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ON A HIGH ORDER NUMERICAL METHOD FOR
FUNCTIONS WITH SINGULARITIES

KNUT S. ECKHOFF

Abstract. By splitting a given singular function into a relatively smooth part
and a specially structured singular part, it is shown how the traditional Fourier
method can be modified to give numerical methods of high order for calculating
derivatives and integrals. Singular functions with various types of singularities
of importance in applications are considered. Relations between the discrete
and the continuous Fourier series for the singular functions are established. Of
particular interest are piecewise smooth functions, for which various impor-
tant applications are indicated, and for which numerous numerical results are
presented.

1. Introduction

For various applications we may be concerned with functions w(x) given on
the interval [0, 2π], say, under circumstances where it is known that the otherwise
smooth function w(x) has special features (e.g. singularities) at a finite number of
points x = γj , j = 1, 2, . . . ,M, say. Of particular interest here are piecewise smooth
functions which occur for instance in problems with shocks [9], [12], [13], but also
in other important applications [8], [10], [11], [14]. For a piecewise smooth function
w(x) we have in these earlier works found it advantageous for a given integer Q ≥ 0
to write w(x) in the following way on [0, 2π]

w(x) = wQ(x) +
Q∑
n=0

M∑
j=1

Anj Un(x− γj).(1)

For each n = 0, 1, 2, . . . , the 2π-periodic function Un(x) is here a piecewise poly-
nomial of degree n+ 1 given by

Un(x) = − (2π)n

(n+ 1)!
Bn+1

( x

2π

)
when 0 < x < 2π,(2)

where Bj(x), j = 1, 2, . . . , are the Bernoulli polynomials, [10], [15]. The representa-
tion (1) is a generalization of a representation utilized by Lanczos [20] for functions
with one singularity in each period (i.e. M = 1 and γ1 = 0), but apparently [18] the
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1064 KNUT S. ECKHOFF

basic idea was introduced earlier by A. N. Krylov. From (2) it follows that Un(x)
is n − 1 times continuously differentiable everywhere, while the nth derivative of
Un(x) suffers a jump discontinuity of magnitude +1 at x = 0,±2π,±4π, . . . . Hence,
if for each n = 0, 1, 2, . . . , Q we let Anj be given as the jump in the n’th derivative
of the function w(x) at the singularity location x = γj

Anj =
dnw

dxn
(γ+
j )− dnw

dxn
(γ−j ),(3)

and if we include the point x = 0 among the singularity locations γj whenever that
is necessary [11], it readily follows from (1) that the 2π-periodic extension of the
function wQ(x) is continuous and Q times continuously differentiable everywhere.
We furthermore note that the Fourier coefficients associated with the function Un(x)
are given by

(̂Un)0 = 0 , (̂Un)k =
1

2π(ik)n+1
; k = ±1,±2, . . . .(4)

In this paper we shall utilize the representation (1) further for piecewise smooth
functions w(x), and in particular consider new ways of determining the jumps (3)
when they are not known in advance. We note here that the lack of robust methods
for jump-determination has been the main reason why this type of construction
has not been extensively utilized earlier [21, p.101]. It may also seem natural to
try to generalize the representation (1) to cover functions w(x) with other types
of singularities than jump-singularities. Thus we shall consider the more general
representation

w(x) = wQ(x) +
Q∑
n=0

M∑
j=1

Anj Vn(x; γj),(5)

where the functions Vn(x; γj) are assumed to possess prototype special features
(singularities) of the same kind that w(x) is known to have at the point x = γj in
such a way that for certain constants Anj (i.e. strengths of the singularities), the
function wQ(x) in (5) becomes less singular the higher we choose the value of Q.

The assumed existence of the special feature functions Vn(x; γj) is crucial for the
theory we are going to develop in this paper. In addition to the above properties,
further properties will be specified in section 4 for these functions. We do not
attempt here to give a theory for how the functions Vn(x; γj) can be chosen in
general, but in section 3 we shall study in some detail a relatively large family of
functions from which it is possible to choose the special feature functions Vn(x; γj) in
many important special cases. For various other cases, we suggest that asymptotic
expansions near the singularities [3] may be a useful tool for the construction of the
relevant special feature functions Vn(x; γj).

The primary purpose of the representation (5) in our context is its suitability
for calculating integrals or derivatives of the given singular function w(x). When
x 6= γ1, . . . , γM , differentiation of (5) clearly leads to

dm

dxm
w(x) =

dm

dxm
wQ(x) +

Q∑
n=0

M∑
j=1

Anj
dm

dxm
Vn(x; γj).(6)

From this equation and the fact that the function wQ(x) is relatively smooth, we
may conclude that derivatives of the singular function w(x) can be accurately cal-
culated by standard methods if the special feature functions Vn(x; γj) are explicitly
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HIGH ORDER NUMERICAL METHOD FOR SINGULAR FUNCTIONS 1065

known and the quantities Anj in (5) can be accurately determined for n = 0, 1, . . . , Q
and j = 1, . . . ,M. Analogous remarks hold for integrals of the singular function
w(x).

Thus, an important purpose of the present paper is to provide efficient, accurate
and robust methods for determining the quantities Anj in (5) when the relevant
special feature functions Vn(x; γj) have been found. Utilizing properties established
in section 4, this will be done in section 5. Fourier methods will provide the basic
tools for our constructions, we shall therefore in section 2 describe the fundamental
results needed from Fourier analysis. In section 6 we shall briefly discuss how the
methods described in this paper can be efficiently utilized as tools both for numerical
differentiation as well as for numerical integration in the one-dimensional as well
as in the multi-dimensional case. In section 7 we shall give some numerical results
obtained by the described approach, and, finally, in section 8 we shall give some
concluding remarks.

2. The Fourier method

To an integrable complex-valued 2π-periodic function u(x) we may for any given
integer N > 0 associate the Nth-order truncated Fourier series

PNu(x) =
N∑

k=−N
ûke

ikx,(7)

where

ûk =
1
2π

∫ 2π

0

u(x)e−ikxdx; k = 0,±1,±2, . . . .(8)

An extensive theory for Fourier series is established in the literature [6], [17], [24].
The error involved when we approximate u(x) by the truncated Fourier series ex-
pansion (7) is known to be strongly dependent on the smoothness of the function
u(x). By introducing notations which differs slightly from the standard ones, it will
be shown in this section that all the results we shall need from Fourier analysis can
be established by elementary proofs only. The following class of functions will be
seen to constitute a suitable basis for our theory.

Definition 1. Sα2π is the class of all 2π-periodic integrable functions u(x) which
are such that

∑+∞
k=−∞(|k|+ 1)β|ûk| converges for every β < α.

From this definition it readily follows that Sα2π ⊂ Sγ2π whenever α > γ. If u ∈ Sα2π
for some α > 0, its infinite Fourier series limN→∞ PNu(x) is seen to be absolutely
and uniformly convergent, and u(x) is consequently a.e. equal to a continuous func-
tion. Similarly, we see that if u ∈ Sα2π for some α > m, u(x) is a.e. equal to a
continuous function which is m times continuously differentiable. Since we shall
not distinguish between ordinary functions which are different only on a set of
measure zero, we therefore have that Sα2π ⊂ Cm whenever α > m. By utilizing
the Schwarz inequality, it is furthermore easily seen that the Sobolev space of 2π-
periodic functions Hs ⊂ S

s− 1
2

2π . When u′ denotes the derivative in the sense of
distributions, we see that u′ ∈ Sα−1

2π whenever u ∈ Sα2π. This can be used to ex-
tend the above definition to also cover certain non-integrable functions as well as
generalized functions.
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1066 KNUT S. ECKHOFF

From the above definition it clearly follows that if we have

ûk = O(|k|−α−1) as k → ±∞,(9)

then u ∈ Sα2π. If in particular we assume that the 2π-periodic function u(x) is
continuous andm−1 times continuously differentiable everywhere, and that u(m)(x)
is piecewise continuous and piecewise differentiable on [0, 2π], it can be readily
shown by partial integration and Riemann-Lebesgue’s Lemma that

ûk = O(|k|−m−1) as k → ±∞.(10)

Thus it follows that in this case u ∈ Sm2π. If u(x) is discontinuous, but such that
u(x) is piecewise continuous and piecewise differentiable on [0, 2π], then (10) holds
with m = 0 and u ∈ S0

2π . It should be emphasized, however, that (9) does not hold
for all functions u ∈ Sα2π, and in particular that the piecewise smooth functions
only constitute a small subset of the class of functions S0

2π.
In order to establish suitable estimates, it will be convenient in the following to

apply the following notation

Definition 2. A sequence {gk} is said to be of the order Os(k−α) as k →∞, if for
every β < α we have gk = o(k−β) as k →∞.

It is easy to construct examples showing that Os(k−α) does not in general imply
the slightly sharper estimate O(k−α) as k→∞. Although formally not equivalent,
it seems difficult in practice to distinguish between those two estimates in actual
numerical computations, however. As an immediate application of the notation
introduced in Definition 2, and as a contrast to the sufficient condition (9), it easily
follows from Definition 1 that a necessary condition for u ∈ Sα2π is that

ûk = Os(|k|−α) as k → ±∞.(11)

When the function u(x) and its derivatives up to the order p at every point are given
by the corresponding infinite Fourier series (a sufficient condition is that u ∈ Sα2π
for some α > p), it follows for the truncation-error

ENu(x)
def= u(x)− PNu(x) =

+∞∑
|k|=N+1

ûke
ikx,(12)

that for arbitrary γ ≥ 0 we have∥∥∥∥dpENu(x)dxp

∥∥∥∥ def= max
0≤x≤2π

∣∣∣∣dpENu(x)dxp

∣∣∣∣ ≤ N−γ
+∞∑

|k|=N+1

(|k|+ 1)p+γ |ûk|.(13)

Assuming that γ is such that the sum on the right hand side in (13) converges, we
may at least for u ∈ Sα2π with α > p conclude that∥∥∥∥dpENu(x)dxp

∥∥∥∥ = Os(Np−α) as N →∞.(14)

If u ∈ Sm2π is such that u(m)(x) is piecewise continuous and piecewise differentiable
on [0, 2π], it can be shown that the following slightly sharper estimate holds when
m ≥ p ∥∥∥∥dpENu(x)dxp

∥∥∥∥ = O(Np−m) as N →∞.(15)
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Let us now assume that the function u(x) is known (and finite) on a uniform set
of, say, G grid points in the interval [0, 2π]

xl =
2π
G
l; l = 0, 1, . . . , G− 1.(16)

The discrete Fourier coefficients associated with u(x) are then as usual given by [6]

ũk
def=

1
G

G−1∑
l=0

u(xl)e−ikxl , k = 0,±1,±2, . . . ,±
[
G− 1

2

]
.(17)

Assuming that either G = 2N + 1 or G = 2(N + 1), we define the interpolated
Fourier series of order N associated with u(x) by

INu(x)
def=

N∑
k=−N

ũke
ikx.(18)

Strictly speaking, (18) is interpolating the given values of the function u(x) at
the collocation points (16) only when G = 2N + 1. We shall use the form (18)
also for G = 2(N + 1), however, in order to avoid the nuisance introduced by the
unsymmetric series which exactly interpolates the given values of u(x) at an even
number of collocation points (16) [6].

When u ∈ Sα2π for some α > 0, the following well-known relation [6]

ũk = ûk +
+∞∑
m=1

[ûk+mG + ûk−mG] ,(19)

can be readily utilized to establish the estimate

ũk = ûk +Os(N−α) as N →∞.(20)

For the interpolation-error, i.e. the difference between the truncated Fourier series
(7) and the interpolated series (18), we clearly have by (19) for β ≥ 0∥∥∥∥dpPNu(x)dxp

− dpINu(x)
dxp

∥∥∥∥ =

∥∥∥∥∥
N∑

k=−N
(ik)p

+∞∑
m=1

[ûk+mG + ûk−mG] eikx
∥∥∥∥∥

≤ Np
N∑

k=−N

+∞∑
m=1

[|ûk+mG|+ |ûk−mG|] ≤ Np−β
+∞∑

|k|=N+1

(|k|+ 1)β|ûk|.(21)

When u ∈ Sα2π with α > p, we may therefore conclude from (21) that∥∥∥∥dpPNu(x)dxp
− dpINu(x)

dxp

∥∥∥∥ = Os(Np−α) as N →∞.(22)

The interpolation-error (22) is thus seen to be of exactly the same order as the
truncation error (14) [5], [19].

3. Special families of functions

Let α be a real number and let us consider the family of 2π-periodic functions
fα(x) given by

fα(x) =
xα

Γ(α+ 1)
when 0 < x < 2π.(23)
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1068 KNUT S. ECKHOFF

The function fα(x) is clearly integrable if and only if α > −1, and the associated
Fourier coefficients (8) are given by

(̂fα)k =
1
2π

∫ 2π

0

xαe−ikx

Γ(α+ 1)
dx; k = 0,±1,±2, . . . .(24)

In particular, we therefore have

(̂fα)0 =
(2π)α

Γ(α+ 2)
.(25)

In order to get hold of the other coefficients (24) when α is not an integer, we
denote by m ≥ 0 the integer which is such that m − 1 < α < m. By applying
partial integration m times in (24), we may then rewrite the result in the following
way [3] when m ≥ 1

(̂fα)k =
1

2π(ik)m

∫ 2π

0

xα−me−ikx

Γ(α+ 1−m)
dx−

m∑
n=1

(2π)α−n

(ik)nΓ(α + 2− n)

=
1

2π(ik)m

∫ +∞

0

xα−me−ikx

Γ(α+ 1−m)
dx − 1

2π(ik)m

∫ +∞

2π

xα−me−ikx

Γ(α+ 1−m)
dx

−
m∑
n=1

(2π)α−n

(ik)nΓ(α+ 2− n)
.(26)

Since −1 < α−m < 0, it is not difficult to show that [3, p. 311]

1
2π(ik)m

∫ +∞

0

xα−me−ikx

Γ(α+ 1−m)
dx =

1
2π(ik)α+1

.(27)

Now let Q > α−1 be an arbitrarily given non-negative integer. Application of (27)
and partial integration Q + 1 − m times in the last integral in (26) then give us
asymptotically as k → ±∞

(̂fα)k =
1

2π(ik)α+1
−

Q∑
n=0

(2π)α−n−1

(ik)n+1Γ(α+ 1− n)
+O(|k|−Q−2)

=
1

2π(ik)α+1
−

Q∑
n=0

(2π)α−n

Γ(α+ 1− n)
(̂Un)k +O(|k|−Q−2),(28)

where the Fourier coefficients (4) have been employed. From (9), (28), we may
conclude that fα ∈ Sα2π when −1 < α < 0, while fα ∈ S0

2π when α > 0.
With reference to the first term on the right hand side in (28), we now let

Uα(x) ∈ Sα2π denote the 2π-periodic function which has the Fourier coefficients
(̂Uα)0 = 0 and

(̂Uα)k =
1

2π(ik)α+1
=
e−i

π
2 (α+1)signk

2π|k|α+1
; k = ±1,±2, . . . .(29)

If α = n is a non-negative integer, these Fourier coefficients (29) coincide with the
coefficients (4). Hence the family of functions Uα(x) is a generalization of the family
of functions Un(x) given by (2) to non-integer values of the parameter α.
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HIGH ORDER NUMERICAL METHOD FOR SINGULAR FUNCTIONS 1069

With (29), the Fourier series associated to Uα(x) can be written

Uα(x) ∼ 1
π

∞∑
k=1

(
1
k

)α+1

cos
[π
2

(α+ 1)− kx
]
.(30)

For α > 0, the series (30) is clearly absolutely and uniformly convergent everywhere.
For α = 0, the series (30) converges everywhere, but no longer uniformly in a
neighborhood of x = 0,±2π,±4π, . . . . For −1 < α < 0, the magnitudes of the
coefficients in (30) are still monotonically decreasing as |k| → ∞, hence (30) is
known [24] to converge everywhere with the exception of the single point x =
0,±2π,±4π, . . . in each period.

With the exception of the leading (k = 1) Fourier coefficient in (30), all coef-
ficients are seen to be monotonically decreasing when α increases. Since the rate
of decrease is seen to be increasing with the value of k, the associated truncated
Fourier series (7) will accurately approximate Uα(x) for moderate or small values of
N if α is chosen sufficiently large. In fact, for α ≥ 50, Uα(x) can be approximated
with machine accuracy for normal double precision calculations by the leading term
in (30)

Uα(x) ≈ 1
π

cos
[π
2

(α+ 1)− x
]
.(31)

The approximation (31) is fairly good also for smaller values of α than 50, but
the error increases as α decreases. For α = 6, for instance, the error for the
approximation (31) is everywhere less than 2.6·10−3. In order to approximate Uα(x)
with machine accuracy, it suffices to keep 10 terms in (30) for α ≥ 15, 20 terms for
α ≥ 11, while in our calculations we needed 456 terms for α = 5 and 1555 terms
for α = 4 in order to get the optimal approximation for normal double precision
calculations (53 bits). For α smaller than 4, the truncated Fourier series soon
becomes impractical for obtaining machine accuracy, since the necessary number
of terms will be sky-rocketing beyond any limit of practical interest the closer we
get to the value α = −1, where the Fourier series no longer converges.

In later applications we shall need accurate information about the function Uα(x)
for α small, i.e. for cases where the associated Fourier series (30) is converging very
slowly. In fact, we are for some applications interested in information not only
about the function Uα(x) itself, but also about its derivatives when −1 < α < 0.
In order to obtain the necessary information, we may write Uα(x) in the following
way

Uα(x) = fα(x) + ΦQα (x) + ΨQ
α (x).(32)

Here fα(x) is the 2π-periodic function given by (23) and ΨQ
α (x) is the following

explicit linear combination of the 2π-periodic functions Un(x) given by (2)

ΨQ
α (x)

def=
Q∑
n=0

CnαUn(x) where Cnα =
(2π)α−n

Γ(α + 1− n)
,(33)

while ΦQα (x) is a 2π-periodic function which by (28) is seen to satisfy

(̂ΦQα )k = O(|k|−Q−2) as k → ±∞.(34)

Hence ΦQα ∈ SQ+1
2π by (9). With this background we may conclude that Uα(x) is

smooth everywhere in the open interval (0, 2π) and furthermore that Uα(x)−gα(x)
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1070 KNUT S. ECKHOFF

is smooth in a neighborhood of x = 0 when we choose

gα(x) =
{

0 when x < 0,
fα(x) when x > 0.(35)

Thus (35) characterizes the type of singularity the otherwise smooth function Uα(x)
has at x = 0,±2π,±4π, . . . . We furthermore note that when α > 0, we have

d

dx
Uα(x) = Uα−1(x).(36)

The function Uα(x) can clearly for x 6= 0,±2π,±4π, . . . , be uniquely defined also for
α ≤ −1 if we repeatedly utilize the relation (36). We shall in section 6 briefly indi-
cate an important area of applications where the function Uα(x) can be successfully
applied for some non-integer values of α. Due to their importance in applications for
partial differential equations in complex geometries both in two and three spatial
dimensions [11], however, the piecewise smooth functions (2) obtained for integer
values of the parameter α, will be at our focus in the rest of this paper.

4. Removal of singularities

Unless a given 2π-periodic function w(x) is a member of the class Sα2π for some
relatively large α, neither the estimates established in section 2, nor numerical ex-
perience give any evidence that truncated or interpolated Fourier series give partic-
ularly accurate approximations for w(x). As we shall see in the following, however,
such series may still provide valuable tools for handling special subclasses of func-
tions w ∈ Sα2π when α is not large. Normally we will here assume that α ≥ 0, but
in special circumstances we may get useful results also when α < 0.

The key to the success of Fourier methods for singular functions, is the assump-
tion that the given function w ∈ Sα2π is singular only at a finite number of points
x = γj , j = 1, 2, . . . ,M on the interval [0, 2π], and that it can be represented on
the form (5), i.e. that for any given integer Q ≥ 0 we can write

w(x) = wQ(x) +
Q∑
n=0

M∑
j=1

Anj Vn(x; γj).(37)

In this paper we shall assume that the location of the singularities γ1, . . . , γM are
known with sufficient accuracy. For cases where γ1, . . . , γM are not known, we
refer to [10] for algorithms which can be used to determine those locations. For
each j = 1, . . . ,M and each n = 0, 1, 2, . . . , the special feature function Vn(x; γj)
is assumed to belong to the class Sα+n

2π . From (14), (22) it therefore follows that as
long as α+ n > p we have∥∥∥∥dpVn(x; γj)

dxp
− dpINVn(x; γj)

dxp

∥∥∥∥ = Os(Np−α−n) as N →∞.(38)

We shall in addition assume that with the possible exception of the points x =
γj + 2mπ, m = 0,±1,±2, . . . , the function Vn(x; γj) is smooth everywhere and
such that at any given point x 6= γj + 2mπ we have for arbitrary p∣∣∣∣dpVn(x; γj)

dxp
− dpINVn(x; γj)

dxp

∣∣∣∣ = Os(Np−α−n) as N →∞.(39)

We note that the above assumptions are satisfied if the special feature functions
are given either by Vn(x; γj) = Uαj+n(x− γj) or by Vn(x; γj) = Uαj+n(γj − x) for
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some αj ≥ α, where Uα ∈ Sα2π is the special family of functions introduced in the
preceding section.

Finally, we shall assume that Vn(x; γj) possess prototype singularities of the
same kind that w(x) is known to have at the point x = γj . By this we shall mean
that for certain constants Anj (i.e. strengths or amplitudes of the singularities), the
function wQ(x) in (37) is a member of the class Sα+1+Q

2π for each Q ≥ 0. In order to
simplify the construction for cases where the given function w(x) has a relatively
complicated structure at the singularities, we may introduce the convention that it
is not necessary to exclude the possibility that γj = γl for some j 6= l. This may in
particular make it easier to handle cases where various special features of different
nature simultaneously occur at the same point.

With the above assumptions, it follows from (14), (22) that as long as α+1+Q >
m we have∥∥∥∥dmwQ(x)

dxm
− dmINw

Q(x)
dxm

∥∥∥∥ = Os(Nm−α−1−Q) as N →∞.(40)

Furthermore, we observe that (37) is an identity when the proper function wQ(x)
and amplitudes Anj have been substituted. If the functions involved are defined
(and finite) at the collocation points (16), we therefore get the following relations
between the associated discrete Fourier coefficients (17)

w̃k = (̃wQ)k +
Q∑
n=0

M∑
j=1

Anj (̃Vn)k(γj).(41)

For the associated interpolated Fourier series (18), we consequently get the identity

INw(x) = INw
Q(x) +

Q∑
n=0

M∑
j=1

Anj INVn(x; γj).(42)

By combining (37) and (42) we thus have the identity

w(x) = INw(x) +
Q∑
n=0

M∑
j=1

Anj [Vn(x; γj)− INVn(x; γj)] + wQ(x) − INw
Q(x).(43)

At least when x 6= γ1, γ2, . . . , γM , we therefore also have the following identities for
m = 0, 1, 2, . . .

dm

dxm
w(x) =

dm

dxm
INw(x) +

Q∑
n=0

M∑
j=1

Anj

[
dm

dxm
Vn(x; γj)− dm

dxm
INVn(x; γj)

]

+
dm

dxm
wQ(x) − dm

dxm
INw

Q(x).(44)

Thus when x 6= γ1, γ2, . . . , γM , we conclude from (40), (44) that form = 0, 1, 2, . . . ,
we have

dm

dxm
w(x) =

dm

dxm
INw(x) +

Q∑
n=0

M∑
j=1

Anj

[
dm

dxm
Vn(x; γj)− dm

dxm
INVn(x; γj)

]

+Os(Nm−α−1−Q) as N →∞.(45)
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As a consequence of (20), (37), (41), we furthermore note that the following relations
between the discrete and the exact Fourier coefficients hold

ŵk = (̂wQ)k +
Q∑
n=0

M∑
j=1

Anj (̂Vn)k(γj)

= w̃k +
Q∑
n=0

M∑
j=1

Anj

[
(̂Vn)k(γj)− (̃Vn)k(γj)

]
+ (̂wQ)k − (̃wQ)k

= w̃k +
Q∑
n=0

M∑
j=1

Anj

[
(̂Vn)k(γj)− (̃Vn)k(γj)

]
+Os(N−α−1−Q) as N →∞.(46)

If Q and N have been chosen sufficiently large, the last Os-terms in (45) and (46)
can be neglected. The relations (45), (46) are therefore suitable for approximation
purposes when we are able to calculate all the terms occurring on the right hand
side. Since all the functions Vn(x; γj) by assumption are explicitly known (at least
approximately, with high accuracy), and the function w(x) is known at the collo-
cation points (16), the only remaining unknown quantities on the right hand side
in (45), (46) are the amplitudes Anj .

In general the amplitudes Anj can only be determined approximately, and we
shall in the following section describe several procedures for doing this, depending
on what additional information that is available for the particular problem at hand.
In this connection we note that with the introduced assumption (39), the order of
accuracy in (45), (46) will be preserved if approximations Ānj satisfying

Ānj = Anj +Os(Nn−Q−1) as N →∞(47)

are substituted for Anj .
We also note that in view of (42), the relation (44) and hence also (45), is

equivalent to the relation (6) given in the introduction. Furthermore, we note that
if we restrict ourselves to piecewise smooth functions w(x), we may take Vn(x; γj) =
Un(x−γj). In this case all estimates given in this section are valid when we replace
Os with the slightly sharper ordering O. This in particular means that with the
notation introduced in [11], we have actually proved that the method described in
[11] will work in general also when Q1 = Q with an accuracy which is of the order
that we observed in the numerical computations reported in [11].

5. Calculation of the singularity amplitudes

In this section we are going to establish equations for the approximate determi-
nation of the amplitudes Anj in the representation (37) for a singular function w(x)
given at the collocation points (16). The accuracy of the determined amplitudes
will in all cases be at least consistent with (47), but for many problems this will
not be sufficient for obtaining a stable and/or robust algorithm. After establishing
a system of equations valid for the general case in §5.1, we shall therefore in §5.2
establish additional equations valid when detailed knowledge of the function w(x)
is available on a certain subinterval of [0, 2π]. As an example of the latter, we may
mention the cases considered in [11] where a buffer zone with w(x) ≡ 0 is intro-
duced outside the domain of interest in order to be able to handle problems with
complex geometry.
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For special problems it may be possible to establish additional equations for
the amplitudes by utilizing the special structure of the problem at hand. This
may make it easier to construct a more stable and more robust method, as well as
reduce the computational cost involved in applications of the method, thus making
the approach more competitive relative to alternative methods. For the special case
of piecewise smooth functions we shall in §5.3 see how finite difference formulas can
provide such additional equations.

5.1. Approximate equations for the amplitudes. For an arbitrarily given γ,
the function Vn(x; γ) belongs by assumption to the class Sα+n

2π for n = 0, 1, . . . .
From (11) we therefore have

(̂Vn)k(γ) = Os(|k|−α−n) as |k| → ∞,(48)

while from (20) we have

(̃Vn)k(γ) = (̂Vn)k(γ) +Os(N−α−n) as N →∞.(49)

If we let the integer P > 0 be fixed and let N − P ≤ |k| ≤ N , it follows from (48),
(49) that

(̃Vn)k(γ) = Os(N−α−n) as N →∞.(50)

Since by assumption wQ ∈ Sα+1+Q
2π , it follows in the same way that when N −P ≤

|k| ≤ N, we have for Q = 0, 1, 2, . . . ,

(̃wQ)k = Os(N−α−1−Q) as N →∞.(51)

From (41), (51) we now get when N − P ≤ |k| ≤ N

w̃k −
Q∑
n=0

M∑
j=1

Anj (̃Vn)k(γj) = (̃wQ)k = Os(N−α−1−Q) as N →∞.(52)

For Q and N sufficiently large, we may therefore neglect the right hand side in
(52) and have consequently obtained a system of approximate equations for the
amplitudes Anj . As partly discussed in [10], [11], the system of equations obtained
from (52) may be ill-conditioned and in some cases singular, it may therefore be
advantageous to consider the least squares solution of the over-determined system
obtained from (52) with 2P + 2 > M(Q+ 1)

N∑
|k|=N−P

|w̃k −
Q∑
n=0

M∑
j=1

Anj (̃Vn)k(γj)|2 → minimum .(53)

In this way the conditioning of the resulting system of equations for the amplitudes
Anj is normally improved, and if we choose P ≥ M(Q + 1) − 1, we will in most
cases be guaranteed a system which at least in principle is linearly independent
and therefore determines the amplitudes uniquely. In section 7 we shall illustrate
various aspects related to this issue by considering some numerical examples.

In many cases the solution of (53) will be more accurate than indicated by the
above estimates. In fact, the estimate (48) necessarily follows by (11), but (48) is
not sufficient to ensure that Vn(x; γ) belongs to the class Sα+n

2π . If for instance the
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function Vn(x; γ) is given by either Uα+n(x− γ) or by Uα+n(γ− x), it follows from
(29) that

(̂Vn)k(γ) = O(|k|−α−n−1) as |k| → ∞.(54)

When α+ n > 0, we have by (19)

(̃Vn)k(γ) = (̂Vn)k(γ) +
+∞∑
m=1

[
(̂Vn)k+mG(γ) + (̂Vn)k−mG(γ)

]
,(55)

which together with (54) can be used in the same way as in [11, §4] to show that

(̃Vn)k(γ) = (̂Vn)k(γ) +O(N−α−n−1) as N →∞.(56)

For fixed P, we now get from (54), (56) when N − P ≤ |k| ≤ N that

(̃Vn)k(γ) = O(N−α−n−1) as N →∞.(57)

As a consequence of (54) and the assumptions made in the previous section, it
is clear that for the case considered here we are restricted to functions w ∈ Sα2π
satisfying

ŵk = O(|k|−α−1) as |k| → ∞,(58)

and hence

w̃k = ŵk +O(N−α−1) as N →∞.(59)

Since by assumption we have wQ ∈ Sα+1+Q
2π for every Q = 0, 1, . . . , it follows from

(41), (51) and (57) that when N − P ≤ |k| ≤ N

(̃wQ)k = ˜(wQ+2)k +
M∑
j=1

[
AQ+1
j

˜(VQ+1)k(γj) +AQ+2
j

˜(VQ+2)k(γj)
]

= O(N−α−Q−2) as N →∞.(60)

In this case therefore, the right hand side in (52) has been shown to be of the order
O(N−α−Q−2) as N → ∞. This is clearly a sharper estimate than the generally
valid estimate given in (52), the solution of (53) can therefore be expected to be
quite accurate. This has already been partly confirmed by the numerical results
presented in [11], and further numerical examples will be presented in section 7.

5.2. Additional equations when there is a buffer zone. In this subsection
we shall establish additional equations valid when we have detailed knowledge of
the function w ∈ Sα2π in some subinterval of [0, 2π], say the subinterval (a, b). As an
example of the latter, a buffer zone with w(x) ≡ 0 was in [11] introduced outside the
domain of interest in order to be able to handle problems with complex geometry.
There is clearly no loss of generality by assuming that w(x) ≡ 0 on the subinterval
(a, b) since it is always possible to subtract any other given value the function may
have there. With that assumption, we therefore get from (43) that everywhere in
(a, b) we have

INw(x) +
Q∑
n=0

M∑
j=1

Anj [Vn(x; γj)− INVn(x; γj)]

= Os(N−α−1−Q) as N →∞.(61)
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At those of the collocation points (16) which are located in the subinterval (a, b),
the left hand side in (61) will for arbitrary amplitudes Anj either nearly vanish or
actually vanish, depending on whether G is even or odd, respectively. In between
the collocation points in (a, b), however, the left hand side in (61) will normally only
be small when quite accurate values for the amplitudes Anj have been substituted.
As a consequence, additional approximate equations for the amplitudes Anj can
be obtained by equating the left hand side in (61) to zero at one or more non-
collocation points in (a, b). These equations can then either be used in conjunction
with (52) to make a slightly larger least squares problem than (53), or alternatively,
as a stand alone system if sufficiently many independent non-collocation points have
been chosen in (a, b).

In addition to (61), the relation (45) with the assumption that w(x) ≡ 0 on
(a, b), shows that on (a, b) we also have for m = 1, 2, . . .

dm

dxm
INw(x) +

Q∑
n=0

M∑
j=1

Anj

[
dm

dxm
Vn(x; γj)− dm

dxm
INVn(x; γj)

]

= Os(Nm−α−1−Q) as N →∞.(62)

In contrast to (61), the relations (62) will not automatically be satisfied at the
collocation points. We are therefore here more free than for (61) to choose where
we want to put the left hand side in (62) equal to zero. Normally, the relations (62)
will at an arbitrarily chosen point in (a, b) provide us with additional approximate
equations for the amplitudes Anj . We may for instance choose the boundary points
x = a+ and x = b−, or any other convenient point inside the interval (a, b). With
this flexibility, it is not difficult to obtain an independent stand alone system which
in principle determines all the amplitudes Anj uniquely. In order to get a balanced
system of equations, the error terms on the right hand side in (61), (62) clearly
indicate that (62) should be multiplied by a weight-factor proportional to N−m

before approximate solutions are sought.
Since the obtained system normally can be expected to be ill-conditioned, the

least squares problem for an enlarged system which for instance also includes some
of the generally valid equations deduced in §5.1, may lead to a better conditioned
system and may thus be more feasible in practice. The most favorable choice of
system will clearly depend on the actual problem at hand, but the inherent flexi-
bility should make it possible in many cases to establish systems which determine
the amplitudes with sufficient accuracy. An application of this construction has
already been seen to be feasible for the solution of the heat equation in complex
geometries [14], and further illustrating examples will be given in section 7.

5.3. Utilization of finite differences. For the important special case of piecewise
smooth functions where Vn(x, γj) is given by (2), the amplitudes Anj are given by
(3). Since the singularity locations γj need not be grid points, we will in general
have to deal with nonuniform grids if finite difference formulas shall be employed
in the determination of the right hand side of (3). In principle, however, such finite
difference formulas of arbitrary order are known and can be set up for derivatives
of any given order. Thus finite difference formulas can in principle be set up for all
the unknown amplitudes Anj in this case, formally satisfying (47). Such high order
finite difference formulas are known to lack robustness, however, they will therefore
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normally be unsuitable for our purpose here. In the words of Lyness [21, p.101],
such finite difference approximations are notoriously unreliable.

Even with this background there is still one combination of such finite difference
formulas which may be suitable for our purpose for cases where there is one or more
buffer zones. The combination in question here is perhaps better known as a Taylor
expansion near each singularity location which is next to a buffer zone. In fact, if
there is a buffer zone with w(x) ≡ 0 to the left of the singularity location γj , we
have w(n)(γ−j ) = 0 for every n = 0, 1, 2, . . . , and (3) consequently implies that

Anj =
dnw

dxn
(γ+
j ).(63)

For x > γj , a Taylor expansion therefore results in

w(x) = A0
j + (x− γj)A1

j + · · ·+ (x− γj)Q

Q!
AQj +O(|x − γj |Q+1).(64)

If we let xk denote the grid-point next to γj on the right, i.e. if xk−1 ≤ γj < xk,
then (64) with x = xk clearly gives us an approximate equation for the amplitudes
A0
j , . . . , A

Q
j with an error term which is of the order O(N−Q−1) as N → ∞. Al-

though the error term normally grows if we take (64) with x = xk+1, the error term
is still of the order O(N−Q−1), thus providing us with an additional equation. If the
distance to the next singularity location is large enough, this process can formally
be continued to also include the grid-points xk+2, xk+3, . . . , xk+Q, thus providing
us with a closed system for the determination of the amplitudes A0

j , . . . , A
Q
j . The

solution of this system is actually a set of finite difference formulas which formally
are of the appropriate order (47). Our numerical experiments do show, however,
that if more than 2 or possibly 3 such equations are considered, a loss in robustness
and accuracy can be expected, indicating that only a few of these equations should
be considered as part of a larger system incorporating equations obtained earlier in
this section.

Except for a change in sign, a similar construction applies at a singularity location
γl which has a buffer zone to the right. In fact, since we then have w(n)(γ+

l ) = 0
for every n = 0, 1, 2, . . . , equation (3) now implies that

Anl = −d
nw

dxn
(γ−l ).(65)

For x < γl, a Taylor expansion consequently results in

w(x) = −A0
l − (x − γl)A1

l − · · · −
(x− γl)Q

Q!
AQl +O(|x − γl|Q+1).(66)

If we let xm denote the grid-point next to γl on the left, i.e. if xm < γl ≤ xm+1,
then (66) with x = xm, xm−1 and possibly also x = xm−2, clearly give us two (or
possibly three) approximate equations for the amplitudes A0

l , . . . , A
Q
l with an error

term which is of the order O(N−Q−1) as N →∞.

6. Some applications

The area of application which we primarily have had in mind in this paper, is the
solution of partial differential equations in complex geometries utilizing an ordinary,
fixed, uniform, Cartesian system of grid-points [11]. The derivative with respect
to x at each of those grid-points then clearly depends only on the behavior of the
function on the grid-line through that point where y = constant (and z = constant
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etc., if the dimension is higher than 2). Similarly, the derivative with respect to
y depends only on the grid-line where x = constant, z = constant, etc. etc. The
corresponding one-dimensional function on each grid-line is relevant for our problem
only on certain disjoint subintervals [γ1, γ2], [γ3, γ4], . . . , [γM−1, γM ], which for some
M ≥ 2 are uniquely determined by the geometry of the problem. Points outside
the subintervals [γ1, γ2], [γ3, γ4], . . . , [γM−1, γM ] correspond to points outside the
domain of interest, and are therefore irrelevant for our problem. The subintervals
[γ1, γ2], [γ3, γ4], . . . , [γM−1, γM ] may clearly vary from grid-line to grid-line, and
may also vary in time if the geometry of our problem is time dependent.

Since the derivative of the function on each of the subintervals is independent
of the behavior of the function on the other subintervals, each subinterval can be
handled separately. Thus, in order to handle the space discretization problem on
a Cartesian grid for problems in complex geometries, it clearly suffices to design
a SUBROUTINE that accurately calculates the derivative of an arbitrarily given
one-dimensional smooth function on a uniform set of grid-points in an arbitrar-
ily given interval [γ1, γ2] utilizing only the values of the function at the same grid
points and the relevant boundary conditions at the endpoints γ1, γ2 of the interval.
These endpoints γ1, γ2 will normally not coincide with grid-points. There is clearly
no essential loss of generality by assuming that [γ1, γ2] is a subinterval of [0, 2π],
and that the rest of the interval [0, 2π] is a buffer zone. Thus all the machinery
developed earlier in this paper for calculating the derivative of a piecewise smooth
function can be applied in the construction of such a SUBROUTINE. Some nu-
merical results obtained for such constructions have already been published in [11],
[14], and improved results based on the additional insight gained in this paper will
be given in the following section. Applications to partial differential equations will
be given elsewhere. We would here like to add that, in principle, the same type of
approach can also be applied to problems involving shocks in the solution, if the lo-
cation of the shocks can be accurately calculated. In fact, the location of the shock
can then be handled as an additional boundary (possibly with appropriate shock
relations as boundary conditions) manifesting itself in appropriate values of γj on
the various grid-lines. For one-dimensional problems, some such results obtained
by an analogous modified Galerkin method have been published in [9], [12], [13].

Another area where interesting applications can be given is numerical quadra-
ture. If the integral over the interval [0, 2π] of a one-dimensional function w(x) is
needed, it is from (8) given by 2πŵ0, which clearly can be accurately approximated
by the expressions given in (46). If in particular w(x) is smooth on [0, 2π], the
2π-periodic extension of w(x) is in general only piecewise smooth with one jump-
singularity in each period (i.e. we may take M = 1 and γ1 = 0). In this case it is
not difficult to show that (46) results in a quadrature formula which is equivalent
to the classical Euler-Maclaurin formula [7], [21].

The formula (46) can clearly also be utilized to obtain generalized Euler-
Maclaurin quadrature formulas in cases where the function w(x) has various types
of additional singularities on the interval [0, 2π].We shall here only look more closely
at the formula we obtain when the integral over a subinterval [γ1, γ2] ⊂ [0, 2π] of a
smooth function w(x) is needed. We may then assume that w(x) vanishes identi-
cally on the rest of the interval [0, 2π], providing us with a buffer zone. With these
assumptions, w(x) is piecewise smooth, and Vn(x, γ) = Un(x − γ) is given by (2).
By arguments analogous to those given in the last part of section 5.1, it is easy to
show that the error term in (46) then actually is of the order O(N−Q−2) as N →∞
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instead of Os(N−α−1−Q). In view of (4) we therefore get the following formula for
this case∫ γ2

γ1

w(x)dx = 2πŵ0

= 2πw̃0 − 2π
Q∑
n=0

2∑
j=1

Anj (̃Vn)0(γj) +O(N−Q−2) as N →∞ .

(67)

Application of (4) and (19) readily gives for n ≥ 1

(̃Vn)0(γj) =
+∞∑
m=1

[
(̂Vn)mG(γj) + (̂Vn)−mG(γj)

]

=
(−1)n+1

Gn+1

+∞∑
m=1

[
eimGγj

2π(im)n+1
+

e−imGγj

2π(−im)n+1

]
=

(−1)n+1Un(Gγj)
Gn+1

.(68)

It is not difficult to show that (68) also holds for n = 0 if we apply the convention
that U0(2kπ) = 0, k = 0,±1,±2, . . . , which implies that U0(x) is everywhere given
by the sum of its Fourier series. With this convention we have therefore established
the following generalization of the Euler-Maclaurin formula

∫ γ2

γ1

w(x)dx = 2πw̃0 − 2π
Q∑
n=0

2∑
j=1

(−1)n+1Un(Gγj)Anj
Gn+1

+O(G−Q−2) as G→∞ ,

(69)

where by (3), (16) and (17) we have

An1 =
dnw

dxn
(γ+

1 ) , An2 = −d
nw

dxn
(γ−2 ) , w̃0 =

1
G

G−1∑
l=0

w(2πl/G).(70)

For the above formulas to be valid also when γ1 and/or γ2 are grid-points, it is in
view of the convention introduced above for U0(x) necessary to assume that w(x)
is also everywhere given by the sum of its Fourier series. Since w(x) by assumption
is smooth on the interval [γ1, γ2] and vanishes outside [γ1, γ2], it suffices here to
introduce the convention that w(γ1) = w(γ+

1 )/2 and w(γ2) = w(γ−2 )/2, which is
easily seen to be consistent with the assumption that (37) is an identity.

In order to apply the above quadrature formula, the efficient and robust calcula-
tion of the amplitudes An1 , A

n
2 , n = 0, 1, . . . , Q, by the equations established in the

preceding section will clearly play a key role. One area where the formulas (69),
(70) may seem especially useful is for integration in two or more dimensions, where
efficient quadrature formulas are not very well developed [7]. In fact, we shall now
see that repeated use of (69), (70) on a Cartesian grid will give us accurate approx-
imations for the double integral of an arbitrarily given smooth function f(x, y) on
a domain which is of one of the following two types

S1 = {x, y | γ1 ≤ x ≤ γ2 & φ1(x) ≤ y ≤ φ2(x)},(71)

S2 = {x, y | µ1 ≤ y ≤ µ2 & ψ1(y) ≤ x ≤ ψ2(y)},(72)

where it is assumed that φ1(x) ≤ φ2(x) are smooth on the interval [γ1, γ2], and that
ψ1(y) ≤ ψ2(y) are smooth on the interval [µ1, µ2].

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



HIGH ORDER NUMERICAL METHOD FOR SINGULAR FUNCTIONS 1079

In the notation of Apostol [1], S1 is a domain of Type I, and S2 is a domain of
Type II, and the double integral of a smooth function f(x, y) can be evaluated by
repeated one-dimensional integration in the following way

I1 =
∫ ∫

S1

f(x, y)dxdy =
∫ γ2

γ1

Φ(x)dx , I2 =
∫ ∫

S2

f(x, y)dxdy =
∫ µ2

µ1

Ψ(y)dy,

(73)

where

Φ(x) =
∫ φ2(x)

φ1(x)

f(x, y)dy , Ψ(y) =
∫ ψ2(y)

ψ1(y)

f(x, y)dx.(74)

From the assumptions introduced, it follows that Φ(x) is smooth on [γ1, γ2] and
Ψ(y) is smooth on [µ1, µ2]. Without essential loss of generality we may assume
that both S1 and S2 are subsets of the square [0, 2π]× [0, 2π], which in particular
imply that [γ1, γ2] ⊂ [0, 2π] and [µ1, µ2] ⊂ [0, 2π]. Thus the last one-dimensional
form of the integrals I1, I2 given by (73) can clearly be approximately evaluated
by the formulas (69), (70). Since also Φ(x) can be approximately evaluated by the
formulas (69), (70) for each x ∈ [γ1, γ2], and Ψ(y) can be approximately evaluated
by the formulas (69), (70) for each y ∈ [µ1, µ2], the above assertion that I1, I2 can
be approximately evaluated by repeated applications of the formulas (69), (70) on
a Cartesian grid therefore follows.

It is not difficult to find a domain which does not satisfy all the requirements
we have put on S1 and S2 above. Consider for instance a circular domain S =
{x, y | (x−3)2+(y−3)2 ≤ 4}, which we also can express in the following alternative
forms resembling S1 and S2

S = {x, y | 1 ≤ x ≤ 5 & 3−
√

4− (x− 3)2 ≤ y ≤ 3 +
√

4− (x− 3)2},

= {x, y | 1 ≤ y ≤ 5 & 3−
√

4− (y − 3)2 ≤ x ≤ 3 +
√

4− (y − 3)2}.(75)

The intervals associated with S which resemble [γ1, γ2] and [µ1, µ2] in (71), (72),
are both seen to be [1, 5], and the double integral can also in this case be evaluated
by repeated one-dimensional integrations as in (73), (74). We do see, however, that
smoothness of f(x, y) in this case is not sufficient to guarantee that the correspond-
ing functions Φ(x) and Ψ(y) are smooth on the interval [1, 5]. In fact, if we take
f(x, y) ≡ 1 in S for instance, we readily obtain from (74)

Φ(x) = 2
√

4− (x − 3)2 , Φ(y) = 2
√

4− (y − 3)2.(76)

At both endpoints of the interval [1, 5], Φ(x) and Ψ(y) are both seen to have singu-
larities of the type (35) with α = 1/2, thus indicating the need for special feature
functions of the type V0(x, 1) = U1/2(x − 1) and V0(x, 5) = U1/2(5 − x) instead of
the usual Bernoulli polynomials (2). It is not difficult to see that for more gen-
eral piecewise smooth functions with discontinuities along more general curves in
the plane, the second performed Fourier transformation (or, equivalently, the first
inverse Fourier transformation) will involve singularities which typically can be han-
dled by special feature functions of the following types Vn(x, γ) = U1/2+n(x − γ)
and Vn(x, γ) = U1/2+n(γ − x), n = 0, 1, . . . . We hope to be able to develop these
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ideas further elsewhere, and applications for instance to the accurate reconstruc-
tions of two-dimensional pictures from their two-dimensional Fourier transform may
here seem promising in view of the existing one-dimensional version [10]. In addi-
tion, we can foresee possibilities for applications both to quadrature and to partial
differential equations.

We would finally like to note here that by dividing a two-dimensional domain into
a finite number of subdomains, it is normally possible to get each of the subdomains
to be either of the type S1 given by (71), or of the type S2 given by (72), with all
assumptions fulfilled. As an example, we can divide the circular domain S given
by (75) into three subdomains by the two lines y = 2 and y = 4, respectively.
Similar constructions are also feasible in higher dimensions. We may therefore
conclude that by simple decomposition of the domain, it is normally possible to
obtain accurate approximations for multiple integrals over quite general domains
by repeated utilization of the quadrature formulas (69), (70) on a Cartesian grid
(which does not have to be altered from one sub-domain to the next).

7. Numerical examples

In order to illustrate the accuracy which potentially can be achieved by the
method we have described in this paper, we shall first look at the accuracy obtained
for the first derivative of the following function

v(x) =

 0 when x ∈ [0, 0.1),
exp(−x) when x ∈ [0.1, 4.6],
0 when x ∈ (4.6, 2π],

(77)

when the exact amplitudes at the two discontinuity locations γ1 = 0.1 and γ2 = 4.6
are substituted in the subroutine where the derivative at the grid-points (16) is
calculated utilizing normal double precision (53 bits). In Figure 1 the RMS error
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Figure 1. RMS error for the derivative of the function (77) with
exact amplitudes.
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Figure 2. RMS error for the derivative of the function (78) with
G = 32 and exact amplitudes, when γ1 = 0.1, γ2 = 4.55.

in the derivative at the grid-points is shown for various values of the parameter
Q, and for different numbers of grid-points G on the interval [0, 2π]. A plot for the
corresponding maximal errors would show a similar behavior. For the largest values
of the parameter Q, the maximal errors will in fact differ only slightly from those
shown in Figure 1. Normally, the maximal errors will be found at the grid-points
which are located nearest the discontinuity locations. Away from those locations,
the accuracy is usually somewhat better and can actually be further improved by
various forms of filtering [23], but we shall not pursue that issue here. The results
found are easily seen to be consistent with the estimates given in the preceding
sections even when the number of grid-points is small. For other functions with a
similar structure we get qualitatively the same type of results. Quantitatively we
may get differences due to the different resolution requirements the actual functions
may have.

In order to exploit the resolution issue further, we have looked at the accuracy
obtained for the first derivative of the following family of functions

wc(x) =


0 when x ∈ [0, γ1),
cos(cx) when x ∈ [γ1, γ2],
0 when x ∈ (γ2, 2π],

(78)

for various values of the constant c, and for various discontinuity locations γ1 < γ2 in
the interval [0, 2π]. When the exact amplitudes at the two discontinuity locations
are substituted in the subroutine where the derivative at the grid-points (16) is
calculated, the behavior of the RMS error is plotted in Figure 2 for the particular
choice γ1 = 0.1, γ2 = 4.55 when the number of grid-points is 32. If γ1, γ2 are
chosen differently, the overall error will be seen to remain virtually unchanged,
only the oscillatory behavior with respect to the parameter c which can be seen on
Figure 2, will appear in a different way. In fact, for smaller subintervals [γ1, γ2], the
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Figure 3. RMS error for the derivative of the function (78) with
G = 48 and amplitudes determined by (53) with P = 2Q−1 when
γ1 = 0.1, γ2 = 4.55.

oscillations will disappear, while the oscillations will get more and more pronounced
the larger the interval [γ1, γ2] ⊂ [0, 2π] is. With this behavior in mind, Figure 2
can therefore be regarded as representative for the accuracy which in principle is
obtainable for arbitrarily given values of γ1, γ2. On Figure 2 it seems that Q = 12
gives the optimal results in most cases for our normal double precision calculations
(53 bits).

For the function (78) we see that with 32 grid-points on [0, 2π], c = 16 is corre-
sponding to 2 grid-points pr. wavelength and cannot therefore be expected to give
resolution. Already with 2.5 grid-points pr. wavelength, however, which on Figure
2 corresponds to c = 12.8, the accuracy for the higher values of Q shown is better
than 1%. Completely analogous results can be obtained for other values of the
locations γ1, γ2, and other numbers of grid-points on the interval [0, 2π].

We shall now calculate the derivative of the function (78) at the grid-points (16)
in the case where the exact amplitudes are not known in advance. We shall in our
first calculations assume, however, that the principal amplitudes A0

1, A
0
2 are known,

or equivalently, that the limit-values of the function are known at the two boundary
points x = γ1 and x = γ2, respectively. In the various applications we later shall
encounter, the principal amplitudes A0

1, A
0
2 will normally either be known from

Dirichlet boundary data, or may be calculated separately by for instance letting
the two boundary points x = γ1 and x = γ2 be treated as two extra grid-points.
If the higher order amplitudes An1 , An2 , n = 1, . . . , Q, are calculated from (53) with
P = 2Q−1 utilizing the SVD subroutines from LAPACK [2], we obtain the results
plotted in Figure 3.

If the same calculation is done with P = Q, we obtain the results plotted in
Figure 4.

The first lesson to be learned from Figures 3 and 4 is that for a well resolved
function (i.e. for c small), we may obtain better accuracies by utilizing a larger
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Figure 4. RMS error for the derivative of the function (78) with
G = 48 and amplitudes determined by (53) with P = Q when
γ1 = 0.1, γ2 = 4.55.

part of the spectrum in the determination of the amplitudes. Second, the reso-
lution properties of the algorithm is reduced when a larger part of the spectrum
than strictly necessary is utilized in the determination of the amplitudes. Third,
large errors stemming from unresolved parts of the function can be expected, as is
particularly pronounced in Figure 4. Such errors may lead to lack of robustness,
and may perhaps also explain instabilities we have encountered when the algorithm
has been applied to solving initial-boundary value problems for partial differential
equations. The calculations shown in Figures 3 and 4 are done for 48 grid-points,
but completely analogous results can be obtained for other numbers of grid-points
on the interval [0, 2π], as well as for other choices of the locations γ1, γ2.

For the function (78) there clearly is a buffer zone which can be utilized to set
up additional equations for the amplitudes as discussed in sections 5.2 and 5.3.
These can then be combined with (53) into a larger over-determined system of
equations which then can be solved utilizing the SVD subroutines from LAPACK.
An infinite number of different combinations are here clearly possible. When a
sufficient number of independent equations (61), (62) are included, we have only
observed slight changes in the solutions by including more of the equations (61),
(62). The same is not true for the equations set up in sections 5.1 and 5.3. In
fact, especially when high resolution is desirable, we have found that it normally is
advantageous to limit the number P in (53) to 2 and also limit the Taylor equations
from section 5.3 to the 2 internal grid-points (i.e. located in the interval [γ1, γ2])
which are nearest each of the 2 boundary points γ1, γ2.

In the calculations we shall report here, we have evaluated (61), (62) at each
boundary point, at the midpoint between the boundary point and the first internal
grid-point, at the first internal grid-point, and at the midpoint between the first
and the second internal grid-point next to each boundary point. In (62) we have not
used m larger than 2. With this setup we have obtained the accuracies plotted in
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Figure 5. RMS error for the derivative of the function (78) with
G = 48 and amplitudes determined by a mixture of the available
equations when γ1 = 0.1, γ2 = 4.55.

Figure 5 for 48 grid-points in the interval [0, 2π] for the specific values of boundary
points γ1 = 0.1, γ2 = 4.55. Again we find that the overall accuracies depend very
little on the locations γ1, γ2 as long as there are at least a handful of internal grid-
points. The observed difference is also here a change in the oscillatory behavior
with respect to the parameter c, similar to that reported earlier. The general trend
that can be deduced from Figure 5, and which also holds for other numbers of grid-
points in the interval [0, 2π], is that already with 3 grid-points pr. wavelength the
error does not exceed 10%, and with 3.5 grid-points pr. wavelength the error is less
than 1% for the largest feasible values of Q. For more grid-points pr. wavelength the
error rapidly decreases. We regard these results as very promising indeed. In our
calculations we have found that Q = 8 is optimal for G = 32, Q = 7 is optimal for
G = 48, and Q = 6 is optimal for G = 64, but these numbers may come out slightly
different for alternative implementations of the equations utilized. Although large
errors occur for unresolved functions, the errors are considerably lower than those
observed in Figure 4, thus the robustness of the algorithm is also considerably
improved.

In Figure 6 we have plotted the results for 48 grid-points in the interval [0, 2π]
when the “best” set of equations determined above is extended to also determine
the principal amplitudes A0

1, A
0
2 in addition to the other amplitudes An1 , An2 , n =

1, . . . , Q. Analogous calculations have also been carried out with other numbers
of grid-points and with other locations γ1, γ2 in the interval [0, 2π], with results
that are consistent with the general trends discussed earlier. Although the overall
accuracy is somewhat reduced compared to results obtained with exact values for
the principal amplitudes A0

1, A
0
2, we feel that the results are still quite good and

should therefore be useful in applications.
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Figure 6. RMS error for the derivative of the function (78) with
G = 48 and amplitudes, including the principle amplitudes A0

1, A
0
2,

determined by a mixture of the available equations when γ1 =
0.1, γ2 = 4.55.

8. Discussion

The basic idea utilized in this paper is to split a singular function into two parts,
namely a relatively smooth part and a specially structured singular part. The idea is
not new as references given earlier in this paper show (see also [4] and the references
given there). As far as we know, however, a systematic and detailed analysis of such
a splitting has not been carried out earlier. We have been able to do this analysis
in a relatively general setting in such a way that a systematic analysis of each of
the two parts has been possible. Furthermore, from the analysis we have been able
to construct a new class of spectral methods based on the Fourier method. This
new class of methods is much more flexible than the traditional spectral methods
for instance in applications to differential and integral equations. Applications to
partial differential equations in complex geometries have already been given in [11],
[14], and further applications will be given elsewhere. The analysis also establishes
relations between the continuous and the discrete Fourier coefficients which for
instance may be useful in relating results obtained by the collocation method with
results obtained by the Galerkin method.

A key problem in the new class of spectral methods for functions with singu-
larities, is the determination of the singularity amplitudes. A large part of the
present paper has therefore been devoted to that issue, and the numerical results
show that quite reasonable accuracies can be obtained by the recommended algo-
rithms. In fact, with approximately the same amount of work as in a traditional
Chebyshev method, approximately the same accuracy and resolution properties [17]
can be achieved by the new method with the added bonus of a uniform grid and
the attractive flexibility with respect to the locations of the singularities, e.g. the
boundary points. To be fair, it should here be added, however, that for functions
which are very well resolved, the traditional Chebyshev method will give better
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accuracies than the new method since the latter is of finite order. We note that
in the system of equations we have established for the singularity amplitudes, the
coefficient matrix is uniquely determined by the locations of the singularities γj ,
j = 1, . . . ,M, i.e. by the geometry of the problem.

Since the analysis shows that the order Q in the representation (37) normally
should be chosen as a relatively small number, the problem of determining
when the singular part converges if Q → ∞ is rather an academic problem. The
answer to this academic problem is easily obtained, however, when Vn(x, γ) =
Uα+n(x − γ) or Vn(x, γ) = Uα+n(γ − x) for some given α. In fact, the asymptotic
result (31) shows that the functions Vn(x, γ) then essentially group into only 4
distinct functions which actually are translates of each other. Thus a necessary
and sufficient condition for absolute convergence is that for each j = 1, . . . ,M the
infinite sums

∑∞
m=0A

n+4m
j converge for n = 0, 1, 2, 3. As examples, we therefore

immediately see that if w(x) = wc(x) either is given by (78) or by

wc(x) =

 0 when x ∈ [0, γ1),
ecx when x ∈ [γ1, γ2],
0 when x ∈ (γ2, 2π],

(79)

where c, γ1, γ2 are constant parameters such that 0 ≤ γ1 < γ2 < 2π, then we will
have convergence if and only if |c| < 1. It thus seems that the analysis of convergence
when Q → ∞ is considerably simpler in our setting than in the setting given in
[21].

The primary application area we have had in mind in this paper has been ap-
plications involving piecewise smooth functions where the special feature functions
Vn(x, γ) = Un(x − γ) are given by (2) and the Bernoulli polynomials. As briefly
indicated in section 6, however, we hope to apply the more general family of spe-
cial feature functions Uα for important multi-dimensional problems in the near
future. Finally, we would like to add that it is not difficult to find both one- and
multi-dimensional problems which may require other types of special feature func-
tions than the family Uα described in this paper. The functions describing corner
singularities [22] may here serve as illustrating examples.
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