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On a Higher Order Accurate Fully Discrete
Galerkin Approximation to the

Navier-Stokes Equations*

By Garth A. Baker, Vassilios A. Dougalis and Ohannes A. Karakashian

Abstract. We consider approximating the solution of the initial and boundary value problem
for the Navier-Stokes equations in bounded two- and three-dimensional domains using a
nonstandard Galerkin (finite element) method for the space discretization and the third order
accurate, three-step backward differentiation method (coupled with extrapolation for the
nonlinear terms) for the time stepping. The resulting scheme requires the solution of one
linear system per time step plus the solution of five linear systems for the computation of the
required initial conditions; all these linear systems have the same matrix. The resulting
approximations of the velocity are shown to have optimal rate of convergence in L2 under
suitable restrictions on the discretization parameters of the problem and the size of the
solution in an appropriate function space.

1. Introduction. Let ß be a bounded domain in RN, N = 2 or 3, with a smooth
boundary 3ß. Given 0 < T< oo, we seek an T^-valued function u = iux,...,uN)
(the velocity), and a real-valued function p (the pressure), defined for (x, t) E ß X
[0, T] and satisfying the Navier-Stokes equations

w, - Mi/ + (u ■ grad)« + grad/> =/   in ß X (0,T],
.     „ u = 0   on 3QX [0,7-1,
(11) \y ' ' divt/ = 0   inßx[0, T],

u(x,0) = u°(x)   inQ,

where/is a given Tî^-valued function defined on ß X [0, T], u° is a given Tî^-valued
function defined on ß with t/° = 0 on 9ß and div u° = 0 in ß and v > 0 is a
constant (the coefficient of the kinematic viscosity). It will be assumed that the data
of the problem (1.1) are such that (1.1) has a unique solution pair [u, p] (with p
being unique up to an additive constant) sufficiently smooth so that the convergence
results hold. We refer the reader to the books by Ladyzhenskaya [12], Lions [15], and
Temam [18] for existence, uniqueness, and regularity results for (1.1).

Our goal in this work is to construct and analyze a fully discrete Galerkin (finite
element) method for the approximation of the solution of (1.1). Our method is based
on a nonstandard Galerkin approximation in the space variables which uses finite-
dimensional subspaces, the elements of which are not required to be divergence-free.
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For the time discretization we shall use the third order accurate, three-step backward
differentiation method coupled with a suitable extrapolation procedure for the
nonlinear terms so that only one linear system (with the same matrix) will have to be
solved at each time step. The use of a three-step method necessitates providing three
initial conditions (starting values) for the scheme. We generate these initial condi-
tions by appropriate single-step methods and extrapolation procedures; their con-
struction involves the solution of five linear systems with the same matrix as the one
associated with the linear systems of the subsequent time-stepping. Hence only one
matrix need be formed (and, e.g., Li/-decomposed once if the systems are solved by
a direct method) in the whole computation.

To this end we begin by introducing notation and the appropriate function spaces
that we shall use. For integer s > 0 and real 1 < p < oo we denote by Wß = W^f(fí)
the (real) Sobolev spaces, defined in the customary way, of scalar, real-valued
functions defined on ß and let | • | denote the associated norms. We put Hs = W{
and let | •{,,{•, •), denote the associated norm, resp. inner product. For í = 0 we
denote the norm on W° = Lp by | -\LP and, in particular, on L2 by | -| and the
associated L2-inner product by (-,•)• As usual,we let H' be the space of those
functions in H' which vanish on 3ß in the sense of trace. We let W — iHs)N be the
space of T^-valued functions u = iux,...,uN) defined on ß such that u¡ E Hs,
1 < /' < N. Correspondingly, we put H1 = iHx)N and equip HJ with the inner
product (u, v)s = 2*L,(i/,, v¡)s, generating the product norm || • ||^ = (•, -)'/2. On
L2 = iL2)N, the inner product, resp. norm, is denoted by (-, •), resP- II ' II- We shall
also use the Banach spaces L00 = iL°°)N, Wlo° = iW X-X)N, which we equip with the
norms Hull^ = max1<:(.<A, | v,,|¿«>, \\v\\hoo = nval*il<N\vl\x „, respectively, and the
quotient space Hs/Rx, equipped with the norm | v \HyR¡ — infcGÄi | v + c \s. Finally,
if v. [0, t] -* X is a (strongly) measurable map with values in a Banach space
{JM-II*}, we let llt)|IV(o,(;X) = (/o' Mr)\\px dr)x/p for I <p < <x>, and
IIt31| /:~(o,/;a-) = esssup0<STi;r||t;(T)|| x. In case 1=1 we shall write Lpi0,t; X)
nsLpiX), Kp^x.

For u, v E H ' we define the bilinear form

(1.2) aiu,v)=   2   ¡^"^dx,
..= ]Jc¡ÓXj  ÓXj

for which it is well known that there exists a constant Ca — Ca(ß) such that

.     , \aiu,x>)< lli/HJIull,     Vi/^GH1
(1.3) CJIi/H2 <a(u,u),       Vi/GH1.

We now consider approximating the solution [u, p] of (1.1) by a Galerkin-type
method. For the space discretization we shall adopt the Lagrange multiplier tech-
nique of [2] that allows the use of subspaces, the elements of which are not
necessarily divergence-free. A similar technique was originally proposed by Babuska
[1] for the stationary (linear) Stokes equations and was analyzed by Falk in [8]; cf.
also the works of Crouzeix and Raviart [5], and of Jamet and Raviart [10].

For integer r > 2 and for 0 < h < 1 consider a family S£ = S£(ß) of finite-dimen-
sional subspaces of H ' in which approximations to the velocity will be sought. (In [2]
these subspaces are not required to satisfy the essential boundary conditions—they
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GALERKIN APPROXIMATION TO THE NAVIER-STOKES EQUATIONS 341

are just subspaces of H1. To simplify matters we require here that S¡ C H'. See
Remark 4.4 for the nonconforming case.) S¡¡ will consist of ordered TV-tuples of
piecewise polynomials of degree at most r — 1 defined on a quasiuniform partition
of ß and satisfying, for some constant C independent of h, the approximation
property

(1.4)     inf (||m-xII +h\\u-XWi)<Chs\\u\\s,   VuGH'nH'.KKr,

and the inverse property

(1-5) llxlli^CA-'llxll,    VXGS¿.
Consider also, with r as above and for 0<A< 1, a family Pj* = P[<lü) of

finite-dimensional subspaces of Hx, (approximations to the pressure will be sought
in P£/Rx), consisting of piecewise polynomials of degree < 1 if r = 2 and < r — 2 if
r > 2, defined on a (generally different from that associated with S¿¡ ) quasiuniform
partition of ß. We require that P£ satisfy, for some constant C independent of h, the
approximation property

(1.6) inf (\p-4>\ +h\p-<t>\t)^Chs\p\s,   Vp E H\ 1 < j < r - 1,

and the inverse property

(1.7) ^.«CA-'I*!,    V<¡>G/>¿.
Let now H = H1 X Hx/Rx and H^f = S¡ X P¿/Rl. On H X H define the bilin-

ear form

(1.8) B([u, p], [v,q]) = va(u,v) + (t/,grad#) + (u,grad/>),

using which we can define, if h/h is sufficiently small, a suitable projection of the
solution [u, p] of (1.1) onto HA¿. (See Section 2 for a statement of the relevant
results, which are special cases of more general results of [2]. However, for the
convenience of the reader we include their proofs in Section 4.) This projection will
be suitably close to [u, p] provided ß' < h/h «£ ß holds for some constant ß,
sufficiently small, and any 0 < ß' < ß. (All subsequent results will hold provided
this condition on h/h holds.)

We now consider the trilinear form

bxiu,v,w)=   2       u¡arwjdx,
i,j=iJa   6x,

which is well defined, e.g., for u, v, w E H1, [18], since N = 2 or 3. We shall actually
use the form

(1.9) b(u,v,w) = \(bx(u,v,w) - bx(u,w,v)).

It is well known [18, p. 163] that, for u E H1 with div u = 0 in ß and for v,w E H1,
there holds

(1.10) b(u,v,w) = bx(u,v,w) = -bx(u,w, v).

We shall use on occasion several inequalities involving the trilinear form b; we shall
list them in Section 2. We remark here that it is well known (since N — 2 or 3; cf.
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[18, p. 161]) that there exists a constant Cb = Q(ß) such that

(1.11) \biu,v,w)\^Cb\\u\\x\\v\\x\\w\\x,   Vu,v,wEHx.

Using the notation introduced above it is easily seen that the solution [u, p] of
(1.1) satisfies the following weak formulation of (1.1)

í(u„v) + B([u,p],[v,q])+b(u,u,v) = (f,v),    V[v,q] EH,0<i<T,

\u(0) = u°.

Following [2] one may seek uh: [0, T] -> SJ¡, pc: [0, T] -» P£/Rx, satisfying the
semidiscrete equations

( -^, c) + 5([«A, pi], [t>, <?]) + b(uh, uh,v) = (f, v),

V[v,q]EHhh-,0*it<T,
(uh(0),v) = (u°,v),    VüGSí.

In [2] it is proved that a unique solution [uh, pf¡] of (1.12) exists for 0 < t < T and
that for u, p sufficiently smooth the error estimates ||«A — u\\L^(L2) = 0(/ir) and
\Ph~ P Il°°(l2/k1) ~ Oihr~x) hold. We shall not use the semidiscrete approximations
uh,ph'at all in this paper.

We now consider full discretizations of (1.12). In [2] a second order fully discrete
scheme based on the trapezoidal rule with extrapolation for the nonlinear terms is
analyzed. In [9] Girault and Raviart analyze the application of a family of two-step,
second order accurate A -stable methods combined with extrapolation for the nonlin-
ear terms for the time discretization of the abstract problem (no space discretization)
for the Navier-Stokes equations. We point out that such two-step methods with
extrapolation have been used for general nonlinear parabolic equations by Dupont,
Fairweather and Johnson [7] and Zlámal [19], among others. In both [2] and [9] only
partial extrapolation of the nonlinear terms is done, so that the resulting discrete
schemes require the solution of a linear system at each time step whose linear
operator changes at each time step. In [11] Jureidini considers the (fourth order in
space) stream function formulation for the Navier-Stokes equations with N — 2 and
uses full extrapolation of the nonlinear terms in a fully discrete Crank-Nicolson-
Galerkin approximation.

We shall consider the application of the third order accurate three-step backward
differentiation method, cf. e.g., [13], for the full discretization of (1.12). To that
effect we let k = T/J, k < 1 be the (constant) time step, where J is a positive
integer. Then, the method, in the context of approximating the solution yit),
0 « t < T, of the (scalar) initial value problem y\t) = Fiyit)), 0 < t < T, yiO) = y0
given, becomes

(1.13)   y"+'-^yn+2 + ^yn+x-^yn = -^kF"+\      « = 0,1,...,/-3,

where y" approximates yit"), t" = nk, F" — Fiy") and where, e.g., y° = y0 and yx,
y2 have to be supplied by a single-step scheme. We shall use (1.13) with appropriate
initial conditions to fully discretize (1.12). We shall modify the scheme by fully
extrapolating (totally "lagging") the nonlinear term in (1.12) so that a single linear

(1.12)
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system with the same matrix need be solved at each time step. To this end we define
the "lag" operator
(1.14) Ayn + 3 = 3yn+2-3y"+x +y",       Q«S»*S/-3,

and note that A>>(fn+3) = yitn+3) + Oik3) for sufficiently smooth yit). We seek
{[U«, P"]}Jn=3 E HM"satisfying

lun + 3 - ]yt/" + 2 + Y[U"+X - ~U", V

(1.15) + j^kB([Un+3, Pn + 3\, [v, q]) + jrkb(AU"+3, AUn+3, v)

= ^k(fn+3, v),   V[v, q] E HAA, 0 *£ n < / - 3,

where U°, Ux, U2 will be functions in SA that will be appropriately chosen below. It
will be shown in Section 2 that for each n,0 < n <J — 3, there exists a unique pair
[Un+3, P"+3] E HAA-satisfying (1.15) (given UJ E Srh,j = n, n + 1, n + 2), which is
found as solution of a linear system whose matrix corresponds to the bilinear form,
defined on (HA A*)2,

(1.16) A([U, P],[v,q]) = (U,v) + j^kB([U, P],[v,q]).

In order to describe our convergence results we introduce some more notation. In
what follows C will denote a generic constant independent of k, h, h, u, p, T, u°, or
/; c will denote constants independent of k, h, and h but depending on «°, /, u, and
p. The constants c will not depend explicitly on T; they may depend implicitly on T
though, through La(0, T; A^-norms of u, p, or/. We shall suppose that the solution
[u, p] of (1.1) is smooth enough so that all constants c below exist and are finite.

In Section 2 we analyze the convergence of the scheme (1.15), under the assump-
tion that the initial values Uj, j = 0, 1, 2, in Srh satisfy \\UJ' - uJ\\ < c(&3 + hr),
7 = 0, 1, 2, where we put u" — uit") for the solution of (1.1). Specifically, assuming
that kh~4/1 < a, for any positive constant a, and that k and h are sufficiently small
in the sense that cik3 + hr~x) *z v (condition (2.42)) and that

c(i + r)(«6«10/7 + A2'-2) « ?

(condition (2.58)), then, if

(1.17) ll«lli,-(Hi)<Ci'
holds, where C is a constant depending on ß only—taken in the proof equal to
Ca/660Cfc where Ca and Ch have been defined by (1.3) and (1.11), respectively—we
prove in Theorem 2.1 that \\U" - u"|| < c(l + T)1/2(á:3 + hr), 0 <« <J, where c
depends of course on a too.

A condition of the form (1.17) on the solution of (1.1) is needed for the proof of
uniqueness and regularity of the Navier-Stokes equations for N = 3 [18, p. 303 et
seq.], but is not necessary for N = 2. However, our proof does not distinguish
between the two- and the three-dimensional case. In Section 4 we show, following
[18], that (1.17) holds provided v is sufficiently large and/or the data u°, f are
sufficiently small in appropriate function spaces. In Theorem 2.2 we give an
alternative result of convergence according to which if (1.17) is not imposed, then a
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strengthening of condition (2.58) to a condition of the type cecTia6hX0/1 + h2r~2) « v
(condition (2.78)) will give (with the other hypotheses of Theorem 2.1 remaining
unchanged) the error estimate \\U" - un\\ < cecTik3 + hr), 0<n<J. For the
pressure we obtain (cf. Proposition 2.3 and Theorem 2.2) the estimate

\P"-p(t")\L>/R< = 0(k2 + k~xhr + hr~x),       3^n^J

with no additional hypotheses.
In Section 3 we address the problem of choosing the initial conditions Uj,j = 0, 1,

2, in SA so that \\Uj — uJ\\ — Oik3 + hr). Moreover we ask that their computation
involve again only solving linear systems with the matrix corresponding to the
bilinear form A defined by (1.16). What complicates matters somewhat is that
pix,0) is not given as part of the initial data for (1.1)—if that were the case, (1.1)
would have been overspecified.

We first compute U° (and a pressure P° not to be used in sequel), i.e., a pair
[U°, P°] G HM-by

(1.18) iU0,v)+^kB([U°,P°},[v,q])

= (u°,v)+ j¡kB{[u°,0], [v, q]),   V[t>, q] E HAA.

We then obtain an intermediate value U6/xx by the application of the single-step
backward Euler method, i.e., by finding [U6/xx, T56/"] G HA A by solving

(1.19) (Ü^u-U°,v) + -^kB([Ü6/u,p"/^],[v,q])

+ !■»(«•, u°, v) = ±k(fV",v),    VK q) G Hhj,

where by /" we mean of course /(-, t") — fi-,ok). Using i/6/n, we compute
[c7|, P,] ë Hj a by one application of the trapezoidal method as the solution of

(#, - U°, v) + -^kB([Ûx, T3,], [v, q]) + ~^kb(u°, u°, v)

(1.20) + -^kb(2U6/u - u°,2Ü^u - u°, v) = ^(/12/n +/°, v),

V[v,q]EHhh%

and then obtain a corrected [U2, P2] E Hh A by

(Û2 -U°,v) + J¡kB{[U2, P2], [v, q}) + yxkb(u\ u°, v)

(1.21) + yxkb(2Ux - u°,2Ûx - u°, v) = T\^(/12/" +/°, v),

nv,q]EHhh',

i.e., by one more application of the trapezoidal rule using Ux for the evaluation of
one part of the nonlinear term. We let then

(1.22) UX2/XX =2Û2- U°ESrh
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and compute [Û3, P3] E HA A by

(û3-UX2'xx,v) + -^kB([Û3,P3], [v,q])

(L23) + -^kb(UX2A\ UX2A\ v) + ^kb(2Ux2/n - u°,2Ux2/xx - t/°, v)

= Tr*(/24/,,+/,2/"^),    y[v,q]EHhJ,

letting subsequently
(1.24) U24/xx=2Û3-Ux2/xxESrh.

It will be proved in Section 4 that U° is an Oihr) approximation (in L2) to u° and
that, under the hypothesis that kh~2/3 < a, for any positive constant a, t/12/",
jj24/11 are ^^.3 + nr^ approximations in the L2-sense to t/,2/u, w24/", respectively.
Hence, finally, if we define Ux, U2 E SA by polynomial interpolation as

(1.25) Ux = (13U° + 286Í/12/" - llf724/u)/288,

(1.26) U2 = (-5U0 + 22C/12/" + 55L/24/n)/72,

we prove in Theorem 3.1 that (for kh~2/3 < a) \\UJ - uJ\\ = Oik3 + hr),j = 0,1,2.
We note that a total of five linear systems with the matrix corresponding to the
bilinear form A need be solved for the determination of Uj,j = 0,1,2.

We close the paper with a section of remarks in which, in addition to giving
sufficient conditions for (1.17) to hold and providing the proofs of Propositions 2.1
and 2.2, we outline the algorithm for an analogous fully discrete method that uses
the two-step, second order accurate backward differentiation method and state
without proof an analogous optimal rate convergence theorem.

In [14], M.-N. Le Roux considers the application of strongly ^(ö)-stable multistep
methods (the third order backward differentiation method is strongly ^(ö)-stable
with 6 s 88°, cf. [13]) for the time discretization of the abstract Navier-Stokes
problem (no space discretization) in two dimensions and gives an optimal rate of
convergence estimate under a condition of the type (1.17) if 0 < 7r/2. However, only
partial extrapolation of the nonlinearity is employed so that the linear operator to be
inverted at each step changes from step to step.

Backward differentiation methods of order up to six have been analyzed by
Bramble and Sammon, cf., e.g., [3] for an announcement of the results, for the
efficient full discretizations of Galerkin-type methods for general quasilinear para-
bolic equations for which the type of the nonlinearity necessitates the use of
preconditioned iterative methods, cf. [6], [4], with a time-independent precondition-
ing operator leading to the solution of a number of linear systems with the same
matrix at each step. In the Navier-Stokes case, due to the "semilinear" nature of the
problem "linearization" may be achieved by totally "lagging" the nonlinear term
and then solving one linear system per step, corresponding to the time-independent
part of the Navier-Stokes operator.

2. Time Stepping With the Three-Step Backward Differentiation Method. In this
section we analyze the convergence of the scheme (1.15) under the assumption that
U' are optimally close in L2 to the exact values uJ for j = 0,1,2. First we state two
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results of [2] concerning the bilinear form B defined by (1.8). These results, which
appear here appropriately simplified for our purposes, will be used repeatedly. For
the convenience of the reader we shall provide their proofs in Section 4 (cf. Remark
4.3). We consider

\\\[u,p]\\\  = (||«||2 +\p\h/Rx)X/2,

which is a norm on H X H. We then have

Proposition 2.1. There exists a constant C = CiN) such that for C, = Cmax^, 1)
we have

(2.1) | B([u, p], [v, q]) |< C,|l|[«, p]\\\ |||[», q]\\\,    V[w, p], [v, q] E H.
Moreover, there exists a positive constant ß, independent of v, h, h, such that, for
h/h < ß, there exists a constant C2 = C2iß, p, ß) such that

(2.2) sup     \B([u,p],[v,q])\>C2\\\[u,p]\\\,   V[u, p] E HM\    D
[e,?]eHM-
ll|[o,4]lll<l

In addition the following projection result holds.

Proposition 2.2. Let [u, p] be the solution of (1.1), and suppose that, for j = 0,1
and for some 1 < a < oo,

dJu   dJp
diJ ' dtJ

Suppose that h/h < ß as in Proposition 2.1 and that, for some positive constant ß',
there holds that ß' < h/h. Then, there exists a unique pair [ut, it] E La(HA a")—
henceforth referred to as the "B-projection" of[u, p] onto Hh¿—satisfying

(2.3) »([«CO', »(*)], [v, q]) = B([u(t), pit)], [v, q}),
V[v,q] EHhS,0^ t^T.

Moreover, the following error estimates hold for some constant C, independent of h, h,
u,p, and T:

E La((Hx n Hs) X HsX/Rx),       2 <s <r.

(2.4)

(2.5)      \p-m

—\u - u)
dtJ

<Chs
L»(H")

Vu
dt'

+
L°(H>)

dJP
dtJ

\La(L2/R')

L'tH'-'/mi
2 <s < r, p, y = 0,1.

Chs-x(\\u\\La(UÍ)+\p\L«(HS-i/Rl)),       2<s<r.    □

Henceforth we shall always assume that /?' < h/h < ß, so that the conclusions of
Propositions 2.1 and 2.2 hold, under the appropriate smoothness assumptions on u
and p.

It is easy now to see that, for each 0 =£ n «£ J — 3, given UJ E Srh,j = n, n + 1,
n + 2, a unique solution [<7"+3, P"+3] E Hh A of (1.15) exists. For, assuming that
there exists [U, P] E HAA satisfying

(2.6) A([U,P],[v,q]) = 0,    V[t>, q) € HAA,

(where the bilinear form A has been defined by (1.16)) and choosing [v, q] = [U, -P]
in (2.6), we obtain by (1.8) that U - 0. It follows by (2.6) that (u, grad P) = 0
V«eS;. Putting now u = 0, p = P in (2.2) we see that P = 0 in P£/Rx. Hence (2.6)
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has only the trivial solution, a fact that establishes the existence and uniqueness of
the solution [t/"+3, 7>"+3], 0 < n < J - 3, of (1.15).

We shall henceforth denote by S = S(r, h, h) the subspace of SA consisting of all
functions v E SA for which (t>, grad q) — 0 holds for all q E P¡~. Clearly S is not
empty under the hypotheses of Propositions 2.1 and 2.2. For example, putting v = 0
in (2.3) and using the fact that div w(r) = 0, we see that <o(i) G S for t E [0, T].

Before proceeding to the error estimates we list some more inequalities associated
with the trilinear form 6(t/, v, w), defined by (1.9), that will be repeatedly used in
sequel along with (1.11). It follows easily from (1.9) that there exists a constant
C = CiN) such that

(2.7) \biu, v,w) |< C(||«|| ll»lllj00l|w|l + Hull IMIJIwII,),
v.«eL2,©eW1,c%weH'.

On the other hand, it follows from (1.10) that there exists a constant C = C(7V) such
that for u G H1 n L00, such that div u = 0 in ß and for v, w E H1,

(2.8) |e(i/,t;,w)|<C||t/||00||ü||||w||1

and

(2.8') [&(u, o,w)]<C||«ll00lloll1flw|]

hold. In addition, for u E H1 with div u = 0 in ß and for ceH'il W1-00, w E H1
we have that

(2-9) \b(u,v,w)\^ C\\u\\\\v\\xJ\w\\

and if u E H1 with div u = 0 in ß and if v E H1 n L00, w E H1,

(2.9') |è(i/,t;,w)|<C||M||||t;||00||w||1.

Let now Wit), 7r(i)] G HA A, 0 < t < T, be the 75-projection, defined by (2.3), of
the solution [t/(r), pit)] of (1.1), and put y" = y(t"), 0 < n < J, for a function y
defined in [0, T\. Define f " = U" - «", 0 < n < J, e" = P" - it", 3 < n < /, tj(í)
= uit) - wit), 0 < t *z T. Then, using (2.3) and (1.15), we easily obtain

(r+3 _ |8r+2 + Ar+i _  2_rt v j + A^([r + 3, e« + 3], [„, q])

(2.10)      = (p„ + 3 + s„+3) 0) + ^¿(¿(„„+3   „„ + 3^ c) _ ¿,(Ai/«+3j AI7-+3, 0)),

V[v,q] GHM%0<«</-3,

where

(2.11)       P«+3 = y^M,"+3 - (""^3 - TT""+2 + 1T""+1 _ ^"")'

0<n</-3,
and

(2.11')      6"+3 = ^+3-i|^+2 + ^r^+1-AT?n)       0<«</-3.
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We look first at the nonlinear terms in the right-hand side of (2.10), which we write
as

biun+3, un+3, v) - b(AU"+3, AU"+3, v)

= b(un+3, un+3 - A«"+3, o) + b(un+3, At)"+3, v)

-b(u"+3, A$"+3, v) + b(u"+3 - Au"+3, Aan+3, v)

(2.12) + b(un+3 - Au"+3, AÇ"+3, v) + b(Ar)n+3, Aun+3, v)

-b(Ar¡n+3, Atj"+3, v) + b(AÇ"+3, At}"+3, v)

-b(AÇ"+\ w"+3, v) + ¿>(Ar+3, t/"+3 - Au"+3, v)

+ b(Ar¡n+3, Af"+\ v) - b(AÇ"+\ M"+\ »),       0 < n '< J - 3.
We now estimate the individual terms in the right-hand side of (2.12). Since u is the
solution of (1.1), div u — 0 in ß and hence (2.8) gives

(2.13) |6(«"+3,Mn+'3-AuB+3,t3)|

< CII un+3 ¡LII u"+3-Aun+31| || o||.

<CA:3||t/||i,o=(Loc
d3u
3r3

lull.,       0<«</-3.
¿~(L2)

Using again (2.8) and also (2.4), we obtain

(2.14)     \b(u"+3,Ar¡"+3,v)\<C\\u"+3\\J\AT1"+3\\\\v\\x

< CAr||M|lí.-0L«)(ll«llí.«(HO + |/»U-(ir-VJi'))ll0lli.       0«« «/- 3.

For the purposes of Theorem 2.1 we shall estimate the third term of the right-hand
side of (2.12) in two different ways depending on n. First, using (1.11), we have

<C6||«||l.-(„.)||Ar+3ll,lloll„       3^«<7-3.

(2.15)    |6(M"+3,Ar+3,u)|<CA||i/"+3||1||Ar+3ll,llfll1

"(H1)

In addition, using (2.8),

(2.15') |¿>(i/"+3,Ar+3,t;)|<C||M',+3||J|Ar! + 3|

<C||t/ 11-^-,IIA?"+3II Hull,,       « = 0,1,2.
Again (2.8) gives

\b(u"+3 - Aun+3, Aw"+3,v)\< C\\u"+3 - Ai/"+3||J|Aío"+3|| ||t»||„
0«£w</-3.

To estimate || Aw"+3 II we recall that w(f ) G S. Hence, putting v = u in (2.3), we see
that

va(u, w) = va(u, a) + (a, grad p) = va(u, w) + (div«,/? + C)

< c(iiuii, + I/'I/.vrOHwIIi-
It follows that

\\u\\v»al)< IIwIIí^h')^ C(ll u|| £.-(Mi, + \p\u°(l}/Ri))-
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Hence we see that

(2.16)    \b(un+3 - Au"+3,Au"+3,v)

d3u
Ck3\\v\

3/3 «Hl-(h') + I/>Il-<¿2/*'))'       0<»</-3.
|£-(L")

Applying (1.11), we now obtain

(2.17)    \b(un+3 - At/"+3, Ar+3, v) \< Cb\\u"+3 - Ak"+3||1||AP+3||,||ij||1

33«|Ck
3r3

IAÍn + 3 I 0<n*i/-3.
L-(H')

From (2.7), (2.4) it follows that

(2.18) |è(AT,n+3,AM',+3,i;)|<C(||Ai,',+3||||At/',+3||li00||t;||

+ ||AT,"+3||||At/',+3IIJ|t;||1)

<C«r||i/llL»(W'»)(llwllL»(HO+ |7'Iz.°°(//'-'/r1)) • II^Hi.
0<««£/-3.

Using now (1.11), (2.4) and the facts that h< 1, r > 2, we see that

(2.19) \b(AV"+3, At,"+\ o) |< Cb\\ Ai,"+3||2|M|,

« Chr(\\u\\L^W) + IplwHr-i/n^YWvW,,       0 < n <J - 3.
Again, (1.11) and (2.4) give

(2.20) |Z>(Af+3,AT)"+3,t;)|<Cfc||Ar+3ll1IIAr?"+3||1||ü||,

< CA'-'illwIli-rH') + |/»L-(jr-V*'))HAJ:"+3llilloll„      0<«</- 3.
Using ( 1.11 ), we obtain

(2.21) |e(Ar+3,w"+3,«)|<Cft||M||L„(Hl)||Ar+3ll1llull1,       3*«</-3,

while (2.7) gives
ift(Ar+3,w',+3,t))i<c(iiAr+3iiiii/',+3ii1,00ikii + iiAr+3iiiiw"+3ii00ikii1)

(2.21')

From (1.11) we obtain

<C||w| ¿"(W1-00) IAfn + 3l « = 0,1,2.

(2.22)     |¿>(Ar+3,«"+3 - At/"+3,ü)|< Cí,||Ar+3ll1ll«"+3 - Au"" I I II v II [

<Œ 33«

3*3
IAfn + 3 I Jloll,,       0<«</-3.

¿"(H1)

By (1.11), (2.4) we see that

(2.23) |è(Ar,',+3,Ar+3,t;)|<CAl|AT,"+3||1||Ar+3ll1lkll1

< CA'-'ÍII««^^ + |/»|1-(jr-./j,.))IIAÍ"+3||I||oj|1>       0 < n <J - 3.

Finally, (1.11) gives

(2.24) |*(AJ'"+3,Af"+3fo)|<C6||Ar+3ll,lloll„        Ó<»</-3.
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We return now to the estimation of f in (2.10). For reasons that will become
evident in Section 3, where the error estimates for \\Uj — uJ\\, j — 0,1,2, will be
given, we need to estimate f ", « = 3, 4, 5, in a different way than f ", 6 *£ n «£ J.
Henceforth we shall make the hypothesis (to be verified in Section 3 for our
particular initial conditions) that

(2.25) Hj\\<c0(k3 + hr),      j = 0,1,2,

is satisfied. Here, the lower-case constant c0 depends on u, p as noted in the
Introduction.

Lemma 2.1. Let (2.25) be satisfied. Then, if we assume that

(2.26) kh'^1 « a

for any positive constant a (z'.e. not necessarily small), then there exists a constant
cx — cxiu, p, a) such that

(2.27) W^ + kva^'J^^c^k' + h')2,       1=3,4,5.

Proof. Putting v = 0 in (2.10), we see that (f"+3, grad q) = 0 V q E P£/Rx, i.e.,
that f"+3 e S, for 0 < n < / - 3. Hence the choice v = T+3 in (2.10) gives

(r+3 - {|r+2 + ̂ -r+1 - ^-r, r+3) + -^Mr+3, r+3)

(2.28) =(p"+3 + S"+3,r+3)

+ -^k(b(un+3, un+3, r+3) - b(Aun+3, Aun+3, r+3)),

0«««/-3.
Using now the Cauchy-Schwarz inequality and the inequality 2ab < a2/e + eb2

for e > 0, we obtain, for any e,, e2 > 0,

(i-c2§)iir+3n2 + ^Mr+3,r+3)

^^-(i8iir+2n2 + 9iir+,n2 + 2iir ii2)

+ ^-1-\\P"+3 + 8"+3\\2 + ^\\t"+3\\i

+j^k i b(un+3, un+3, r+3) - b(Aun+3, Aun+3, r+3) i,

« = 0,1,2.

Then, using the second inequality of (1.3) and choosing e2 = 11/29, e, = »>Cfl/l 1, we
obtain

\\r+3\\2 + kva(r+3,t"+3)

(2.29) <C(|ir+2H2+ lir+1ll2+ liril2) + CA:-,|lp'' + 3 + S'I + 3||2
111

+ -yp I b(u"+3, u"+3, r+3) - b(AU"+3, AU"+3, r+3) I ,

« = 0,1,2.
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Now, (2.11) and (2.11'), (2.4) and the consistency of (1.13) give

(2.30) „n + 3| <Ck' d4u
dtA

(2.31)     ||5"+3||<CÂ:«'-i
3m
3/ L"(H')

L°°(L2)

dp
3/

0<«<7- 3,

¿"(//'"'/fl')
0<«</- 3.

Using now (2.30), (2.31) and (2.12)-(2.14), (2.15'), (2.16)-(2.20), (2.21'), (2.22)-
(2.24) in the right-hand side of (2.29), we obtain

nr+3n2 + Mr+3,r+3)
<c(nr+2ii2 + iir+,ii2 + iirii2)

+ckik3 + hrf + ck(k3 + hr + iiAr+3n + /c3iiAr+3n,

+«r-iiiAr+3n,+ iiAr+3ii2)nr+3ii,,    « = 0,1,2,
which gives upon application of the arithmetic-geometric mean inequality with e > 0
that

iir+3n2 + Mr+3,r+3)
^ c(nr+2ii2 + iir+ln2 + urn2) + ckik3 + «o2

+ ce-x{k(k3 + hr)2 + A:||Ar+3ll2 + fc7IIAr+3ll2

+ Â:«2r-2||Ar+3ll2 + A:||Ar + 3llf) + e*:lir+3ll2,
« = 0,1,2.

Hence, picking, e.g., e = vCJ2 yields

WV^W1 + kva(V+\V+')

(2.32) ^ckik3 + hrf

+c\ \ iir+,ii2 + (kh2'-1 + k1) s iir+,ii2 + k s nr+,'iif},
U=0 i = 0 1=0 J

« = 0,1,2.
Consider first (2.32) for « = 0. Using the inverse assumption (1.5), the hypothesis
(2.25), the fact that k, « < 1 and r > 2 and the hypothesis (2.26), we see that

2
(2.33) (kh2r~2 + k1) 2 lir'H, < c(khlr~2 + kn)h-2(k3 + hr)2

i = 0

< c(k1h2r-4 + kh4''4 + kx3h~2 + A:7«2'"2) < c(a)(k6 + h2r).

Moreover, (1.5), (2.26) and (2.25) give also
2

(2.34) k 2 lir'll, < ckh~4(k3 + hr)A

< c(kX3h~4 + Âr«4r-4) < c(cx)(k6 + h2r).

Now, (2.25), (2.33), and (2.34) substituted in (2.32) yield

U3\\2 + ki>a(Ç3,t3) *ic(a)(k3 + hr)2.
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In particular, ||f31| = Oik3 + hr), and the argument can be repeated using (2.32) for
« = 1 and then for « = 2 to yield (2.27). Of course, this type of estimation can only
be used for a small (i.e., independent of k) number of steps.    D

We continue now with the estimation of f"+3 for 3 < « </ — 3. As an inter-
mediate step we prove the following

Lemma 2.2. Let k and h be sufficiently small (c/. (2.42) below). Then if

(2.35) IMI^hi^Ô
holds, where C = C(ß) is a constant that can be determined, e.g., by (2.43) below, it
follows that

73urr+3u2 - urr+2n2 + -^kva(v+\ r+3)

(2.36)     - ^kva(t-+2, r+2) - ^Mr4', r+1) - ^«(r, n

< ck(k3 + h'f + Œ||Ar+3H4,       3<«<7-3,

where

ri/ = I'-2-^-1 + 1.^-2,       2</«/.

Proof. Noting that

J-n + 3 _ _fn + 2    i    _l_>-n+l_—tn = rf + 3 — Pfn + 2S H* 11 * 11s        J 5

and since ?"+3 G S for 0 < « <J - 3, inserting v = TÇ"+3 in (2.10) gives

||rr + 3||2 _ (pr + 2; rr + 3) +   t_kvatç«+lt rr + 3)

(2.37) =(P" + 3 + ô" + 3,rr + 3)

+ -^k(b(un+3, u"+3, rr+3) - b(Aun+3, au"+3, rr+3)),

3<«<y-3.

Using the Cauchy-Schwarz inequality and the arithmetic-geometric mean inequality
for the last two terms of the left-hand side of the above and estimating its right-hand
side using (2.12)—(2.24), we obtain

78
iirr+3n2-Mrr+2ii2+-j^-*w(r+3,r"+3)

- j^kva(r+2, r+2) - ■¡fi*p*{r%r+1)
n + 3   i    tn + 3|| HrJ-" + 3|l(2.38) <2||p"+3 + S"+3||||rf

+^k{c(k3 + hr) + C'(k3 + «'-,)iiAr+3n1

+2cftiiMiiL«(H.)iiAr+3ii1 + ci,iiAr+3ii2}iirr+3ii,,

3<«</-3.
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where we note from (2.17), (2.20), (2.22), (2.23) that

33t/
(2.39) c' = C

3/3
+   u ¿/»(IT) + \p\l™(h-

/."(H1)
'/«')

We now estimate some of the terms in the right-hand side of (2.38), using the
weighted arithmetic-geometric mean inequality for e > 0 and (2.30), (2.31), (1.3) and
the definition of Tf '

Í2||p"+3 + 5"+3|| + ^ck(k3 + hr) + ^Chk\\At"+3\\2}\\nn+3h

< ce~xk(k3 + h'f + Ce-»A:||Ar+3ll?
+ek[a(r+\ r+3) + a(r+2, r+2) + a(r+l, r+1)],

3<«</-3.
Hence, choosing, e.g., e = p/121, we obtain from (2.38) and the above, using again
(1.3),

||rr + 3||2_  ||rr + 2||2 + _^_fci,a(r + 3)r + 3-)

-^-Mr+2,r+2)-T^Mr+,,r+')

(2.40)
24 ChCk(k3 + hrY + k\C'(k3 + /I'"1) +YJ- "^11 Uli r^aV)

• {a(Ar+3, Ar+3)«(rr+3, rr+3)}'/2 + c*n Ar+ 3 M 4

3«n</-3.

(In (2.40) c' is again of the form (2.39), albeit with different C.)
The triangle inequality and the arithmetic-geometric mean inequality yield, if we

recall the definitions of Af "+\ TÇ"+3, the (convenient) estimate

(2.41) a(Ar+\ Ar+3)1/2a(rr+\ rr+3)1/2

< 5{a(r+3, r+3) + *(r+2, r+2) + a(r+l, r+1) + «(r, D].
We conclude then that if we take k, « sufficiently small so that, e.g., the "cell
Reynolds number"-type condition

(2.42) 5c'(A:3+ «'"') <-j^-

holds and in addition require, e.g., that

120 C„ 2v
(2-43) Tf-pll"ll/.-(H')<TJf.

i.e., a condition of the form (2.35), then (2.36) follows from (2.40)-(2.43).    D
Remark 2.1. As we remarked in the Introduction a condition of the form (2.35) on

the solution of (1.1) is needed for the proof of uniqueness and regularity of the
Navier-Stokes equations for N = 3, cf. [18, p. 303], but is not necessary for N = 2. It
may be shown that it is guaranteed if v is sufficiently large and/or the data «°,/are
sufficiently small in appropriate function spaces; cf. Section 4 below. In Theorem 2.2
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we shall replace this condition by a requirement that k and « be sufficiently small;
however this requirement will be qualitatively more stringent than, e.g., the one of
the type (2.42).    □

We now complete by an inductive argument the estimation of ||f+3ll, 3 < « <
J — 3, starting from (2.36).

Lemma 2.3. Let the hypotheses of Lemmata 2.1 and 2.2 be satisfied. In addition
suppose that « is further sufficiently small iso that (2.58) below is satisfied). Then, it
follows that

(2-44) \t'\\2 + kva(r<,rl)^c(l + T)(k3 + hr)r\2 KJ,

where the constant c, as usual, does not depend on  T otherwise except through
L"iO, T; X)-norms of u and p.

Proof. The proof proceeds by induction. For integer M, 5 < M «S /, let dM =
dMiu, p, k) be a constant (to be determined and bounded uniformly with respect to
M and k later, cf. (2.56), (2.57)) such that

(2.45)    W\\ + kx/2px/2(a(tl,t')y/2<dM_x(k3 + hr),       3</<M-l,

holds. Clearly (2.45) holds for M = 6 with d5 = /2c,, with c, as in (2.27). We now
have, using (1.3), (1.5), that

II Atn + 3||4 ch 2\ 2 nr+i
/ = 0

2fl(r+,,r+/)
i=0

Hence, using the induction hypothesis (2.45), we conclude that

(2.46)    HA?n + 3 ||4 CV^,«"2(A:6 + «2') 2 a(r+i, r+i)
i=0

«<M- 3.

Now, using (2.26), we note that

h~2(k6 + h2r) = k6h-2 + h2'-2 «S a6«10/7 + h2r-2.

Hence, supposing that « is sufficiently small, e.g., with C as in (2.36) and C, as in
(2.46), that

(2.47) CCidjf^ia'h10/1 + h2r-2) < r/121,

(note that eventually we shall replace dM_x in (2.47) by suvMkidM)—cf. (2.57)
below), we obtain by (2.36), (2.46), (2.47) that

|rr + 3||2 _ ||rr + 2||2 +   K_kvà(çn+3> r + 3) _   4*_kva(tn*2A«^

(2-48)

121

^kva(r+x,r+x)-^a(t",n

ck(k3 + hr)2,       3<«<M-3.
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Now we sum both sides of (2.48) with respect to « from « = 3 to « = m — 3
where m < M, and we obtain

iirrii2- \\n5w2 + ^kpair,r)
kv [lla(t\^) + 23a(t4,^) + 5a(t3,t3)]121

+ ck(m - 5)(k3 + hr)2,       6 < m < M.

Hence, using (2.27), we conclude that

(2.49)    lirril+A:1/2«'1/2(a(r,r)),/2<£m-5(A:3 + «''),       6 < m < M,

where

(2.50) Em = E„iu,p,k) = oll+km.

(It is straightforward to show following the constants c through the proof that the c
occurring in (2.50) is a positive polynomial function of ||34t//3r4||Loo(L2),
II 3w/3i II ¿»(H,-), | dp/dt \L«(Hr- i/Ri), IImII^jwi.oo), H m || L*(W), \p\l"(H'-'/r')^
||33w/3r31| ¿»(L«) and c, (as in (2.27)), with coefficients independent of «, h, k, m or
T.) Recalling the definition of Tfm, we may conclude from (2.49) that

(2.51) iirii-T\iir^1ii-T^iir"2ii + A:i/2i',/2(a(r,r))l/2

^F^^k3 + hr),       6*im*iM.

Let X = (7 + fïyf )/22 s .85 denote the root of the quadratic equation x2 — lx/11
- 2/11 = 0 in the interval (0,1). Multiply the wth equation in (2.51) by X6~m and
sum the resulting equations with respect to m for m = 6 to m = M to obtain

M
(2.52)    2 x6-ml\\r\\ -Y[\\r-l\\ -^\\r~2\\)

m = (s

M M
+kx/2vx/2 2 x6-miair,r))x/2^(k3 + hr) 2 x~mE„

Using the definition of X, it is seen that
M

vm-2

m — d

11 ?2 A6-mliirii--jYiir-Mi--jyiir
1 = 6

= x6-MuM\\ + j¡\>-"M»-i\\ - (1+^x~l]jn5\\ —¿yiir»ii

>\*-"U"\\-l1+^~l\u>\\-^u%     M>6.

Hence from (2.52) we deduce that
M

(2.53) uMw + kx/2vx/2 2 xM-m(a(r,r)y/2
m = 6

11       )XM"6|I^5H + TTX^6||f411 + ^ + hr) 2 AM-m£m_5
m = 6
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Now, (2.50) gives

(2.54) £m_5 = c(l + k(m - 5))'/2 < c(l + T)'/2   if 6 <m<J.

Hence, since 0 < X < 1, M 3* 6, (2.53) and (2.27) give

(2.55) lini + kW^ait", S»))'/2 < dM(k3 + «'),
where

(2-56) dM = Í1 + 2^"' + 2 )cx/2 + j^d +kiM - 5))'/2.

In (2.56) c,, c are the constants occurring in (2.27), (2.50), respectively. By (2.56) we
see that dM is an increasing function of M and is bounded above uniformly in k and
M by

Hence the induction proof started with (2.45) works if we define dM by (2.56) and
we replace dM-, in (2.47) by the upper bound D defined by (2.57). Hence, ultimately
(2.47) is of the form
(2.58) c(l + r)(a6«1°/7 + «2f-2)^j',

which shows it to be qualitatively more stringent than, e.g., (2.42) which does not
involve T explicitly in its left-hand side. Finally then, if « is sufficiently small so that
(2.58) is satisfied, (2.45), (2.55), (2.57) give (2.44).    D

We now collect the results of the previous three lemmata in the main theorem of
this section.

Theorem 2.1. Let the initial conditions UJ,j = 0,1,2, o/ (1.15) be chosen so that
(2.25) is satisfied. Moreover, let (2.26) and (2.35) hold, and assume that k and « are
sufficiently small, so that (2.42) and (2.58) are satisfied. Then, if U" and u are solutions
of i 1.15), ( 1.1 ), respectively, we have that

(2.59) max \\U" - u"\\ < cil + T)i/2(k3 + hr).

Proof. (2.59) follows from (2.4), (2.25), (2.27), and (2.44).    D
The following error estimate for the pressure follows from Theorem 2.1.

Proposition 2.3. Let the hypotheses of Theorem 2.1 hold. Then, if P", p are
solutions o/(1.15), (1.1), respectively, we have that

(2.60) max | P" - p" L2/Ä. < c(l + r)'/2(A:2 + k~xhr + hr~x).
3«n«y '

Proof. By (2.10) we see that

B([r+\e" + 3],[v,q])

_ Í fn + 3 _   1° f-n + 2    i      "   vn+1  _    2   ¡.„
~6kV        TP     +7P        TP'Ü
+ ]}(p"+3 + ô"+\ v) + b(u"+3, u"+3, v) - b(AUn+3, AU"+3, v),

0<«<i-3,V[M]eHu-.
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Hence, (2.2), (2.12)-(2.24) (noting that (2.15'), (2.21') hold for « ^ 3 as well), (2.30)
and (2.31) yield

e"+3\Li/R¡<Ck-
n + 3 _fn + 2   i   Jlfn+1_—r"IV 11s IV

(2.61) + c{(k3 + hr) + ||Ar+3ll + (A:3 + hr~x)\\ Ar+3H, + IIA£"+3II,},
0<n*S/-3.

Now, by (2.25), (2.27), (2.44),

18
(2.62) vn + 3 _     " yn + 2   i   j_yn+\S 11s       T 11S 11r c(k2 + k~xhr),

0<«<y- 3.

Moreover, (1.5), (2.25), (2.27), (2.44), (2.26) and the facts that k, « < 1 and r > 2
give

(2.63)

(Â:3 + «r-1)||Ar + 3ll, < c(k3 + hr-x)(k3h~x + «'"')

= c(k6h~x + k3hr~2 + k3hr-x + «2r"2)

<c(A:3-r-«r),       0<n</-3,

and

(2.64)      ||Ar+3llf <c«"2(A:6-r-«2'-)<c(A:2-r-«'-),       0<«</-3.
Hence, (2.61 )-(2.64) and (2.25), (2.27), (2.44), and (2.5) yield (2.60).    D

Remark 2.2. (2.60) shows that, if we suppose, e.g., that k > a'h for some positive
constant a' (a condition which for sufficiently small « is certainly compatible with a
condition of the form (2.26)), then | P" - p" \Li/Rt = Oik2 + hr~]).    D

We now state and prove a convergence result for which a condition of the type
(2.35) is no longer needed. On the other hand a more stringent (than, e.g., the one
given by (2.58)) "smallness" requirement on k and « will come into the picture.

Theorem 2.2. Let the initial conditions U',j = 0,1,2, of (1.15) be chosen so that
(2.25) is satisfied. Moreover, let (2.26) hold, and assume that k and « are sufficiently
small, so that (2.42) and (2.78) below are satisfied. Then if [U", P") and [u, p] are
solutions o/(1.15), (1.1), respectively, we have that

(2.65)

and

(2.66)

max ||i/" - u"
0««<y

max | P" - p" \L2/Rl
3<n<7 '

cecTik3 + hr),

cecTik2 + k~xhr + hr-x).

Proof. Obviously (2.27) still holds and so does (2.37). In (2.37) estimating the
left-hand side as in Lemma 2.2 but estimating the right-hand side using (2.12)—(2.14),
(2.16)-(2.20), (2.22)-(2.24) and (2.15') and (2.21') (the last two obviously hold for
0 < « < / — 3 but they were used only for « = 0,1,2 in the proof of Lemma 2.1),

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



358       GARTH A. BAKER, VASSILIOS A. DOUGALIS AND OHANNES A. KARAKASHIAN

we obtain, instead of (2.38),
78

nrr+3ii2-iirr+2ii2 + T^™(r+3,r+3)

- |h«(r+2, r+2) - ^kva(r+l, r+1)

(2.67) <2||p"+3 + Ô"+3||||rr+3ll,

+ jjÄ:{c(A:3 + hr) + c'(k3 + hr~x)\\ Ar+3II,

+ciiAr+3ii + cjAr+3ii2}iirr+3ii1,
3«£««/-3,

with c' as in (2.39). Proceeding as in the proof of Lemma 2.2, we obtain

{2II p"+3 + 8"+3\\ + ^ck(k3 + hr) + -^HAr+3ll

+ Hcfc/ciiAr+3ii2}iirr+3ii,

< cE~xk(k3 + hr)2 + ce-^||Ar+3ll2 + Ce-'/cll A^"+3||f

+Bk[a{r+\ r+3) + a(r+2, r+2) + a(r+\ r+%
3<«*c/-3.

Choosing again t = v/121 gives, instead of (2.40),

nrr+3ii2-iirr+2ii2 + T^-^"«(r+3,r+3)

- TffMr+2, r+2) - ^kva(r+l, r+l)

(2.68) < cA:(Ä:3 + hr)2 + CÂ:||Ar + 3ll4 + c'k(k3 + A'"1)

• [a(Ar+\ Ar+3)a(rr+3,rr+3)}'/2 + ck 2 nr+iii2,
/=o
3<n^J-3.

Applying (2.41) in the right-hand side of the above and choosing k, « sufficiently
small so that (2.42) is satisfied, we obtain, instead of (2.36),

nrr+3||2 _ nrr+2||2 + Ts_kva^n+^r+3) _ v>_kva^n+^r+2)

(2.69)       - -¡fik,a(r+\ r+1) - j£a(r, D
2

<ck(k3 + hrf + ck\\Ar+3\\t + ck2 nr+ii2,    3<«<y-3.
(=0

We now proceed as in the proof of Lemma 2.3. We assume again that

(2.70) U'\\ + kx/2vx/2a(ri,t>)*zdM_x(k3 + hr),       3<KM-1,

where dM = dMiu, p, k) is a constant to be determined later. Assuming the analog
of (2.47), i.e., that
(2.71) CC.^.^a6«10/7 + h2r-2) < r/121,
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we obtain, instead of (2.48),

nrr+3n2 - nrr+2n2 + ^kva(t"+3, r+3)

- |ba(r+2, r+2) - |^a(r+1, r+1) - ff*(r, r)
2

< ca:(â:3 + «r)2 + ck 2 Un+{\\2,       3 =s « < M - 3.
1 = 0

Summing both sides of the above with respect to « from « = 3 to « = m — 3,
m < M gives

nrrn2 + T^-wr,r)
5

< C 2 [UJW2 + kva(tJ,tJ)] + ckim - 5)i^ + h')2
7=3

m-\

+ ck 2  lim2,       6<m<M,
n = 3

from which it follows that the analog of (2.49) is now

(2.72) \\nm\\+kx/2vx/2(a(r,Dy/2<Axt/2,       6^m<M,

where {Am}, m = 6,1,...,M, is an increasing sequence of positive numbers, defined
by

m-\

(2.73) Am = c(l + k(m - 5))(k3 + hrf + ck 2  WII2-
n = 3

Proceeding now as in the proof of Lemma 2.3 yields

||fJ#|,+ kl/2pl/2fa(çM^y/2

<|l±^j||?5||+T2_||r4||+_l_^l/2j

from which it follows by (2.27) and (2.73) that

(2.74) UM\\2 + kva($M,tM)
M-\

<cx(i + T)(k3 + hr)2 + c2k 2 (nrn2 + wr,n),
n = 3

with appropriate constants c, = c,(w, p), i = 1,2. The discrete form of Gronwall's
inequality gives then, by (2.74), that

UM\\2 + kva(ÇM,ïM) <cx(l + T)(k3 + hrfexp[c2k(M - 1)],
i.e., that

(2.75) HM\\+kx/2rx/2a(rM,tM)^dM(k3+hr),

where

(2.76) dM= {2c,(l + 7>xp[c2*(M- 1)]}'/2.
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Hence, dM is an increasing function of M and is bounded above uniformly in k
and M by

(2.77) sup      dM<D= {2c,(l + r)exp[c2r]}l/2.
k>0,6*iM^J

Therefore, the induction proof started with (2.70) works if we define dM by (2.75)
and replace dM_, in (2.71) by D. Hence, ultimately, (2.71) is of the form
(2.78) cecT(a6hx°/7 + h2r-2)<p,

which shows it to be qualitatively more stringent than (2.58). Hence, if h is
sufficiently small so that (2.78) is satisfied, (2.70), (2.75), (2.76), (2.4), (2.25), (2.27)
give (2.65). The estimate (2.66) for the pressure follows verbatim from Proposition
2.3 taking into account (2.65). Of course, Remark 2.2 is relevant here too.    LI

3. Initial Conditions. In this section we consider the initial conditions UJ,j = 0,1,2,
constructed by (1.18)—(1.26), and we prove that they satisfy (2.25) for an appropriate
constant c0 = c0iu, p). Clearly all the intermediate approximations needed for
finding the initial conditions exist uniquely. The error estimates will be proved in a
series of lemmata and will be summarized in Theorem 3.1.

Lemma 3.1. Let U° be the solution o/(1.18) and let co° = co(0) be defined by (2.3) for
t = 0. Then U° E S and

(3.1) ||t/0-co°||<c«',

and consequently

(3.2) \\U°-u°\\ <chr.

Proof. That U° E S follows by putting v = 0 in (1.18). We now define [w°, ñ°] E
H„.Aby

(3.3) B([û°,n°],[v,q])=B([u°,0],[v,q]),    V[t>, q] E HA>/f.
We see that ¿5° G S and, putting

(3.4) Tj° = u° - 5°,

we see from (2.4) that

(3.5) ||rj°||^c«r.

Let now

(3.6) f° = U° - co°.
Then, (1.18) and (3.3) give that V[t\ q] E HA A

(f\ v) + £*fl([f0, P° - =°], [«, q]) = (r?, v).

Since by (3.6) f° G S, putting v = f° in the above yields

iifoii2 + -^^c7(f^fo) = (fr°,fo)<^iiif0ii2 + |iif0ii2.

It follows by (3.5) that

(3.7) ||f°||2 + {y/c™(í0,í0Hc«2'.
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Since now ||t/° - co°|| < \\U° - co°|| + \\u° - «°|| + ||ii° - co°||, it follows from
(3.7), (3.5), (2.4) that (3.1) holds. By (2.4) we also obtain (3.2).    D

Lemma 3.2. Let (V6/'1 be defined by (1.19), and let f6/" = i/6/" - to6/". Then
U6/xx G S and

(3.8) llf6/11ll2 + kpa(S"", f6/") « c(k2 + hr)2.

Proof. Putting v = 0 in (1.19), we see that tV6/" G S. Letting f6/" = U6/xx -
w6/ne6/ii -p6/u -w6/u (whereof course, co6/" = co(6A:/ll), w6/" =»(6*/11)
are defined by (2.3)) and £° = t/° - co°, we obtain, using (1.19), (2.3), that

(f*/ÍI-fe,c)+^W([f»/",í«/»],[e,íjj

= (t,6/"  - T,0, 0) -   J«6/11 - U» - -^K/U, «

6k r
+ ^[M«6/","6/",t;)-e(M0,l/0,,)],   V[M]eHw".

Noting that f6/u = (76/" - co6/" G S, putting u = f6/" in the above, and using
the Cauchy-Schwarz inequality, we see that

\\^xx\\2 + fxkva(^xx,^xx)

(3.9) <2||T)6/"-7,0||||f6/11|| + 2

12*

l»6/» - l|0 _ JLfctf/ll llí6/"ll

+iir0ii2 + -^i¿("6/l,."6/,1.f6/,1)-K«0»«0.f6/u)l-

Now, (2.4) and Taylor's theorem with the remainder in integral form yield

(3.10)

(3.11)

r,6/xx-V°\\^i        H(s)Wds^ckhr

l/6/'1-!/0-^-^67" ck'

Moreover we have, by (2.9),

k | b(u6A\ „*/", f»/>>) - ¿(M°, «o, f'/ii) |

(3.12) =Ä:|Z>(«6/,1-«0,«6/,,)f6/,,) + ft(«0,«6/n-t<0,f6/1I)|

<^||M6/"-M0||||i/6/"||,,0O||f6/"l|+/c||M0||||M6/"-l/0||1,oo||f6/|1||

<ck2\\f*/"\\.
Hence,  (3.9)—(3.12),  (3.1)  and  the  arithmetic-geometric mean  inequality  yield
(3.8).    G

Lemma 3.3. Let Ux be the solution of (1.20). Then Ux E S. Assuming that

(3.13) kh-2/3^a,

for any positive constant a, then there exists a constant c = ciu, p, a) such that, if
fi = Ûx - iV27" +«°), ¡hen
(3.14) llf1ll2 + W?i.fi)<c(fc5 + «2r)-
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Proof. Clearly (7, G S as may be seen by putting v = 0 in (1.20). We define
êx = Pi - i(w'2/n + it0) and f° = t/° - co° as usual. Then, (1.20), (2.3) yield

(3.15)       = i(v2/" - 7,°, o) - |(M12/" - M° - ^(«:2/n + «?), t>)

+ H[i>(«,2/11, "12/", o) - è(2t/6/n - M°,2t76/" - t/°, v)],

V[i),?]eHM-.
We have, using (2.4) and Taylor's theorem with remainder in integral form, that

(3.16) ||T,12/"-T,0||<cA:«r,

(3.17)

We now have that

.12/11 u° - irk(uX2/u + u?)11 ck3.

b(ux2/xx, i/12/", v) - è(2(76/" - i/°,2i76/u - ta, v)

= b(uX2/" - (2Ü6/XX - u°),ux2A\v)

+ b(2Ù6/xx - i/°, w12/" - (2t76/n - u°), v)

(3.18) = b(uxl/xx - Ai/12/" - 2f6/" + 2t,6/11, h12/", v)

+ 6(2f«/" - 2t,6/'1, i/12/" - Am'2/" - 2f6/" + 2t,6/1', v)

+ b(AuX2A\ «'VU - Ai/12/" - 2f6/" + 2t,6/11, v),

where f6/" was defined in Lemma 3.2 and

(3.19) Äl/l2/"=2t/6/11-M0.

We now estimate the three terms in the right-hand side of (3.18). For every v E SA
we have first by (2.7) that

(3.20) k | b(ux2/u - Aw12/11 - 2f6/" + 2t,6/", m12/'1, v) I

< Ck\\uX2/xx - A«12/" - 2Í6/'1 + 2r,6/11|| l|u,a/|IHIfCOlloll,.

Now (3.19) gives

(3.21) ||M,2/"-Äl/,2/"|l7<cA:2,       7 = 0,1.

We conclude by (3.20), the triangle inequality, (3.21), (3.8), (2.4), (1.3) and from
the weighted arithmetic-geometric mean inequality that, for any e > 0,

k | b(ux2/xx - Aw'2/" - 2f6/" + 2t,6/'1, i/12/", v) I

(3.22) *Zce-xk(k2 + hr)2 + eka(v,v)

<ce-x(k5 + h2r) + eka(v,v),       VuGS^.
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For the second term in the right-hand side of (3.18) we obtain, using (1.11) and (1.3),
for any e > 0, v E SA

k\b(2t/xx -2t,6/11,I/12/" -At/12/" -2f6/u + 2t,6/1\u)|

^ Cbk\m6/xx - 2t,6/" II ,11t/12/" - Äw12/11 II, Il ull,

(3.23) +CÄ/c||2f6/11-2T,6/1,||2llt;||l

< Ote-'Olf6/" - î,6/" II2 Ht/12/'1 - Ài/12/n||2 + llf6/n - T,6/n||4)

+ kea(v, v).

Now, using (3.21) yields

(3.24) fcllf»/" - T,6/"!!2!!«12/'1 - ÄM12/"|I2 + fc||f6/n - r,6/'1!!4

<cA:5(||f6/"|l2+llîi6/,1ll2) + Gt(||f6/"||f+||T,6/"|i;).

Now, (3.8), (2.4) and the facts that r>2,k,h<l, yield

(3.25) yt5(||f6/11|lf+llT)6/"llf)<C^4(^a(f6/|l,f6/")) + c*5«2r-2

«s c(k* + k4h2r + k5h2r~2) =£ c(k5 + h2r)

and
(3.26) Ä:||r,6/"||4^cA:«4r-4<c«2r.

Also, (3.8), (1.5), (3.13) and the facts that r>2,k,h<l yield
fc||fs/lllli<C*w(fs/I,,f6/u)llfs/ull2

(3.27) ^ c(k4 + h2r)h-2(k4 + h2r) < c(k*h~2 + k4h2r~2 + h4'-2)

< c(a3A:5 + a3kh2r + «4r"2) =£ c(ks + h2r).

Hence, (3.23)-(3.27) yield for any e > 0, v E Srh

(3.28) k | ¿>(2f6/n - 2t,6/'1, t/12/" - At/12/11 - 2f6/" + 2t,6/", v) \

*ZcE~x(k5 + h2r) + kea(v.v).

Finally, for the third term in the right-hand side of (3.18) we obtain, using (1.3),
(2.8), (3.19), (3.21), (3.8), (2.4) for any e > 0, v E Srh
k | b(Aux2A\ «>2/»i - Ai/'2/'1 - 2f6/" + 2t,6/", v) I

< CfcllÄii^'MlJllu12'11 - Au12/"!! + llf6/11ll + Hr,6/"!!)!!«!!,
^ck(k2 + hr)\\v\\] ^ce'x(k5 + h2r) + kea(v,v).

Now, putting v = f, G S in (3.15), we obtain, using the standard inequalities, (3.16),
(3.17), (3.22), (3.28) and the above, for any e, e' > 0,

^iif^ + ̂ Mw)
^\H0\\2 + c(er](khr)2 + e'Hx\\2

+ c(e')~]k6 + £'||f,||2 + ce-x(k5 + h2r) + 3tta(f„f1),

which,  with  the choice of,  for example,  e' = 1/8,  £ = c/33  and (3.1) yields
(3.14).    D
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Lemma 3.4. Let Û2 be the solution o/(1.21). Then t/2 G S. Moreover, //(3.13) holds
andt2 =U2- ^co12/'1 + co°), we have that

(3.29) ||?2II2 + kra{i2, f2) < c(k3 + hr)2.

Proof. Clearly Û2 E S (put v = 0 in (1.21)). Define now <?2 = P2 - J(w12/n + tt°)
and Ç°=U°- co° as usual. Then, (1.21), (2.3) yield

(& TÍ0,»)+ £*»([&.«J. [v,q])

(3.30) = |(V2/n - V\ o) - \ ( "l2/" - «° - fy(«? + u\2/xx), v)

+ ^{b(ux2/xx,uX2/x\v)-b(2Ûx-u0,2Ûx-u°,v)},

V[v,q](EHhj.
Now we see that

b(ux2/xx, uX2A\ v) - 6(2(7, - u°,2Ûx - u°, v)

= b(uX2/xx-(2Ux-u°),uX2/xx,v)

+ b(2Ûx-u°,uX2/xx-(2Ûx -u°),v)

(3.31) = 6(^/1« - 2f, + V\ «12/H, ©)
+ ¿>(u12/" - t,12/" + 2f, - t,0, V2/" - 2f, + tj°, v)

= ¿>(t,,2/" - 2f, + t)°, ««/", 0) + b(uX2/xx, t,12/" - 2f, + t,0, v)

-6(V2/,,-2f, +t,°,V2/" -2^ + 1,°,«),

where f, was defined in Lemma 3.3.
For the first term in the right-hand side of (3.31) we obtain using (2.7), (2.4),

(3.14), for any e > 0, v E Srh that

/t|ft(T),2/"-2f1+r,°,M12/n,ü)|

<Cyt||T/l2/"-2fl+7,0||||w,2/"|l,,0Ollü|l1

(3.32) <c¿(Ht)12/"II + II?, Il + Il ij° 11)11 v II, < câ:(A:5/2 + «r)IMI,
<ce~lk(k5 + h2r) + Caek II v II?« ce~ l(k6 + h2r) + eka(v,v).

Similarly, for the second term, using (2.8) and then exactly as above, for any v E SA,
£>0,

(3.33) k\b(un/",-nx2/"-2Çx+rf>,t>)\

<Ck\\un'"\\J\if2/n-2fl+if,nv\\i
<C£-'(A:6 + «2r) + £Â:a(t;,t;).

We estimate now the third term of the right-hand side of (3.31). Using (1.11) we see
that, for e > 0,

(3.34) k | ¿>(V2/" - 2f, + t,0, t,12/" - 2f, + v°, v) |
<*CJ|ij12/n -2f1+T,°||2||ü||1

<Crlk\l^u -2f, +T,°||4 + £Ä:cz(t;,ü).
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Now, (2.4), (3.14), (1.5), (3.13), and the facts that k,h<l,r>2 give

fc||i|,2/n - 2f, + ij°ll, « Œ(||t,12/"II4 + lltj°llf) + CkWiX
< cA:«4'"4 + C(kva(Í],Í]))Hl II? < ckh4r~4 + c(k5 + h2r)h-2(ks + h2r)

< c(kh4r~4 + kX0h'2 + A:5«2'"2 + h4r-2)

< c(h2r + a4kbh2/3 + a5«2r+4/3 + «4r"2) < c(k6 + h2r).

Hence (3.34) becomes, V £ > 0, v E SA:

(3.35) k | è(r,l2/" - 2f, + ti°, t,12/" - 2f, + 7,°, o) |

<c£-1(A:6 + «2'') + £A:a(t;,ü).

Picking now t> = £2 G S in (3.30) and proceeding as in the previous lemma, we see
that (3.31)-(3.35), (3.16), (3.17) and (3.1) yield (3.29).    D

We now let Í/ '2 / ' ' be defined by ( 1.22). Clearly Ux2/xx ES. Defining f '2 / " by
(3.36) V2/xx = t/'2/11 -co12/",

we see by (1.22), the definition of f2, (3.29) and (3.1) that

(3.37) ||f,2/u|| = \\2Û2 -U°- co,2/"|l = Il2f2 + co° - U°\\
<2||f2||+ llco0- (70||<c(Â:3 + «r).

Lemma 3.5. Let U3 be the solution of (1.23). Then Û3 E S. Moreover, if (3.13) holds
andi3 = U3- Kw24/" + co12/"), we have

(3.38) Hfjli2 + kra(i3,f3) < c(k3 + hrf.

Proof. Putting v = 0 in (1.23), we see that U3 G S. We define now ê3 = P3
- Kw24/n + 7r12/") and f12/11 by (3.36). (Note for future reference that f3 G S.)
Using (1.23) and (2.3), we obtain that

(f3-!n/".°) + "B([i3,e3], [v,q])

= \(V24/U-V]2/U,v)

(3.39) - j(i/24/" - i/'2/" - ^y(t/,24/" + W;2/"), o)

+ ^[ft(I/l2/",i/12/",t;)-6(i/,2/ll,i712/",t;)]

+ ^[¿.(t/24/", M24/", c) - 6(2i/,2/n - i/°,2t/12/" - k°, t>)j,

Now we write the third term of the right-hand side of the above as

b(ux2/u,un/n,v)-b(UX2A\Ux2A\v)

= ¿>(M,2/n - Ux2A\uX2A\v) + Z>(t/12/",U12/" - C/12/",«)

(3.40) =¿(V2/" -?12/",«12/",t;) + 6(t/,2/",V2/" -r12/",t;)

-¿,(,,12/11 - £12/1^ ,12/11 _ f12/llf 0\       V|) e Sr
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From (2.7), (2.4) and (3.37) we see for £ > 0, v E Srh that

*|&(**2/"-f,2/I1,«12/I1.»)|

(3.41) <CA:||r)12/,1-f12/11IMIi/12/11ll1,00llü||1

<cfc(||î)l2/11ll + llf12/"ll)llü||1<c£~,/c(A:6 + «2r) + e^(ü,t;).

From (2.8), (2.4) and (3.37), for £ > 0, v E Srh
(3.42) Jfc|A(«12/1W2/n-f12/1,,e)|

<Ck\\ux2/xx\\J\-nX2/xx-£n/u\\\\v\\x

<C£^'A:(^6 + «2'-) + eka(v,v).

Finally, using (1.11), (2.4), (1.5), (3.37), (3.13), r > 2 yields for e > 0, v E Srh

k\b(l\X1/XX  - V2/U,T)n/U - V2/XX,V)\

(3.43) < Chk\W2/u - V2/U\\}\\v\\y < Cit(||i,12/Ull? + Hr12/11!!2)!!«!!,

< ck(h2r~2 + h~2k6 + «2r-2)IMI, ^ ce-xk(kX2h'4 + h4r~4) + eka(v, v)

< C£^'A:(a6A:7 + h2r) + eka(v, v) =£ ce-xk(k6 + h2r) + eka(v, v).

Hence, (3.40)-(3.43) give for e > 0, v G Sj¡,
(3.44) k\b(ux2/xx,ux2/u,v) -b(UX2/xx,UX2/xx,v)\

< ce~xk(k6 + h2r) + eka(v, v).

To estimate now the fourth term of the right-hand side of (3.39) we define
At/24/" = 2t/12/" - u°, At/24/'1 = 2Í/12/'1 - u°, Äco24/11 = 2C012/'1 - co° and ob-
tain

(3.45) ¿>(t/24/",M24/",ü)-6(2t/12/" -M°,2i/12/n -u°,v)

= b(ku24A\ M2Vn _ At/24/", v) + b(Au24/x\ A«24/" - Äco24/11, 0)

+ b(Au24A\ Äco24/" - At/24/11, v) + b(u24/u - Ä«24/", w24/'1, v)

+ b(Au24/u - Äco24/", A«24/", v) + ¿>(Äco24/" - Äi/24/", Au24A\ v)

-b(Au24/u - Äco24/", Ah24/11 - Äco24/'1, v)

-b(Ku24/xx - Äco24/", Äco24/" - Ai/24/", o)

-¿(Äco24/11 - Äi/24/'1, At/24/" - Äco24/'1, v)

-¿(Äco24/11 - Äi/24/'1, Äco24/'1 - Äi/24/", v).

By Taylor's theorem with remainder in integral form we obtain

(3.46) ||i/24/11 -Äi/24/"||7<cÄ:2,      j = 0,l.

From (2.8'), (3.46), for e' > 0,

(3.47) Ar|6(Äw24/n,i/24/u -Au24/U,v)\

=£ Ck IIAt/24/11 HJI1/24/" - At/24/ "H, Hüll

<cÄ:3||u|| <c(£')_1Â:6 + £'||t;||2.
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From (2.8), (2.4), for £ > 0,

(3.48) k | b(Au24/xx, Aw24/11 - Äco24/'1, o) |

< CÂ:||Äl/24/11||00||Ät/24/1, - Äco24/u|| Hull,

<cJfc(2||ttl2/n -co12/"|| + llw^-^lOlMl^dfc/rlull,
*Sce_,ifc«2' + «fctj(t),t5).

From (2.8), (3.36), (3.37), (2.4) it follows for e > 0

(3.49) k | b(Au24/xx, Äco24/" - At/24/", v) |

< ac\\k*»'"\\J\hu»'" - Äi/24/"|| Hell,
<cÄ:(2||f12/11ll + llr)0||)||ü||1<cA:(A:3 + «r)llfll,

^ce'xk(k6 + h2r) + eka(v,v).

From (2.9), (3.46), for e' > 0,

(3.50) k\b(u24¿xx - Au24A\u24/x\v)\

< Ck II t/24/'1 - Äi/24/" Hilt/24/11 H..JI v\\

^ck3\\v\\ <c(£')_1Ä:6 + £'||t;||2.

From (2.7), (2.4), for £ > 0,

(3.51) k | b(Ku24/xx - Äco24/'1, At/24/'1, v) |

<C^||Ät/24/11-Äco24/11||||ÄM24/11||loo||t;||1

<ck(2\\it2'u\\ + Il4°|l)lli>lli<c**'lli>ll,
<C£"'A;«2'' + eka(v,v).

From (2.7), (3.36), (3.37), (2.4), for e > 0,

(3.52) k | ¿(Äco24/11 - Äi/24/", Ä«24/", v) |

<CAr||Äco24/" -Ät/24/"||||Ät/24/ll||1,00||t;||1

< ck(2\\tl2/"|| + ||t,°||)||v||x^ck(k3 + «r)lkII,

<ce-xk(k6 + h2r) + eka(v,v).

From (1.11), (2.4), for e > 0, since r > 2,

(3.53) k | b(Au24/u - Äco24/11, Ä1/24/" - Äco24/", 0) I

<C^||Ät/24/11-Äco24/"||2||t;||1

<Ck(\\rf2/n\\2+\\Tf°\\2)\\v\\x<ckh2r-2\\v\\x

< ce-'â:«4'-4 + eka(v, v) « CE^'A:«2r + 6*0(1;, v).
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From (1.11), (3.36), (2.4), (1.5), (3.37) and the fact that r > 2, A < 1, for e > 0,
(3.54) k | ¿(At/24/" - Äco24/", Äco24/" - At/24/", v) I

<C^||Äi/24/,1-Äco24/1,|l,IIÄco24/,1-Ät/24/11|l1l|D||1

< C,A:(2||t)12/11II, + llT,°||1)(2||f12/,1lll + llr,0!!,)!!«!!,

ckhr-x(h'xk3 + hr

ck(k3 + h

ck(k3hr-2 + « 2i—21

2r-2> ce_1ifc(ik6 +A4'-4) + eka(v,v)

^ce-xk(k6 + h2r) +eka(v,v).

Exactly as in (3.54),
(3.55) k | ¿>(Äco24/u - Äi/24/11, Äu24/" - Äco24/", v) |

<C^||Äco24/,1-Ät/24/1,|l1IIÄI/24/1,-Äco24/n|l1lkll1

^ce~xk(k6 + h2r) + eka(v,v).

Finally, by (1.11), (3.36), (3.37), (1.5), (2.4), (3.13) and the facts that A < 1, r > 2 we
obtain for £ > 0

(3.56) yc|ft(Äco24/"-Ät/24/,,,Äco24/1,-Äi/24/n,t;)|

^QfcHÄco24/" -Ät/24/11!!2!^!!,

^ Ce-'^IIÄco24/" - At/24/"II4 + eka(v, v)

< Ce-xk(MX2/xx\\4 + \\-n°\\4) + eka(v,v)

< ce-lk[(k3h~x + Ar~')4 + A4'"4] + eka(v, v)

=s ce"x(kX3h'4 + kh4r~4) + eka(v, v)

< ce-x(k1a6 + kh2r) + eka(v, v)

=s ce-xkik6 + h2r) + ekaiv, v).

Hence, (3.45) and (3.47)-(3.56) give, for e, e' > 0,
(3.57) k | b(u24A\ u24/xx, v) - b(2Ux2'xx - W°,2t/12/" - u°, v) \

<£c((eT' +e-x)(k6 + h2r) +£'||u||2 + EÂ:a(t;,t;).

Now, (2.4) and Taylor's theorem with remainder in integral form give

||T?24/n -J2/n\\<ckh',(3.58)

(3.59) „24/11   _ „12/11 6k
-^(I/24/'i + M;2/") <ck3

Hence, putting v = f3 G S in (3.39) and using the standard inequalities, we obtain,
by (3.44), (3.57)-(3.59) for e, e' > 0,

^HiU' + ^kva^J,)11
1 f12/"||2 + c((E'r' + e-x)(k6 + h2r) + £'||f3||2 + eka(i3J3),

which in conjunction with (3.37) yields (3.38) for suitable e, e'.    D
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We finally define Í/24/" by (1.24) and obtain, if f24/" = t/24/" - co24/", by
(3.38), (3.37)
(3.60) ||f24/"|| = ll2i/3 - t/24/" - co24/" II = ||2f3 + co12/11 - i/12/"||

<2||f3|| + ||f,2/"|| <c(k3+hr).

In particular, as a consequence of (3.37), (3.60) and (2.4) we see that our results
imply (under the hypothesis (3.13)) that
(3.61) Hi/12/" -i/12/"||<c(A:3 + A'),

(3.62) Ht/24/" -t/24/"||<c(Â:3 + A').

The main result of this section may now be proved easily.

Theorem 3.1. Let U°, Ux, U2 be defined by (1.18)-( 1.26). Then W E S for
j = 0,1,2. In addition, let (3.13) be satisfied for any positive constant a. Then, there
exists a constant c = c(w, p, a) such that

(3.63) \\UJ -uJ\\^c(k3 + hr),      j = 0,1,2.
7« particular itaking into account (2.4)), (2.25) is satisfied for the initial values Uj,

7 = 0,1,2.
Proof. The case/ = 0 has already been proved in (3.2). For y = 1 (3.2), (3.61),

(3.62) and Taylor's theorem with remainder in integral form yields

H^1 - «'Il <^(13||1/0 - «°II + 28611t/12/11 - M,2/"|| + llllt/24/'1 - i/24/"||)
288

+ ^(13M° + 286m12/" - lit/24/" - 288«')
288

<cik3 + hr) + ck3,

thus proving (3.63) for / = 1. The case y = 2 is entirely analogous.    D

4. Remarks. 4.1. It is quite straightforward to show that, by choosing i/° and /
sufficiently small in appropriate function spaces and/or v sufficiently large, we can
guarantee the validity of (2.35)—more precisely (2.43)—which we rewrite here as

(4.1) \\u\\L^x<vCJ660Ch.

The relevant estimates are easy to obtain, following, e.g., [12], [15], [18]. We state
here the final results omitting the details of the proofs.

For N = 2 we may show that if u° E H2 n H1 (such that div u° = 0 in ñ) and if
/GL°°(L2),/GL2(L2), then

<ai\     11   11 *       /ill/0II2   ,   II/H1W)|(4.2) ||n||L,(Hl)<exp  ——- +

/l/2 C,
X    7rll«0||2 + -;rllii0ll1l|ii0ll2C„ vC„

4r 11/(0) 11+-^II/IIlW)

+ ¿-H/llW)
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where C% is a constant depending on Ü only. It is clear then that (4.1) may be
satisfied for v sufficiently large and/or w0,/small in an appropriate sense.

For N = 3, following, e.g., the analysis of [18, p. 303 et seq.] one may show in
particular the following type of result—cf. also Remark 2.1—especially suitable to
guarantee the validity of (2.43). Under the previous hypotheses on t/°, /, suppose
that for some £ > 0,

(4.3)        "/"g'g,')+[l + (/3HI«°II2 + C*||U°||2 + ll/(0)||2)]

xf||M0||2 + ^l^)'/2exp(||/|| L^)<PK1*AFV'i/»'iZ.'<L2>7 - ,

where C* = C*(ß). (Note that for each e > 0 and fixed T (4.3) can be guaranteed
again for v sufficiently large and/or u°,f appropriately small.) It follows then that

(4-4) ll«llt-(H')<^

which is (4.1) if e = 660.    D
4.2. Instead of the third order accurate backward differentiation method used here

one may also use the two-step, second order accurate backward differentiation
method, which, in the case y■' = Fi y), becomes

yn+2_4   n+i + 1   n _    kF n+2^       0 < w « / - 2,/,/given.

Introducing now the second order "lag" operator A by

Ay" = 2y"'x -y"'2,       2 *£ « *£ /,

we may formulate a second order backward differentiation-Galerkin method as
follows: seek {[U", P"]), Kn<Jin HAA satisfying

(4.5)    (t/" + 2-|í/"+1+ \v,t>\ +^kB([U"+2,P"+2],[v,q])

+ \kb(AUn+2, AU"+2, v) = \k(fn+2, v),       0 < « < J - 2,

V[v,q]iEHh¿.

The initial conditions U°, Ux are chosen as follows. First we put U° = u°. (It is not
necessary that U° be in SA.) We then define two intermediate values [U2/3,P2/3\,
[i/4/3, P4/3\ in HAiA, with two consecutive applications of the backward Euler
method, by

(t/2/3 - «°, v) + ^kB([U2/3, 7>2/3], [v, q]) + ^kb(u°, u°, v)

= ^k(f2'3,v),    V[o,?]€Hw",

(i/4/3 _ i/2/3; o) + lkB([U4/3, P4/3], [v, q]) + \kb(u\ h0, v)

= |/c(/4/\t;),   ¥[M]eHM',
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and finally define
i/l=i([/2/3+  yA/iy

It can be seen, using the methods of Section 3, albeit in a much more straightfor-
ward manner, that

Hi/1 -1111| ^c(k2 + hr),

unconditionally. Using now the methods of Section 2, appropriately simplified, we
can show that if U°, Ux are chosen as above, if kh~4/5 < a for any a > 0, and if a
condition of the form (2.35) holds, then, for k and A sufficiently small (specifically if
cik2 + Ar~') < v, cTi<x4h6/5 + h2r~2) < v), it follows that

lit/"- u"\\ <c(l + T)]/2(k2 + hr),       2<«</.

Again, if (2.35) is not required to hold we may obtain again the analog of (2.65), i.e.,
that

\\U"-u"\\<cecT(k2 + hr),       2<n<J,

for k, A appropriately small. For the pressure we obtain now that | P" — p" \Li,R\ =
Oik +k~xhr +hr'x),2<n<J.    D

4.3. For the proof of Proposition 2.1 we need a preliminary result.

Lemma 4.1. Let p E Hx/Rx. Then, there exists a unique b E H2 n H1 satisfying

Í i>A.b = grad p    in ñ,
[b = 0 on dû.

Moreover, for positive constants C{,  C2,  C3, where C[ — C(ß)/V, C2 = CiN)v,
C3 = C(í2)j», we have

(4-6)

(4-7)

and

(4.8)

|AH2<Ci

>l/2

is dp_
dx¡ dx

1/2

C¡a(b,b)'/¿<\p\L2/RÍ <C¡aib,b) 1/2

Proof. Standard elliptic existence and regularity theory shows that the solution b
of (4.6) exists uniquely and satisfies (4.7). Moreover, for any real constant X

va(b, v) = - (b, vAb) = (-b, grad p) = - (b, grad(/> + X))

= (di\b,p + X)<\p + X||divA|< C(N)\p\L2/R,a(b,by/2,

from which the first inequality of (4.8) follows.
Now note that if /x(S2) = fa dx, then

(4-9) \p\l2/r< =  inf l/> +A|<
ieR1

p-(piQ))  x(pdx\

sup    I p- initi))~lj pdx, g)/|g|
0¥=g<ELl

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



372       GARTH A. BAKER, VASSILIOS A. DOUGALIS AND OHANNES A. KARAKASHIAN

Consider the boundary value problem

f -vAxf/ + grad p = 0    in ß,
(4.10) xp = 0

div xp = D
on 9Í2,
in fi.

It is known, cf. [18, Proposition 2.3, p. 35], that if D E L2 is such that j^Ddx = 0,
then, (4.10) has a unique solution [xp, p] G H1 X L2/Rx. Moreover it can be seen
that, for some constant C = C(ß),

(4.11) pH\\x + \p\li/r,<Cv\D\.

Let now g G L2 and [if-, p] satisfy (4.10) with D = g - (ju(ß))_1/agc£t. There
follows that

(4.12) />- (ju(ß))   'ypdx,g) = (p,divxp)= -(xp,gradp)

= - (xp, vAb) = va(xp, b) < pa(xp, xp)l/2a(b, b)]/2

<v\\xp\\xa(b,by/2^Cv\g\a(b,by/2,

for some constant C = C(ß); here (4.11) was used in the last inequality. (4.9) and
(4.12) yield now the second inequality of (4.8).    D

Proof of Proposition 2.1. (2.1) follows in a straightforward manner from the
Cauchy-Schwartz inequality. To prove (2.2), let [u, p] E HA A. Let then b satisfy
(4.6) and x G Srh be such that

(4.13) IIA-xlli<CA||6||2.
For any q E P£/Rx we have, as a consequence of (4.6), that

B([u, p], [u - x, q\) = va(u, u) - va(u, x - b) + (u, grad p)
+ (u, grad(p + q)) - (x ~ b, grad p) + va(b, b).

Putting q = -2p in the above and using (1.3) we obtain, for some constant
C = C(7V), that
(4.14) Bi[u,p],[u-X,-2p])

— vaiu, u) — vaiu, x _ b) + (div(x — b),p) + vaib, b)

^ vCJuW2 - HI« 11,116 — xII■ — CHA - xlli \p\l*/r< + va(b> b)-
Now, from (4.13), (4.7), (1.7) there follows

(4.15) HA-xll,

Also, from (4.8) we obtain
KHif

vaib,b) C
\P\l2/r'

In view of the above (4.14) gives, for some positive constants C„ (= 1,2,3
depending on Í2 only, and for any e > 0, that

B([u,p],[u-x,-2p])

(vCa £11 U I
c,    c

v I A
C,/A

\L2/R'
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Pick now, e.g., e = vCJ2. Then, given any positive constant X < Cx, it is possible to
choose a constant ß so that

A \      2C3[h"2

for 0 < A/A *£ ß. For such h/h we conclude therefore that

(4.16) Bi[u, p], [u - x, -2p]) > Ciß, v, ß)|||[t/, p]\\\2.
Now note, using (1.3), (4.8), (4.16) and the fact that h/h < ß, that

\\u- xll, < Hull, + HAH, + 116 -Xlli < H«tl, + Ciß, v,Q) \p\L2/R>.
We conclude then that, for some constant C = Ciß, v, ß),

(4.17) Hl[iz-X,-2/>]lllssC|||[i/,/>]|||.
Hence (4.16) and (4.17) yield

sup     | Bi[u, p], [v, q]) \> B([u, p], [u - X,-2p])/\\\[u - X,~2p]\\\
[».?ieHw-
lll[o,?llll*:i

^C2(ß,v,Ü)\\\[u,p]\\\,
which is precisely (2.2).    D

Proof of Proposition 2.2. We suppress the i-dependence to simplify notation. The
existence and uniqueness of [to, ir] satisfying (2.3), and the estimates (2.4) for p = 1,
j — 0 and (2.5) follow in a straightforward manner from the properties of the
bilinear form B proved in Proposition 2.1 and the approximation properties (1.4)
and (1.6). For a proof in a more abstract setting (motivated by analogous results of
[1]), cf. Theorem 3.1 of an article by the first author in Math. Comp., v. 29, 1975, p.
999.

To prove (2.4) for ¡i = 0, j' = 0, one may use the classic Aubin-Nitsche duality
argument as follows. Put e = u — co, e = p — m, and let </> G (C°°(ß))A'. Consider the
boundary value problem

-vAxp + grad p = <¡>    in ß,
(4.18) U = 0 on9ß,

div xp = 0 in ß,

which, cf. [18, Proposition 2.3, p. 35], for each integer m > -1, has a unique solution
[xp, p] G H1 n Hm+2 X Hm+X/Rx that satisfies the estimate

(4.19) H*IL+2 + |p|»-+'/*'<CJI*lL-
Using (4.18), the symmetry of B and (2.3) yields

ie,<p) = Bi[xp, p],[e, e]) = Bi[e, e],[xp, p])

= Bi[e,e],[xp,p]-[v,q]),   V[e,q) EHM".

Hence, in view of (2.1), the first part of this proof and (4.19) with m = 0 yield

|(c,*)|<C,|||[e,e]|||      inf      \\\[xp, p] - [v, q]\\\
[o.iieHj.;

< CA(||^||2 + \p\„x/Rx)§[e, e]||| < CAIK.il |||[e, e]|||.

It follows that
Hell <CA|||[e,e]|||,
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from which we obtain (2.4) for p. = 0,y = 0. The case / = 1 follows easily by noting
that [co,, 77,] is the 73-prqjection of [u„ p,].    D

4.4. The restriction of having the subspace SA satisfy the zero boundary conditions
may be alleviated, as done in [2], by using other nonstandard Galerkin methods, e.g.,
similar techniques to the ones used by Nitsche [16], [17] for the Dirichlet problem or
by using subspaces satisfying "nearly zero" boundary conditions [17]. Following [2],
for r 3= 2 we may let, e.g., SA be a one-parameter family of subspaces of H'(ß)
consisting of TV-tuples of polynomials of degree at most r — 1 satisfying certain
approximation and inverse properties, cf. [2, Section 2] for details, and P(¡ be the
pressure space as in Section 1. Letting again HA A = SA X Pfc/Rx we now use, for the
space approximation, instead of 73(-,-), the bilinear form 73 y(-, •), defined on
H„,A-XHA,A-as

By([u,p],[v,q])=B([u,p],[v,q])

f    I 9ü   _L 9" t-1        \   A— I     vu-;—I- vv-z-vA    uv   do,
JdQ\     3« d« /

where du/dn is the outward normal derivative of u on 3ß and y > 0 is a suitably
chosen parameter. We refer the reader to [2] for the analogs of Propositions 2.1 and
2.2. The time-stepping method and its analysis proceed then in an entirely analogous
manner to what was done here, yielding, e.g., the optimal L2-error estimate lit/" —
u"\\ = Oik3 + hr), 0 < « < 7, under similar hypotheses on A:, A and u. The method
may be further extended to the case of nonhomogeneous boundary conditions, e.g.,
with u(x, t) prescribed on 3ß X [0, T] but not necessarily equal to zero; cf. [2].    D
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