWt.

Local independence and Lemmas A.18, A.19 yield

ψX
⊥

(u) = f(u)Zt− + ∂t(Γ0(t, u)− g(t, u))

and hence

ψ
(X,M)
t (u, v) = ψ(X‖,M)(u, v) + f(u)Zt− + ∂t(Γ0(t, u)− g(t, u)).

We also get

ψ
(X−L,M)
t (u, v) = ψ(X‖,M)(u, v) + f(u)Zt− = f(u)Zt− + ψ((X−L)‖,M)(u, v),

where (X − L)‖ is the dependent part of X − L relative to M . By Lemma 4.14, (X −
L, ∂tg, α, β,M) is a risk neutral option surface model. Thus independence of L and Lemma
4.6 yield that (X, ∂tg+ψL, α, β,M) is a risk neutral option surface model and ψL = ∂t(Γ0−
g) = Ψ0 − ∂tg.

(2) This follows from Theorem 4.11. �

5. CARMONA & NADTOCHIY’S ’TANGENT LÉVY MARKET MODELS’

In [8], Carmona and Nadtochiy (CN) developed independently a HJM-type approach for
option prices with substantial overlap to ours. Their simple model class in the sense of
Step (4) in Section 2.1 is based on time-inhomogeneous pure jump Lévy processes. These
can be described uniquely by their Lévy density because the drift is determined by the mar-
tingale condition for the stock under the risk neutral measure. Instead of the characteristic
exponent from (2.3) CN use this Lévy density as the codebook κt(T, x). Since we allow for
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a larger class of simple models, their framework can be embedded into ours. Indeed, there
is a linear transformation A that converts their codebook into ours, given by

A(κt(T, x)) :=

∫
(eiux − 1− iu(ex − 1))κt(T, x)dx.

Up to this transformation, the drift conditions in both approaches coincide. However, the
condition in the CN framework looks a little more complex because it involves convolutions
and differential operators of higher order. As a side remark, the simple Black-Scholes model
is not contained as a special case in the CN setup because of the slight limitation to pure
jump processes.

CN focus on Itô processes for modelling the codebook process, which roughly corre-
sponds to choosing M as Brownian motion in our setup. This assumption implies local
independence of X and M in our terminology because X is a pure jump process in CN. By
contrast and similarly as [7], we attach importance to allowing for a certain leverage, which
here means local dependence between stock and codebook movements.

The positivity problem of the codebook is treated differently in CN and in our approach.
Whereas CN ensure nonnegativity by stopping the codebook dynamics if necessary, we
restrict the class of initial codebooks to sufficiently large ones. Otherwise the particularly
tractable models in Theorems 4.11 and 4.12 would not fit in into the present setup.

With regards existence and uniqueness of models given basic building blocks, both ap-
proaches provide only partial answers. Our results in Section 4 are so far limited to vanishing
or deterministic coefficient function β. By contrast, CN consider a more general situation in
their Theorem 2. However, they do not prove uniqueness in law of the resulting stock price
process. Moreover, they assume that the process β in their codebook dynamics

dκt = αtdt+ βtdBt,

is given beforehand. This does not allow for the natural situation that β depends on the
current state κ of the codebook itself, which occurs e.g. in Section 6 of CN.

Both CN and we provide basically one non-trivial example, both taking deterministic β
as a starting point. In order to ensure positivity of the codebook, CN stop the process where
appropriate, whereas we consider subordinators M rather than Brownian motion as driving
process for the codebook dynamics. Both approaches have their respective advantages and
disadvantages: while CN do not need to impose a largeness condition on the initial sur-
face, our example in Theorem 4.12 leads to an established and very tractable model whose
characteristic function is known in closed form.

APPENDIX A. LOCAL CHARACTERISTICS AND LOCAL EXPONENTS

In this section we define and recall some properties of local characteristics and local
exponents.

A.1. Local characteristics. LetX be an Rd-valued semimartingale with integral character-
istics (B,C, ν) in the sense of [15] relative to some fixed truncation function h : Rd → Rd.
By [15, I.2.9] there exist a predictable Rd-valued process b, a predictable Rd×d-valued pro-
cess c, a kernel K from (Ω×R,P) to (Rd,B), and a predictable increasing process A such
that

dBt = btdAt, dCt = ctdAt, ν(dt, dx) = Kt(dx)dAt.

If At = t, we call the triplet (b, c,K) local or differential characteristics of X relative to
truncation function h. Most processes in applications as e.g. diffusions, Lévy processes
etc. allow for local characteristics. In this case b stands for a drift rate, c for a diffusion
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coefficient, and K for a local Lévy measure representing jump activity. If they exist, the
local characteristics are unique up to a dP ⊗ dt-null set on Ω× R+.

Proposition A.1 (Itô’s formula for local characteristics). Let X be an Rd-valued semi-
martingale with local characteristics (b, c,K) and f : Rd → Rn a C2-function. Then
the triplet (̃b, c̃, K̃) defined by

b̃t = Df(Xt−)bt +
1

2

n∑
j,k=1

∂j∂kf(Xt−)cjkt

+

∫ (
h̃(f(Xt− + x)− f(Xt−))−Df(Xt−)h(x)

)
Kt(dx),

c̃t = Df(Xt−)ct(Df(Xt−))>,

K̃t(A) =

∫
1A(f(Xt− + x)− f(Xt−))Kt(dx), A ∈ Bn with 0 /∈ A,

is a version of the local characteristics of f(X) with respect to a truncation function h̃ on
Rn. Here, ∂j etc. denote partial derivatives relative to the j’th argument.

Proof. See [17, Proposition 2.5]. �

Proposition A.2. LetX be an Rd-valued semimartingale with local characteristics (b, c,K)
and let β = (βij)i∈{1,...,n},j∈{1,...,d} be a Rn×d-valued predictable process such that βi· ∈
L(X) for i ∈ {1, . . . , n}. Then the triplet (̃b, c̃, K̃) defined by

b̃t = βbt +

∫ (
h̃(βtx)− βth(x)

)
Kt(dx),

c̃t = βtctβ
>
t ,

K̃t(A) =

∫
1A(βtx)Kt(dx), A ∈ Bn with 0 /∈ A,

is a version of the local characteristics of the Rn-valued semimartingale β • X := (β1· • X ,
. . . , βn· • X) with respect to the truncation function h̃ on Rn,

Proof. See [17, Proposition 2.4]. �

A.2. Local exponents.

Definition A.3. Let (b, c,K) be a Lévy-Khintchine triplet on Rd relative to some truncation
function h : Rd → Rd. We call the mapping ψ : Rd → C,

ψ(u) := iub− 1

2
ucu> +

∫
(eiux − 1− iuh(x))K(dx)

Lévy exponent corresponding to (b, c,K). By [15, II.2.44], the Lévy exponent determines
the triplet (b, c,K) uniquely. If X is a Lévy process with Lévy-Khintchine triplet (b, c,K),
we call ψ the characteristic or Lévy exponent of X .

In the same vein, local characteristics naturally lead to local exponents.

Definition A.4. If X is an Rd-valued semimartingale with local characteristics (b, c,K), we
write

ψXt (u) := iubt −
1

2
uctu

> +

∫
(eiux − 1− iuh(x))Kt(dx), u ∈ Rd (A.1)
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for the Lévy exponent corresponding to (bt, ct, Kt). We call the family of predictable pro-
cesses ψX(u) := (ψXt (u))t∈R+ , u ∈ Rd local exponent of X . (A.1) implies that u 7→ ψXt (u)
is the characteristic exponent of a Lévy process.

The name exponent is of course motivated by the following fact.

Remark A.5. If X is a semimartingale with deterministic local characteristics (b, c,K), it is
a PII and we have

E(eiu(XT−Xt)|Ft) = E(eiu(XT−Xt)) = exp

(∫ T

t

ψXs (u)ds

)
for any T ∈ R+, t ∈ [0, T ], u ∈ Rd, cf. [15, II.4.15].

We now generalize the notion of local exponents to complex-valued semimartingales and
more general arguments.

Definition A.6. Let X be a Cd-valued semimartingale and β a Cd-valued X-integrable
process. We call a predictable C-valued process ψX(β) = (ψXt (β))t∈R+ local exponent of
X at β if ψX(β) ∈ L(I) and (exp(iβ • Xt −

∫ t
0
ψXs (β)ds))t∈R+ is a complex-valued local

martingale. We denote by U X the set of processes β such that the local exponent ψX(β)
exists.

From the following lemma it follows that ψX(β) is unique up to a dP ⊗ dt-null set.

Lemma A.7. Let X be a complex-valued semimartingale and A,B complex-valued pre-
dictable processes of finite variation with A0 = 0 = B0 and such that exp(X − A) and
exp(X −B) are local martingales. Then A = B up to indistinguishability.

Proof. Set M := eX−A, N := eX−B, V := eA−B. Integration by parts yields that

M− • V = MV − V •M −M0V0 = N − V •M −M0

is a local martingale. Therefore V = 1 + 1
M−

• (M− • V ) is a predictable local martingale
with V0 = 1 and hence V = 1, cf. [15, I.3.16]. �

The following result shows that Definition A.6 truly generalizes Definition A.4.

Proposition A.8. Let X be an Rd-valued semimartingale with local characteristics
(b, c,K). Suppose that β is a Cd-valued predictable and X-integrable process. If β is
Rd-valued for any t ∈ R+, then β ∈ U X . Moreover there is equivalence between

(1) β ∈ U X ,
(2)
∫ t

0

∫
1{−Im(βsx)>1}e

−Im(βsx)Ks(dx)ds <∞ almost surely for any t ∈ R+.
In this case we have

ψXt (β) = iβtbt −
1

2
βtctβ

>
t +

∫
(eiβtx − 1− iβth(x))Kt(dx) (A.2)

outside some dP ⊗ dt-null set.

Proof. If β is Rd-valued, then Statement (2) is obviously true. Thus we only need to prove
the equivalence and (A.2). For real-valued iβ the equivalence follows from [18, Lemma
2.13]. The complex-valued case is derived similarly. For real-valued iβ (A.2) is shown in
[18, Theorems 2.18(1,6) and 2.19]. The general case follows along the same lines. �

(A.2) implies that the local exponent of X at any β ∈ U X is determined by the triplet
(b, c,K) and hence by the local exponent of X in the sense of Definition A.4.
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Corollary A.9. Let (X,M) be a 1 + d-dimensional semimartingale with local exponent
ψ(X,M) such that M is a Lévy process whose components are subordinators. Then β ∈
U (X,M) for any R× (R + iR+)d-valued (X,M)-integrable process β.

Proof. This follows immediately from Proposition A.8. �

Definition A.10. Let X(1), . . . , X(n) be semimartingales which allow for local characteris-
tics. We call them X(1), . . . , X(n) locally independent if

U (X(1),...,X(n)) ∩ (L(X(1))× · · · × L(X(n))) = U X(1) × · · · ×U X(n)

for

L(X(1))× · · · × L(X(n)) := {β = (β(1), . . . , β(n)) complex-valued :

β(i) X(i)-integrable for i = 1, . . . , n}
and

ψ(X(1),...,X(n))(β) =
n∑
j=1

ψX
(j)

(β(j))

outside some dP ⊗ dt-null set for any β = (β(1), . . . , β(n)) ∈ U (X(1),...,X(n)).

The following lemma provides alternative characterisations of local independence. For
ease of notation we consider two semimartingales but the extension to arbitrary finite num-
bers is straightforward.

Lemma A.11. Let (X, Y ) be an Rm+n-valued semimartingale with local characteristics
(b, c,K) and denote by (bX , cX , KX) resp. (bY , cY , KY ) local characteristics of X resp. Y .
We have equivalence between

(1) X and Y are locally independent,
(2)

ψ(X,Y )(u, v) = ψX(u) + ψY (v), (u, v) ∈ Rm+n (A.3)
outside some dP ⊗ dt-null set,

(3)

c =

(
cX 0
0 cY

)
and

K(A) = KX({x : (x, 0) ∈ A}) +KY ({y : (0, y) ∈ A}), A ∈ Bm+n

outside some dP ⊗ dt-null set.

Proof. (1)⇒(2): This is obvious by Proposition A.8.
(2)⇒(3): Both sides of (A.3) are Lévy exponents for fixed (ω, t) ∈ Ω× R+. Indeed, the

triplet corresponding to (u, v) 7→ (ψXt (u) + ψYt (v))(ω) is (bt, c̃t, K̃t)(ω) with

c̃t =

(
cXt 0
0 cYt

)
and

K̃t(A) = KX
t ({x : (x, 0) ∈ A}) +KY

t ({y : (0, y) ∈ A}), A ∈ Bm+n.

Since the Lévy exponent determines the triplet uniquely (cf. [15, II.2.44]), the assertion
follows.

(3)⇒(1): If βX is X-integrable and βY is Y -integrable, then β = (βX , βY ) is (X, Y )-
integrable and β • (X, Y ) = βX • X + βY • Y . The characterisation in Proposition A.8
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yields β ∈ U (X,Y ) for such β = (βX , βY ) if and only if βX ∈ U X , βY ∈ U Y . In addition,
ψ(X,Y )(β) = ψX(βX) + ψY (βY ) follows from (A.2) �

Corollary A.12. Let X(1), . . . , X(n) be locally independent semimartingales and Q
loc
� P

another probability measure. Then X(1), . . . , X(n) are locally independent semimartingales
relative to Q.

Proof. This follows from Lemma A.11 and [15, III.3.24]. �

Corollary A.13. If (X(1), . . . , X(n)) is a Lévy process or, more generally, a PII allowing
for local characteristics, then X(1), . . . , X(n) are independent if and only if they are locally
independent.

Proof. By Remark A.5 the characteristic function ϕXt of Xt := (X
(1)
t , . . . , X

(n)
t ) is given

by

ϕXt(u
1, . . . , un) = exp

(∫ t

0

ψ(X(1),...,X(n))
s (u1, . . . , un)ds

)
.

Thus independence of X(1)
t , . . . , X

(n)
t is equivalent to

ψ
(X(1),...,X(n))
t (u1, . . . , un) =

n∑
k=1

ψX
k

t (uk),

for Lebesgue-almost any t ∈ R+ and any (u1, . . . , un) ∈ Rn. By Lemma A.11 this in turn
is equivalent to local independence of X(1)

t , . . . , X
(n)
t . �

Lemma A.14. If f ∈ Π, then Re(f(u)) ≤ 0 for any u ∈ R, where Π is defined in Section
3.1.

Proof. For f ∈ Π we have

f(u) = −u
2 + iu

2
c+

∫
(eiux − 1− iu(ex − 1))K(dx) (A.4)

with some Lévy measure K and some c ∈ R+. The real part of the first term is obviously
negative and the real part of the integrand is negative as well. �

Remark A.15. If we extend the domain of f to R + i[−1, 0] by keeping the representation
(A.4), then the conclusion of Lemma A.14 is still correct. However, this fact is not used in
this paper.

The following four statements follow immediately from the definition of local exponents.

Proposition A.16. Let X be a C-valued semimartingale that allows for local characteris-
tics. Then there is equivalence between

(1) exp(X) is a local martingale,
(2) −i ∈ U X and ψX(−i) = 0 outside some dP ⊗ dt-null set,

Lemma A.17. Let X be a Cd-valued semimartingale, β a Cd-valued and X-integrable
process and u ∈ C. Then uβ ∈ U X if and only if u ∈ U β.X . In that case we have

ψX(uβ) = ψβ
.X(u).

Lemma A.18. Let X, Y be Cd-valued semimartingales and u ∈ Cd. Then u ∈ U X+Y if
and only if (u, u) ∈ U (X,Y ). In this case we have

ψX+Y (u) = ψ(X,Y )(u, u)

outside some dP ⊗ dt-null set.
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Lemma A.19. Let X,Z be Cd-valued semimartingales and β, γ predictable Cd-valued pro-
cesses such that

(1) γ has I-integrable components,
(2) βγ is I-integrable,
(3) Zt = Z0 +

∫ t
0
γsds+Xt.

Then β ∈ U Z if and only if β ∈ U X . In this case ψZ(β) = ψX(β) + iβγ outside some
dP ⊗ dt-null set.

A.3. Semimartingale decomposition relative to a semimartingale. Let (X, Y ) be an
R1+d-valued semimartingale with local characteristics (b, c,K), written here in the form

b =

(
bX

bY

)
, c :=

(
cX cX,Y

cY,X cY

)
. (A.5)

Suppose that
∫ t

0

∫
(1,∞)

exKs(dx)ds < ∞ for any t ∈ R+ or, equivalently, eX is a special
semimartingale. We set

X
‖
t := log E

(
(cX,Y (cY )−1) • Y c

t + f ∗ (µ(X,Y ) − ν(X,Y ))t
)

for any t ∈ R+, where c− denotes the pseudoinverse of a matrix c in the sense of [1], Y c

is the continuous local martingale part of Y , µ(X,Y ) resp. ν(X,Y ) are the random measure of
jumps of (X, Y ) and its compensator, and f : R1+d → R, (x, y) 7→ (ex − 1)1{y 6=0}. We call
X‖ and X⊥ := X −X‖ the dependent resp. independent part of X relative to Y .

Lemma A.20. X 7→ X‖ is a projection in the sense that (X‖)‖ = X‖. Moreover, we have
(X + Z)‖ = X‖ if Z is a semimartingale such that Z, Y are locally independent.

Proof. Observe that (X‖)c = (cX,Y (cY )−1) • Y c by [18, Lemma 2.6(2)]. Defining
cX
‖,Y similarly as cX,Y in (A.5), we have cX‖,Y = cX,Y (cY )−1cY = cX,Y . Moreover,

f(∆X
‖
t ,∆Yt) = f(∆Xt,∆Yt) for any t ≥ 0, which implies f ∗ (µ(X‖,Y ) − ν(X‖,Y )) =

f ∗ (µ(X,Y )− ν(X,Y )) by definition of stochastic integration relative to compensated random
measures. Together, the first assertion follows.

Using the notation of (A.5), note that c(X+Z),Y = cX,Y + cZ,Y = cX,Y by Lemma A.11.
Lemma A.11 also implies that Z and Y do not jump together (outside some evanescent set)
and hence f(∆(X + Z)t,∆Yt) = f(∆Xt,∆Yt). This implies f ∗ (µ(X‖,Y ) − ν(X‖,Y )) =
f ∗ (µ(X,Y ) − ν(X,Y )) and hence (X + Z)‖ = X‖. �

Lemma A.21. eX‖ is a local martingale. Moreover, X⊥ and (X‖, Y ) are locally inde-
pendent semimartingales. Finally, eX

⊥
is a local martingale if and only if eX is a local

martingale.

Proof. The first statement is obvious. The last statement follows from the first two and
from Proposition A.16. It remains to prove local independence of X⊥ and (X‖, Y ). Denote
the local characteristics of (X⊥, X‖, Y ) by (b(X⊥,X‖,Y ), c(X⊥,X‖,Y ), K(X⊥,X‖,Y )) and accord-
ingly for (X,X‖, Y ), X⊥ etc. Set c̄ := cX,Y (cY )−1cY,X . Since (X‖)c = (cX,Y (cY )−1) • Y c,
we have

c(X,X‖,Y ) =

 cX c̄ cX,Y

c̄ c̄ cX,Y

cY,X cY,X cY


and hence

c(X⊥,X‖,Y ) =

 cX − c̄ 0 0
0 c̄ cX,Y

0 cY,X cY
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e.g. by Proposition A.1. Moreover,

∆(X⊥, X‖, Y )t = 1{∆Yt=0}(∆Xt, 0, 0) + 1{∆Yt 6=0}(0,∆Xt,∆Yt)

=

 (∆X⊥t , 0, 0) if ∆X⊥t 6= 0,
(0,∆(X‖, Y )t) if ∆(X‖, Y )t 6= 0,
0 otherwise

yields

K(X⊥,X‖,Y )(A) = KX⊥({x : (x, 0, 0) ∈ A}) +K(X‖,Y )({(x, z) : (0, x, z) ∈ A})
for A ∈ B2+d. Lemma A.11 completes the proof. �

APPENDIX B. TECHNICAL PROOFS

B.1. Option pricing by Fourier transform. By

Ff(u) := lim
C→∞

∫ ∞
−C

f(x)eiuxdx (B.1)

we denote the (left-)improper Fourier transform of a measurable function f : R → C for
any u ∈ R such that the expression exists. If f is Lebesgue integrable, then the improper
Fourier transform and the ordinary Fourier transform (i.e. u 7→

∫
f(x)eiuxdx) coincide.

In our application in Section 3 the improper Fourier transform exists for any u ∈ R\{0}.
Moreover, we denote by

F−1g(x) :=
1

2π

(
lim
ε↓0

∫ ∞
ε

e−iuxg(u)du+ lim
ε↓0

∫ −ε
−∞

e−iuxg(u)du

)
(B.2)

an improper inverse Fourier transform, which will be suitable to our application in
Section 3.

Lemma B.1. Let (Ω,F , P ) be a probability space and G ⊂ F a sub-σ-field. Furthermore
suppose that f : Ω× R→ R is F ⊗B-measurable, m : Ω→ R is F -measurable and

H(x) := 1[0,m](x)f(x)− 1[m,0)(x)f(x)

is nonnegative with E(
∫ m

0
f(x)dx) < ∞. (Note that

∫ m
0
f(x)dx is always nonnegative.)

Then we have

F{x 7→ E(H(x)|G )}(u) = E

(∫ m

0

f(x)eiuxdx

∣∣∣∣G) , u ∈ R (B.3)

where the improper Fourier transform coincides with the ordinary Fourier transform.

Proof. Let u ∈ R. From∫ ∞
0

H(x)eiuxdx = 1{m≥0}

∫ m

0

f(x)eiuxdx,∫ 0

−∞
H(x)eiuxdx = 1{m<0}

∫ m

0

f(x)eiuxdx

it follows that
∫∞
−∞H(x)eiuxdx =

∫ m
0
f(x)eiuxdx. This implies

E

(
E

(∫ ∞
−∞

H(x)dx

∣∣∣∣G)) = E

(∫ ∞
−∞

H(x)dx

)
= E

(∫ m

0

f(x)dx

)
<∞

and hence ∫ ∞
−∞

E(H(x)|G )dx = E

(∫ ∞
−∞

H(x)dx

∣∣∣∣G) <∞.
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Now we can apply Fubini’s theorem and we get

F{x 7→ E(H(x)|G )}(u) = E

(∫ ∞
−∞

H(x)eiuxdx

∣∣∣∣G) = E

(∫ m

0

f(x)eiuxdx

∣∣∣∣G).
�

The next proposition is a modification of [3, Proposition 1], cf. also [10].

Lemma B.2. Let (Ω,F , P ) be a probability space and G ⊂ F a sub-σ-field. Let Y be a
random variable such that E(eY ) <∞ and consider

O(x) :=

{
E((eY−x − 1)+|G ) if x ≥ 0,

E((1− eY−x)+|G ) if x < 0.

Then we have

F{x 7→ O(x)}(u) =
1

iu
− E(eY |G )

iu− 1
− E(eiuY |G )

u2 + iu

and

F{x 7→ 1{x≥−C}O(x)}(u)

=
1

iu
− E (ey|G )

iu− 1
−

1− E
(
eiu(Y ∨−C)

(
1 + iu

(
e0∧(Y+C) − 1

))
|G
)

u2 + iu

for any C ∈ R+, u ∈ R\{0}. If E(eY |G ) = 1, then in particular

F{x 7→ O(x)}(u) =
1− E(eiuY |G )

u2 + iu

for any u ∈ R\{0}.

Proof. Let C ∈ R+, u ∈ R\{0}. We define m := (Y ∨ −C), f(x) := eY−x − 1, and
H(x) := 1[0,m](x)f(x)−1[m,0)(x)f(x). Then we have 1{x≥−C}O(x) = E(H(x)|G ),H ≥ 0,
and

E

(∫ m

0

f(x)dx

)
= E(eY −m− eY−m) <∞.

Hence Lemma B.1 yields∫ ∞
−C

O(x)eiuxdx = F{x 7→ E(H(x)|G )}(u)

= E

(∫ m

0

(eY−x − 1)eiuxdx

∣∣∣∣∣G
)

= E

([
eY+(iu−1)x

iu− 1
− eiux

iu

]m
x=0

∣∣∣∣∣G
)

=
1

iu
− E(eY |G )

iu− 1
−
E
(
eium(1 + iu(eY−m − 1))|G

)
u2 + iu

.

Since |eium(1 + iu(eY−m − 1))| ≤ 1 + |u|, we can apply Lebesgue’s theorem and get

E
(
eium(1 + iu(eY−m − 1))|G

) C→∞−→ E
(
eiuY |G

)
.

�
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Corollary B.3. Let Q be a probability measure on R satisfying K :=
∫
eyQ(dy) < ∞.

Define

O(x) :=

{∫
(ey−x − 1)+Q(dy) if x ≥ 0,∫
(1− ey−x)+Q(dy) if x < 0.

Then we have ∣∣∣∣∫ ∞
−C

O(x)eiuxdx

∣∣∣∣ ≤ K +
1 + 2|u|
u2

for any C ∈ R+, u ∈ R\{0}.

Proof. Apply Lemma B.2 with (Ω,F , P ) = (R,B, Q), G = {∅,R}, Y = id. �

Proposition B.4. Let (Ω,F , P ) be a probability space and G ⊂ F a sub-σ-field. Let Y be
a random variable with E(eY |G ) = 1 and define

O(x) :=

{
E((eY−x − 1)+|G ) if x ≥ 0,

E((1− eY−x)+|G ) if x < 0.

Then we have

O(x) = F−1

{
u 7→ 1− E(eiuY |G )

u2 + iu

}
(x),

E(eiuY |G ) = 1− (u2 + iu)F{x 7→ O(x)}(u)

for any u, x ∈ R.

Proof. The second equation is a restatement of Lemma B.2. Let 0 < α < 1 and de-
fine O(x) := eαxO(x), m := Y , f(x) := eαx(eY−x − 1), and H(x) := 1[0,m](x)f(x) −
1[m,0)(x)f(x) for any x ∈ R. Then H is nonnegative, O(x) = E(H(x)|G ), and

E

(∫ m

0

f(x)dx

)
= E

(
eαY

α2 − α
+

eY

1− α
+

1

α

)
<∞.

Lemma B.1 yields

F{x 7→ O(x)}(u) = E

(∫ m

0

f(x)eiuxdx

∣∣∣∣G)
=

E
(
e(α+iu)Y |G

)
− 1

(α + iu)2 − (α + iu)
.

We have E(|e(α+iu)Y |) ≤ E(1 + eY ) = 2 and thus u 7→ F{x 7→ O(x)}(u) is integrable.
The Fourier inversion theorem yields

O(x) = F−1{u 7→ F{x̃ 7→ O(x̃)}(u)}(x)

because the ordinary inverse Fourier transform coincides with the improper inverse Fourier
transform for Lebesgue-integrable functions. Define

g : {z ∈ C \ {0} : −1 < Re(z) ≤ 0} → C, z 7→ E(e−zY |G )− 1

z2 + z
.
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g is continuous and holomorphic in the interior of its domain. Let 0 < ε < 1
2

=: α and
define

γ(1,ε) : [−1, 1]→ C, t 7→ i
t

ε
− 1

2
,

γ(2,ε) : [0, 1]→ C, t 7→ i
1

ε
− 1− t

2
,

γ(3,ε) : [0, 1]→ C, t 7→ i(1− t)
(

1

ε
− ε
)

+ iε,

γ(4,ε) : [0, π]→ C, t 7→ iεeit,

γ(5,ε) : [0, 1]→ C, t 7→ it

(
ε− 1

ε

)
− iε,

γ(6,ε) : [0, 1]→ C, t 7→ −i1
ε
− t

2

as well as Γε :=
∑6

k=1 γ(k,ε). Cauchy’s integral theorem yields∫
Γε

g(z)exzdz = 0.

Moreover we have
1

2πi

∫
γ(1,ε)

g(z)exzdz
ε→0−→ O(x)e−

1
2
x = O(x)

and ∫
γ(k,ε)

g(z)exzdz
ε→0−→ 0

for k ∈ {2, 6} and even for k = 4 because zg(z)→ 0 for z → 0. Thus we conclude

1

2π

(∫ −ε
−1/ε

g(−iu)e−iuxdu+

∫ 1/ε

ε

g(−iu)e−iuxdu

)

=
1

2πi

∫
−γ(3,ε)−γ(5,ε)

g(z)exzdz

=
1

2πi

∫
γ(1,ε)−Γε+γ(2,ε)+γ(4,ε)+γ(6,ε)

g(z)exzdz

ε→0−→ O(x).

Since ∫ −1/ε

−∞
g(−iu)e−iuxdu+

∫ ∞
1/ε

g(−iu)e−iuxdu
ε→0−→ 0,

we have
1

2π

(∫ −ε
−∞

g(−iu)e−iuxdu+

∫ ∞
ε

g(−iu)e−iuxdu

)
ε→0−→ O(x)

and hence

F−1

{
u 7→ 1− E(eiuY |G )

u2 + iu

}
(x) = O(x).

�

Proposition B.5. Let (N(x))x∈R be a family of nonnegative local martingales, and (τn)n∈N
a common localising sequence for all N(x) such that
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(1) (ω, x) 7→ Nt(x)(ω) is F ⊗B-measurable for all t ∈ R+,
(2) x 7→ Nt(x)(ω) is right-continuous and

∫∞
−C Nt(x)(ω)dx <∞ for all t ∈ R+,

(3) limC→∞
∫∞
−C e

iuxNt(x)(ω)dx exists for all ω ∈ Ω, t ∈ R+, u ∈ R\{0},
(4) for any n ∈ N, t ∈ R, u ∈ R\{0} there is an integrable random variable Z such

that |
∫∞
−C e

iuxN τn
t (x)(ω)dx| ≤ Z for any C ∈ R+.

Define the (improper, cf. (B.1)) Fourier transform of N by

Xt(u) := F{x 7→ Nt(x)}(u).

If X(u) has càdlàg paths, then it is a local martingale for all u ∈ R\{0} with common
localising sequence (τn)n∈N.

Proof. For any C ∈ R+, u ∈ R\{0}, ω ∈ Ω, t ∈ R+ define

XC
t (u)(ω) :=

∫ ∞
−C

eiuxNt(x)(ω)dx.

Fix n ∈ N, C ∈ R+, u ∈ R\{0}. Then XC
t∧τn(ω)(u)(ω) =

∫∞
−C e

iuxNt∧τn(ω)(x)(ω)dx for any
t ∈ R+, ω ∈ Ω. Setting

c(k, x) :=


1cos(x)>0 cos(x) for k = 0,

1sin(x)>0 sin(x) for k = 1,

−1cos(x)<0 cos(x) for k = 2,

−1sin(x)<0 sin(x) for k = 3,

ICt (k) :=

∫ ∞
−C

c(k, ux)Nt∧τn(x)dx

yields

XC
t∧τn(u) =

3∑
k=0

ikICt (k).

Since c(k, ·) : R → R+ and hence IC(k) are positive, we can apply Tonelli’s theorem and
conclude that IC(k) is a martingale up to the càdlàg property for all k ∈ {0, 1, 2, 3}. Thus
(t, ω) 7→ XC

t∧τn(u)(ω) is a martingale up to the càdlàg property as well. By the definitions
of XC and X we have Xt(u)(ω) = limC→∞X

C
t (u)(ω) and thus we get

Xt∧τn(ω)(u)(ω) = lim
C→∞

XC
t∧τn(ω)(u)(ω).

The fourth assumption on N and Lebesgue’s theorem yield

E(Xt∧τn(u)|Fs) = E
(

lim
C→∞

XC
t∧τn(u)|Fs

)
= lim

C→∞
E
(
XC
t∧τn(u)|Fs

)
= Xs∧τn(u)

for s ≤ t. Thus (t, ω)→ Xt(u)(ω) is a local martingale. �

B.2. Essential infimum of a subordinator.

Definition B.6. Let ψ be a deterministic local exponent (of some semimartingale X). We
define the infimum process E of ψ by Et := ess inf Xt for any t ∈ R+.

By [15, III.2.16], X in the previous definition is a PII whose law is determined by ψ.
Since Et is in turn determined by the law of Xt, the infimum process E does not depend on
the particular choice of X .
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Lemma B.7. Let X, Y be independent random variables. Then

ess inf (X + Y ) = ess inf X + ess inf Y.

Proof. Let x := ess inf X and y := ess inf Y . We obviously have ess inf (X+Y ) ≥ x+y
because X + Y ≥ x+ y almost surely. Independence yields

P (X + Y ≤ x+ y + ε) ≥ P
(
X ≤ x+

ε

2
, Y ≤ y +

ε

2

)
= P

(
X ≤ x+

ε

2

)
P
(
Y ≤ y +

ε

2

)
> 0

for any ε > 0. �

Proposition B.8. Let X be a subordinator (i.e. an increasing Lévy process) and Et :=
ess inf Xt for any t ∈ R+. Then Et = tE1 ≥ 0 for any t ≥ 0 and E is the drift part of X
relative to the “truncation” function h = 0. Moreover, X − E is a subordinator.

Proof. Since X is a subordinator, we have Et ≥ 0 for any t ∈ R+. Moreover, ess inf (Xt −
Xs) = Et−s because Xt−s has the same distribution as Xt −Xs. Since Xs and Xt −Xs are
independent, Lemma B.7 yieldsEs+Et−s = Et. The mapping t 7→ Et is increasing because
X is a subordinator. Together we conclude Et = tE1. This implies that X −E is a positive
Lévy process and hence a subordinator. By [21, Theorem 21.5] the Lévy-Khintchine triplet
(b, c,K) relative to “truncation” function h = 0 exists and satisfies c = 0. Moreover, K and
the random measure of jumps µX of X are concentrated on R+. In view of [15, II.2.34] we
have Xt = x ∗ µXt + bt and thus we get Et = ess inf Xt ≥ bt. According to [21, Theorem
21.5], X − E is a subordinator only if its drift rate b̃ relative to h = 0 is greater or equal 0.
Hence bt− Et = b̃t ≥ 0, which implies bt = Et. �

Corollary B.9. Let X be a d-dimensional semimartingale whose components Xk are sub-
ordinators with essential infimum Ek

t = ess inf Xk
t for k = 1, . . . , d. For componentwise

nonnegative bounded predictable processes ϕ we have

ess inf (ϕ • (X − E)t) = 0.

Moreover, for bounded predictable Cd-valued processes ϕ we have

ess inf |ϕ • (X − E)t| = 0

for any t ∈ R+.

Proof. The second statement is an application of the first statement because

0 ≤ |ϕ • (X − E)t| ≤ (|ϕ1|, . . . , |ϕd|) • (X − E)t.

Suppose that ϕ is a componentwise nonnegative bounded predictable process. Proposition
B.8 yields that Xk − Ek is a subordinator with essential infimum 0. Hence we may assume
w.l.o.g. that Ek = 0. Since ϕ is bounded, there is a constant c ∈ R+ such that ϕk ≤ c for
k = 1, . . . , d. Hence ϕ • Xt ≤ c

∑d
k=1X

k
t for any t ∈ R+. By Proposition B.8 the drift

part of Xk is 0 relative to the truncation function h = 0. Consequently, the drift part of the
subordinator L := c

∑d
k=1X

k is also 0 relative to the truncation function h = 0. Proposition
B.8 yields ess inf Lt = 0 for any t ∈ R+. Thus we conclude

0 ≤ ess inf (ϕ • Xt) ≤ ess inf Lt = 0.

�
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