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1. Introiluction

According to the well-known theorems of Medvedev and Schiitzenber-
ger, every regular language is a homomorphic image of a 2-testable language

and every context-free language is a homomorphic image of the intersection
of a Dyck language and a 2-testable language. llany such homomorphic
representations are knolt'n also for the family of recursively enumerable

languages. Every recursively enumerable language is a homomorphic
image of the intersection of trvo deterministic context-free languages, l3],
and a homomorphic image of a language generated by a context-sensitive
gra,mmar in linear time, [], as well as a homomorphic inage of a language

generated by a 2-free context-free programmed grammar, [6].
The purpose of this pa,per is to establish by a direct, combinatorial argu-

ment the follov'ing result. Consider a fixed alphabet V,r . Then there
exist another alphabet 7' , deterministic context-free languages -t, and
L, over V' and a homomorphism h of. W(Y') onto W(Vr) rvith the
fotlowing property. X'or every recursively enumerable language -L over
V7 , there is a regular noncounting language 1( over 7' such that

L : h(Ltn L|n K) .

Thus, only the noncounting language I{ depends on L, everything
else is determined by the alphabet of tr alone. Essentially the same result
has been proven by Fisher and Raney, [2]. Their proof, however, is based

on a complicated theory of automata on netu'orks.
Homomorphic representation can be used for proving results corlcern-

ing decidability, nonclosure and generative capacity, [1], [6]-191. Some

simple applications to decidability will be considered also in this paper.

Very few homomorphic representations are known for Lindenmayer systems

(cf. l5l, [7], [10], l11l). This may be due to the resistance displayed by
these systems against closure operations. We would like to mention, finally,
that in spite of the many homomorphic representations given for recursively
enumerable languages, there still is no satisfactory general theory con-

cerning such representations.
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2. Definitions and results

The reader is assumed to be familiar lyith the basic notions concerning

automata and formal languages, 112]. As regards locallv testable and non-
counting languages, cf. [a].

The set of all words, including the empty rvord i', oYer an alphabet

7 is denoted'by W(V) . W" use the customar.l'notations nti,*, * for
mirror image, catenation closure and 2-free catenatiol closure. fn the

statement of the following theorem,

Vr:{q,..',au-q}, u}5,

V'y : {a', I a, € V'7} ,

V':Y'rU{0,1}.

Theorem l. There exist two rieterministic cotfient'free langtt«ges L, and

L, oaer V' anil,ahomomorphism h of ll'(V') ottto trY(V) withthefollow'
i,ng proyterty. Ior euerE recursiuely enu,merabl,elattgucLge L ouer Vy , there

is a noncounti,ng regular language K oaer V' such tltci

(1)

All constructions involved. in the proof of Tireoren l are effective.

Since the emptiness problem is undecjdable for recursivell- enurnerable

Ianguages and since a homomorphic image of a language is ernpty if and

only if the language itself is empty, the follorving theorern is an immediate

corollary of Theorem l.
Theorem 2. ?here are two d,etermi,ruistic contert-free lamguages Ia and,

L, such that there is no algorithm for d,eciding of an arbitrary noncount'ing

regular language K whether or mot the'intersecti,on Lrn Lzn K is empty.

In some sense, Theorem 2 can be considered as an unsolvability result
for regular languages since 1( is the onlv variable' Ilotrerer, one can also

say that it is not a problem dealing »properll'» rvith regular languages'

Many undecidability results similar to Theorem 2 catr lle obtained.

We mention only the following, due to the fact that one call easil;r (by
analyzing the proof in the next section) modify the constmction in such

a, wa,y tlnal Lrn Lzi -K is nonempty if and only if it is infinite.
Theorem 3. Tltere are two d,etermi'ni,stic contert-free la,nguages L1 and,

L, such that there i,s no algorithm for deci,d,i,ng of an arbitrary noncount'i,ng

regular language K whether or mot the 'i,ntersection Lrn Lzn K i,s fi'ni,te.
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3. Proot of Theorem 1

Every recursivell' enumerable language over V,7 is generated by a
tgle 0 grammar. Without loss of generality, we &ssume that the non-
terminals form an initial segment of the seqluence

(2) &uqL » aua, » du1-S

a,*, being the initial letter.
In what follows, the letters

&u-3 t fru-2, Au-t t Au

v'iII play the role of boundary markers, and the letters in the sequence

AuaZt &ul4t &u+6t"'

the role of production indicators.
All letters a; , 'i ).1 , u'ill norv be encoded in the alphabet {0, 1} by

defining the homomorphisrn

h1@;): Io'1 , i>l'

To make the following defirritions more readable, rre also use the following
abbreviations

h1(au) : c, ht(a,-t) : c; for t <d < 3,

h1(a,*1)-S, hr(e"+zi)-d,i for i>f .

n'urthermore,'rve denote

U7 : (h1(a1) U . . . U är(a,-n))* .

By IJ we denote the language consisting of /' and of all words of the
form hr(a;,)...hL@il v'here rs2l and, for each i - 1,. ..,a, either
l ii{tr,-4 or else ii:u*2r* I for some r}0. (Intuitively,
[/7 consists of encoded s'ords or-er the terminal alphabet and U of en-

coded words in terminal and notrterminal letters.)
We are norv in the position to define the homomorphism ä and the

two languages I, and -t, over Y' . By definition

h(b) : l' o^' 
':' 

u- 

-:" 
gi e v'''1 

'' I L for b€{0, l},
Lr: {Prcpd,;Prc mi(P2) c, mi(B) c, mi(Pr)cl

Pr, Pr,o(, fi e (J, d > l\+ V;)*
and
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L, : {qSd,tcli, > L) {PrcrPrc"P rcP ncrP udlP uc|,

Pr, Pr, Pr, Pn, Ps, Pt e U, J > l, PtPzPs : mi'(PnPsPs)j*

{QrcrQrcrQrcQolQn e W (V ,) ;

Q, , Qr, Qs,€ U, , QrQrQr: hrh(mi'(Qn\\ .

So far our definitions &re based on the alphabet V7 alone. We now
consider an arbitrary but fixed recursively enumerable language L over
Vr, generated by a type 0 grammar G : (VN, Vr, au+t, l). Denote
V : VNU Vr . We assume that Ziy consists of a finite initial segment
of (2) and the product'ion set is

E:{a;--p,ll<i<k}.
\Me now define K : Ktl Kr, where

K 1 : {P p1h1(u )d ;P rc P rcrh, (mi ( p ))c rP nc I

Pr, Pr, Ps, P4e (h]U»*, I < d < k\+ 0/;*
and

K, : {crSd,;cl1 ( i < k} {PrcrPrcrPrcPaclPudlP6cl

Pr,, Pr, Pr, Pn, Ps, Pre (h!(V))*, I ( j 
= 

k\*

{QrcrQrcrQrcQnl&e WV;; Qr, Qz, Qr€ Ur} .

It is immediately verified lhat L, and L, are deterministic context-
free languages over the alphabel V' . It is also obvious lhat K, and K,
are denoted by star-free regular expressions (involving intersections and
complements) and, consequently, K is a noneounting regular language.
'We shall now prove that (I) holds. For this purpose, 'we introduce two
auxiliary languages L', and Li over the alphabet l" as follows:

Li : {P rhr(x ;)d ;P 2c mi (P r) h r(rn i ( il) m t (P r)c',

I < i < k; Pt, Pze (hl(tr/))x )+ (f;)x

and

Li : {Sd,*11 < d < k} {mi,(PtPr)cPrdaPrcl

Pr, Pre (l?"(V))*, I < i Stty* {QrcQzl

Qre W]/b , Qt: hrh(mi(Qr\\ .

We claim that

(3) L : h(Ltn L;) .
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To prove the equation (3), we show first that the left side is included in
the right side. Assume that P e L. Since G generates Z , there is an
integer zra, words Ri1 , Rize W(V) andindices gU) with L<g(j)<k,
defined for all j:0,...,n't,, such that the following conditions are
satisfied. For every j:0,...,ffi-L,
(4) RpPug1R1, : R{i+r1rar1i+r)A6+r)z .

n'urthermore,

(5) Bor : Ror: ), , *rpy: du+L , Ril§e(OR^z: P .

In other v'ords, we consider the follou'ing derivation according to G:

&u+t: Rgp.slg)Roz > Rot§gn4R,2 : R11arglBp

> Rn§eO)Rt : R2prp1B22* ... *
Rl--r'yr§r1^-ryHp-r1, : R-1ar61R*z > R^t§ s(4R*2 : P .

'We now define, for any Pr, Pre W(V) and I < i, < k ,

t(PL , i , Pr) : hr(Pr)h1@)d,thr(Pr)c mi(hr(Pr)) rni(ht(lt)) mi(h1@))c

and consider the word

(6) R : t(R,,, g(0), Ro2)t(R'-, g(L), Rrr) . . . t(R^r, g(rn), R*z)P',

where P' is obtairred from P by replacing every letter with the correspond-
ing prirned one. (Thus, h(P'): P.) By the definition of Li, we have
R e L;. (I{ote that the operators nti and /2, commute). Using the nota-
tion

s(P, , i, , Pr) : mi(hr(PrPr))c\ (P1)clth1(Pr)c ,

we may also write (by (+) and (5))

R : S d, uplc mi, (hr(R orp rlolÄoz) ) chr(R rr)hr(a rol)de(D

hr(Rrr)c . . . mi,(hr(R 6 _r1r§ rp _ryHt__ rtz) )c

h r(R 
^r)h 

1@ r61)d r61h r(R ^r)c mi, (h r(R a§ r6',R ^2)) 
c P'

: §dr1s1c mi (h 1(R yu rg,,R p))ch, (R t)h 1la uo)d g1y

hr(R rr)c - . . mi,(hr(R^§r1^yR *2))c

h 1(R *r)h 1@ rg1) d r61hr(R *2)c mi, (h r(R ^r§ r14R ̂ r))c 
P'

: §dgfolcs(Arr&s1r; , g(l) , Arr)

. . . s(R*rxu14 , g(rn) , R^r) mi,(h, (P))cP' .

n'rom the last expression we see that, R e L; and, hence, R e Li n L; .

On the other hand, h(R) : P . This implies that P e h@l n L;) .
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Having established that the left side of (3) is included in the right side,

we now proye the reverse inclusion. Assume that P e h@l ft Ij; . Con-
sequently, there is a word ReLinL; such that P:h(R). Since
R e Li, it can be expressed in the form (6), for some numbers trl , g(i)
and words Ea. (Recall that P' is obtained from P by replacing every
letter with the corresponding primed one.) Since R e L;, the rrord .E

can be expressed in the form

R - Sdylolcs(@rr , f(1) , Qr) . . .s(Qa, f(n) ,Qnz) nti(hr(P))cP' ,

for some numbers n, l$) and words Q,i . Comparing the number of
occurrences of the boundary marker c in (6) and (7), we see t'hat, m : n .

It is also clear that g(i) : f(i,), for i : 0, . . ., n'1. A further comparison
between (6) and (7) gives the equations

(7)

(8) Ao, : Roz: i , ee(o): CI,-L , R;.d"s1i) : Qr, )

Riz: Qr, , R(,-\t§g1i-r)ä(;-r)2 : Q,rQ,r- Ri'o"s(i)Riz ,

for I ( i, !m, and also the equation

P : R6pr14R^2.

Tlrus, we obtain the following derivation according to G:

au+r: Rsfis$yBoz = fiorp,(o)Aor: RlauglBrz

+ ... > R@-t»§g--r1B1^-r1z: R*pts1*1&^z

> Rd§e@)R^2: P .

Therefore, P e L. Thus, we have shown that the equation (3) is correct.
tr'or a language L' , let, M(L') be the language obtained from Z' by

erasing from all words all occurrences of ct , cz and c, . (Note that M
is not a homomorphism since ci is a sequence of 0's aud I's. Note also
that, for any language L' , h(L'):h(M(L')). ) Comparing the positions
of the boundary markers c; and the production inclicators di , l'e obtain
the equations

L'L n L; g ll[(Lt ff Lzfi K, fi Kr)

is established by (i) considering an arbitrary word "E belonging to the
left side, (ii) noting that -rB can be expressed in the forms (6) and (7) from
which (8) can be inferred, (iii) inserting the markers cl , c2, cs in R at,

proper places which are immediately seen from the f-expressions, and (iv)

(e)

The inclusion

( 10)
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noting that the resulting word belongs to all four languages in the inter-
section orr the right side. By (9) and (10),

II(L.n L2n Kt n Kr) : Lin L;.
Hence.(tr) 

::';*lu';;,nn"1,,^ i*^'?,i,,2i,ä"^ ",
The equation (l) is now an immediate consequence of (3) and (11). This
complete s the proof.

We note that K is not, in general, locally testable. It does not seem
likely that the construction could be modifred to leld a locally testable
language.

Mathematics Department
I-Iniyersitv of 'Iurku. Finland
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