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We investigate a spatial modified Miura transform. To describe this transform we have 
to solve a non-linear first-order system of partial differential equations. This investi- 
gation will be done by the help of quaternionic analysis. The main goal is to find a 
hypercomplex factorization of the Schrodinger equation. In one dimension Miura's 
transformation is needed to map solutions of the modified Korteweg-de Vries equation 
into solutions of Korteweg-de Vries equation. 

Keywords: Quaternionic analysis; Schrodinger equation: factorization 

Classification Categories: 1991 Mathematical Subject Classification Primary 30035; 
Secondary 35J10, 35F30 

1 INTRODUCTION 

In one spatial dimension a non-linear transformation, the so-called 
Miura transformation, represents a connection between Korteweg-de 
Vries equations. These equations describe water waves. This famous 
transformation was introduced by Miura [14] in 1968. For more infor- 
mation about this transformation and the Korteweg-de Vries 
equations see for example [I]. The Miura transformation may be 
obtained by a factorization of the Schrodinger operator. We will show 

* Corresponding author. 
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308 S. BERNSTEIN AND K. GURLEBECK 

that using quaternionic or Clifford analysis an analogous factorization 
of the higher-dimensional Schrodinger operator is possible and leads 
to a non-linear system of first-order partial differential equations. 

To get a factorization by solving the first-order system of partial 
differential equations it is necessary to have some boundary condition. 
If we state a Dirichlet-type boundary condition, for example that the 
boundary values should vanish, then the problem may be unsolvable! 
We will describe an admissible boundary condition and a suitable sub- 
space of boundary values. Using an iterative procedure based on 
Banach's fixed-point prmciple we will solve the non-linear first-order 
system of partial differential equations. 

Finally, we discuss some generalizations. We will outline that the 
used Sobolev space for the iteration depends on the spatial dimension 
and that the described method also works in the case of stronger 
nonlinearities. 

2 PRELIMINARIES 

Let {e l ,e2 , .  . . . e n )  be an orthonormal basis in R". Consider the 
2"-din~ensional real Clifford algebra CEO,,, generated by el .  . . . , e,, 
according to the multiplication rules eiej + eie, = -2S,,eo, where eo is the 
identity of C lo  ,,,. The elements e,: A = { A l , .  . . , hk)  c { I , .  . . , n} define a 
basis of C&,, where e~ = el,, . . . el,, = el,, I,, , 1 5 12 ,  <.  . . < hk 5 it. and 
eo = eo. The main part of this paper is restricted to the case n = 2. The 
algebra CPo,2 will be generated by el and e2. We denote the product ele2 
by e3. Then CYo.? can be identified with the algebra of real quaternions 
M;. Our multiplicationrules looklikeeiej + eiei = -2SLieo for i, j E (1,2,3).  

An arbitrary element q E H is given by q = qoq, + c:=~ q,e, and the 
3 

conjugated quaternion by q = qoeo - CjCl qie,. 
We suppose ( 2  c IR3 to be a domain with a smooth boundary T. 

The elements (x i ,  .q, x3) = .U' E ]Kt3 will be identified with s = 
3 

s, e, E W. 
For each x E H we have x.? = xi + sf + xi + x: = 1x1~. Then, func- 

tions f'defined in R with values in MI are considered. These functions 
may be written as 
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HIGHER DIMENSIONAL MIURA TRANSFORM 309 

Properties such as continuity, differentiability, integrability, and so 
on, which are ascribed to f have to be possessed by all components 
fk (x) ,  k = 0 , .  . . , 3 .  In this way the usual Banach spaces of these func- 
tions are denoted by C", L, and w;. In the case of p = 2 we introduce 
in L2(R) the W-valued inner product 

We now define the Dirac operator by 

For this operator we have the factorization 

DD = -A, PI 
where A is the Laplacian in JR3. We consider in fl the equation 

(Du) ( x )  = 0, 

and look for its solutions which are called left-monogenic functions 
in R. 

Now we define the Cauchy kernel in IW' by 

It  is well known that e (x )  (a fundamental solution of D) is monogenic 
in LR3\{0}. Using the function e (x )  we introduce the following integral 
operators: 

(Teodorescu transform), 

(Cauchy type operator), 

(singular integral operator), 
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310 S. BERNSTEIN AND K .  GURLEBECK 

3 uhere n(1.j = C,=, e,n,(js) is the outward pointing normal (unit) vector 
to at the point y .  The integral which defines the operator Sr has to 
be taken in the sense of Cauchy's principle value. From [8] we immedi- 
ately get the following statements. 

LEMMA 1 Let 11 E C' ( 0 ,  HI) n ~ ( 0 ,  IN). Then 1t.e h a w  

u(.u). x E $1 
(ii) (DTou) (x) = 

(0. x E w3\n ,  

(iii) (DFr)u(.y) = 0 ilz (2 U (IR3\0) 

LEMUA 2 (Plemelj-Sokhotzkij's formulas) Let 11 E cO."(Q, H). 0 < 
a < 1. Tlwz we lzuve 

for atlj3 < E r. 
COROLLARY 1 Let LL E c'."(T, H). Tl~el? the equations ( i )  (S;u) (<) = 

zl(<). (ii) (FrPru)(<) = Fru(O. (iii) (P;U)(<) = (Prz~)(<).  (iv) (@u)(<) = 
(Qrzr) (<) CIIV  did for U H J '  < E r. 

The operator Pr := 1 #2(1+ Sr) denotes the projection onto the space 
of all W-valued functions which have a left monogenic extension into 
the domain R. Qr := 1 ) '2(I -  ST') denotes the projection onto the space 
of all HI-valued functions which have a left monogenic extension into 
the domain IR3\n and vanish at infinity. We remark that the operators 
Fr, SF, Pr. and Qr are defined in spaces of Holder continuous func- 
tions. It is possible to extend these operators to Sobolev spaces in the 
classical way by approximation (with Holder continuous functions). 
We omit the detailed discussion here. We remark that then all 
the referred formulas have to be understood in the generalized sense. 
The restriction of an H-valued function zl to a function defined on the 
boundary is expressed by tr 11. 
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HIGHER DIMENSIONAL MIURA TRANSFORM 31 1 

3 A MODIFIED MlURA TRANSFORMATION 

After studying the conservation laws of the Korteweg-de Vries equa- 
tion, and those associated with the modified Korteweg-de Vries 
equation, Miura (cf. [14]) discovered the following transform, now- 
adays known as Miura's transformation. If w is a solution of the 
modified Korteweg-de Vries equation, then 

is a solution of the Korteweg-de Vries equation. Note that every 
solution of the mKdV equation maps, via Miura's transformation to a 
solution of the KdV equation, but the converse is not true. 

It is posssible to obtain Miura's transformation by factorizing the 
Schrodinger equation 

We have 

d 
- 

= (f:: d s  dx 

- - 
d221 d a  

-- 
du du + -u + a(x) - - a ( x )  - + a2(s )u  

dx2 dx dx dx 
d'u dn  

and thus 

This is a non-linear differential equation for a(x). To find a higher- 
dimensional analogy, we use the factorization (2) of the Laplacian into 
Dirac operators. 
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312 S. BERNSTEIN AND K. GURLEBECK 

It is easily seen that the Helmholtz operator may be factorized by 
using disturbed Dirac operators. We have 

Factorizations of the Helmholtz operator have been studied several 
tlmes. In [6] and later on in [7] and also in the book [8] the case of a real 
wave number was studied. Xu [18,19], Brackx and van Acker [4] and 
together with Delanghe and Sommen [5]  considered the operators 
D + k with k a complex number. Obolashvili [15.16] treated the case of 
purely vectorial k and later the same was done by Huang [9]. We also 
want to mention the related paper of Mitrea [13], where k is a real 
quaternion. The general quaternionic case that kis a complex quaternion 
was considered by Kravchenko and Shapiro [10.11] and a complete 
investigation can be found in their book [12]. The paper [3] is also related 
to this topic. In all these cases the wave number has to be a constant. 
We try to factorize the Schrodinger equation in the same way. 

Let x = (x,,  x2,  s?). We consider (-A - Vo(x))u  with u = u(.v) = 

uo(x)eo and look for suitable functions n with 

( -A  - Vo(x))1r = ( D  + a ( s ) ) ( D  - a ( x ) ) u  

= ( D  + a ( x )  ) (Du  - a ( s )  u )  

= DDu - D(a(,v)u) + a(s)Dtr  - a 2 ( x ) u  

The underlined part will not vanish, because of the non-commutative 
multiplication of quaternions. Thus, we will change our approach 
using a multiplication operator M"") defined by 

Hence. 
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HIGHER DIMENSIONAL MIURA TRANSFORM 313 

or 

Da + a2(x) = Vo(s). (4) 

Equation (4) will be called generalized Miura transformation. 
It is a non-linear first-order partial differential equation. Some rep- 

resentation formulae for the solution of the Schrodinger equation are 
contained in [2]. 

4 THE FIRST-ORDER NON-LINEAR SYSTEM 

The result of the previous factorization is an equation of the following 
type: 

Da + a2 = VQ(X), a E wi(i2). 

Applying To and using the Plemelj-Sokhotzkij formula we obtain 

2 a - Fra = Ta(Vo -a ). 

Because we are only interested in one special solution a we may state 
some additional assumptions. If we assume that a E Im Qr then we 
have to solve 

a = Tn(Vo - a'). 

If we additionally suppose that Re a = 0 then we have a2 = and 
our equation reads now as 

a = Ta(Vo + 1~1'). 
We will take a0 E w ~ ( R )  with tr ao E Im Q,, Re a0 = 0 and then we 
investigate the iteration 

Obviously, Vn(x) + Jan-, l 2  E R reproduces Re a,, = 0. Because 
tr To J'E Im Qr our procedure preserves the additional assumptions. 

Let us look at the regularity. 
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314 S. BERNSTEIN AND K. GURLEBECK 

That means of,-1 E ~V;(R) + 1 a , , _ ~ 1 ~  E L2 ==+ TnJa,,-11' E H';. All 
things together ensure that the sequence {o,,),,~y belongs to w ~ ( R ) .  
Here we used Sobolev's embedding theorems (see e.g. [17]) with the 
embedding constant x. 

Now we will try to apply Banach's fixed-point theorem. Therefore, 
at first we prove the boundedness of the sequence a,,. 

From Eq. ( 5 )  we immediately obtain 

where KI = l(TrlJ1,L1 M J  . Kz = K I C ,  and C is the embedding constant 
from above. 

LEMMA 3 If 

P ~ v o f  The inequality ( 7 )  ensures that 

Of course this condition requires that 

L E M M A  4 I f  / ~ c ~ , - I I ~ ~ ~  5 1/2K2- W thefi h e  l I ~ , l l , + ;  5 
1/2K2 - W. 

Proof This is a consequence of (6). 

Therefore, we have proved that 
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HIGHER DIMENSIONAL MIURA TRANSFORM 315 

If we start with a, E W i ( R ) ,  tr cia E Im Qr, Re oo = 0, ilcuoi) ur; I 
1/2K2 + W  then the sequence {ct.,,),l,Av is bounded from above-by 
l/2K2 + W .  This implies the existence of a subsequence {a:,)  c w ~ ( R )  
with a:, - N for n + c ~ )  in w ~ ( R ) .  Because of the continuity of 
TQ : L2(R)  -. W i ( R )  we have that 

In this way we have proved a first existence result. 

THEOREM 1 Suppose tlmt 1 1  V ,  l l L z  I 1 /4K1 K2. Then the equation 

has at least one solution 14.ith 

Proof' The existence is clear from the above consideration. The norm 
estimate comes from the weak convergence of {a;)  in a convex set. 

In the following we investigate the contractivity of the mapping 
Ts2(V0  + 1 0 1 ~ ) .  At first we get 

Furthermore, we have 
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316 S. BERNSTEIN AND K. GURLEBECK 

Now, we use 

l l I ~ . ~ - i l  - b n - 2 l I I L 4  < 1an-1 - al,-zlL4 < *IICY,,-~ - a1 , -2 / I Iv1 .  (11) 

Collecting the estimates (9), (10) and (1 1) we have 

Then, we can bound the contractivity constant L from above. 

We have proved the following theorem. 

THEOREM 2 W e  assume that 

and define the sequence 

Therz, there exists a unique solzltion a E ~ ; ( i 2 )  of Eq. (8) ~r.ith 
tr o E Im Qr n wfl'(r). Re a = 0, and converges ro a in Wi. 
The solzrtlon a fulfils the norm eJtinzate 

Let us remark that there is no practical problem to find a su~table 
a 0  E Wi((2) wlth tr a 0  E Im Qr n W i ( r )  We can start with a 0  - 0 or 
an arbitrarily chosen function 3 E L2 w ~ t h  Im j = 0. and 1 1  31, small 
enough Then. a0 = T 3  fulfils all the necessary condit~ons 
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HIGHER DIMENSIONAL MIURA TRANSFORM 317 

5 SOME GENERALIZATIONS 

The above obtained results allow some generalizations. The first ques- 
tion is the possibility to prove similar results for all space dimensions. 
A second problem is to study other non-linear terms, e.g., general 
powers ur. 

To solve the first problem we have to work with general Clifford 
algebras instead of the special case of the quaternionic algebra. 
Because we have used the embedding theorems for Sobolev spaces the 
obtained results depend on the dimension of the space. We have only 
investigated for practical applications the most important case of 
space dimension 3. The same idea works for n = 4, too. For n > 4 the 
space W: ( R )  can be embedded only in LJR) with p < 2n/(11- 2) < 4 
and the proof fails. Looking at the details again we see that the con- 
dition p = 2 is not necessary for our consideration. We have 

That means we have to look for an embedding Wi(R) --i L,- with 
p" 2 2 p  Hence, we have the condition np/ (n  - p )  > 2p for p and. conse- 
quently, for p < n 

Therefore, for all p with n /2  5 p < n the proofs of Theorems 1 and 2 
can be repeated. 

In case of the equation with a more general non-linear item the 
whole consideration from Lemma 3 until Theorem 2 can be repeated. 
Some technical problems arise. We will give here only a sketch of the 
consideration and some hints concerning the new problems. If we 
study the equation 

then we need the restriction that r = 21 to ensure that our iteration 
procedure reproduces the properties of the initial function. For 
[21- 1/21] n l p  < n we have that from an_! E w;(R) it follows that 
~ c r u , - ~ / ~ ' ~  Lp(R). Using the mapping properties of Tn and the additional 
assumption that Vo E Lp(R) we obtain that an again belongs to ~ ; ( f l ) .  
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Then, we consider the polynomial x2/- a.u+ h where a= 1/K2 and 
h = Kl  I Volli,'K2. Here K,  stands for ( 1  Ta 1 1  ii,,,all. K2 = Kn-, C,. and c;"' 
is the embedding constant from the embedding WL -+ Llil,. This poly- 
nomial has at most two zeros 0 5x1 < x2 We can prove that our 
sequence {a,,) completely belongs to a fixed ball with radius xi in 
w ~ ( R )  if l/ao/l rl,l < xi. i = l1 2. The existence of real zeros ul and s2 is 
ensured if 

I' 

To prove the contractivity we estimate 

That means the contraction constant L may be estimated by 

For ( 1  Vo(l, sufficiently sinall .u, is small enough that L < 1 becomes 
true. 

This very short outline shows (independently of physical interpreta- 
tions) that the method demonstrated above works also in the case of 
more general nonlinearities in our first-order differential equation. 
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