ON A HYPERGRAPH TURÁN PROBLEM OF FRANKL PETER KEEVASH, BENNY SUDAKOV*

Received February 16, 2003

Let $\mathcal{C}_{r}^{(2 k)}$ be the $2 k$-uniform hypergraph obtained by letting P_{1}, \ldots, P_{r} be pairwise disjoint sets of size k and taking as edges all sets $P_{i} \cup P_{j}$ with $i \neq j$. This can be thought of as the ' k-expansion' of the complete graph K_{r} : each vertex has been replaced with a set of size k. An example of a hypergraph with vertex set V that does not contain $\mathcal{C}_{3}^{(2 k)}$ can be obtained by partitioning $V=V_{1} \cup V_{2}$ and taking as edges all sets of size $2 k$ that intersect each of V_{1} and V_{2} in an odd number of elements. Let $\mathcal{B}_{n}^{(2 k)}$ denote a hypergraph on n vertices obtained by this construction that has as many edges as possible. For n sufficiently large we prove a conjecture of Frankl, which states that any hypergraph on n vertices that contains no $\mathcal{C}_{3}^{(2 k)}$ has at most as many edges as $\mathcal{B}_{n}^{(2 k)}$.

Sidorenko has given an upper bound of $\frac{r-2}{r-1}$ for the Turán density of $\mathcal{C}_{r}^{(2 k)}$ for any r, and a construction establishing a matching lower bound when r is of the form $2^{p}+1$. In this paper we also show that when $r=2^{p}+1$, any $\mathcal{C}_{r}^{(4)}$-free hypergraph of density $\frac{r-2}{r-1}-o(1)$ looks approximately like Sidorenko's construction. On the other hand, when r is not of this form, we show that corresponding constructions do not exist and improve the upper bound on the Turán density of $\mathcal{C}_{r}^{(4)}$ to $\frac{r-2}{r-1}-c(r)$, where $c(r)$ is a constant depending only on r.

The backbone of our arguments is a strategy of first proving approximate structure theorems, and then showing that any imperfections in the structure must lead to a suboptimal configuration. The tools for its realisation draw on extremal graph theory, linear algebra, the Kruskal-Katona theorem and properties of Krawtchouck polynomials.

* Research supported in part by NSF grants DMS-0355497, DMS-0106589, and by an Alfred P. Sloan fellowship.

1. Introduction

Given an r-uniform hypergraph \mathcal{F}, the Turán number $\operatorname{ex}(n, \mathcal{F})$ of \mathcal{F} is the maximum number of edges in an r-uniform hypergraph on n vertices that does not contain a copy of \mathcal{F}. Determining these numbers is one of the main challenges in Extremal Combinatorics. For ordinary graphs (the case $r=2$) a rich theory has been developed, initiated by Turán in 1941, who solved the problem for complete graphs. He also posed the question of finding $e x\left(n, \mathcal{K}_{s}^{(r)}\right)$ for complete hypergraphs with $s>r>2$, but to this day not one single instance of this problem has been solved. It seems hard even to determine the Turán density, which for general \mathcal{F} is defined as $\pi(\mathcal{F})=$ $\lim _{n \rightarrow \infty} e x(n, \mathcal{F}) /\binom{n}{r}$. The problem of finding the numbers $e x(n, \mathcal{F})$ when $r>2$ is notoriously difficult, and exact results on hypergraph Turán numbers are very rare (see $[3,9]$ for surveys). In this paper we obtain such a result for a sequence of hypergraphs introduced by Frankl.

Let $\mathcal{C}_{r}^{(2 k)}$ be the $2 k$-uniform hypergraph obtained by letting P_{1}, \ldots, P_{r} be pairwise disjoint sets of size k and taking as edges all sets $P_{i} \cup P_{j}$ with $i \neq j$. This can be thought of as the ' k-expansion' of the complete graph K_{r} : each vertex has been replaced with a set of size k. The Turán problem for $\mathcal{C}_{3}^{(2 k)}$ was first considered by Frankl [2], who determined the density $\pi\left(\mathcal{C}_{3}^{(2 k)}\right)=1 / 2$.

Frankl obtained a large $\mathcal{C}_{3}^{(2 k)}$-free hypergraph on n vertices by partitioning an n-element set V into 2 parts V_{1}, V_{2} and taking those edges which intersect each part V_{i} in an odd number of elements. When the parts have sizes $\frac{n}{2} \pm t$ we denote this hypergraph by $\mathcal{B}^{(2 k)}(n, t)$. To see that it is $\mathcal{C}_{3}^{(2 k)}$ free, consider any P_{1}, P_{2}, P_{3} that are pairwise disjoint sets of k vertices. Then $\left|V_{1} \cap P_{i}\right|$ and $\left|V_{1} \cap P_{j}\right|$ have the same parity for some pair $i j$, so $P_{i} \cup P_{j}$ is not an edge. Let t^{*} be chosen to maximise the number of edges in $\mathcal{B}^{(2 k)}(n, t)$, and denote any hypergraph obtained in this manner by $\mathcal{B}_{n}^{(2 k)}$. Write $b_{2 k}(n)$ for the number of edges in $\mathcal{B}_{n}^{(2 k)}$. Frankl [2] conjectured that the maximum number of edges in a $\mathcal{C}_{3}^{(2 k)}$-free hypergraph is always achieved by some $\mathcal{B}_{n}^{(2 k)}$. Our first theorem proves this conjecture for n sufficiently large.

Theorem 1.1. Let H be a $2 k$-uniform hypergraph on n vertices that does not contain a copy of $\mathcal{C}_{3}^{(2 k)}$ and let n be sufficiently large. Then the number of edges in H is at most $b_{2 k}(n)$, with equality only when H is a hypergraph of the form $\mathcal{B}_{n}^{(2 k)}$.

The proof of this theorem falls naturally into two parts. The first stage is to prove a 'stability' version, which is that any hypergraph with close to the
maximum number of edges looks approximately like some $\mathcal{B}^{(2 k)}(n, t)$. Armed with this, we can analyse any imperfections in the structure and show that they must lead to a suboptimal configuration, so that the optimum is indeed achieved by the construction. This strategy was also used recently in [4] to prove the conjecture of Sós on the Turán number of the Fano plane, so this seems to be a useful tool for developing the Turán theory of hypergraphs.

For general r, Sidorenko [8] showed that the Turán density of $\mathcal{C}_{r}^{(2 k)}$ is at most $\frac{r-2}{r-1}$. This is a consequence of Turán's theorem applied to an auxiliary graph G constructed from a $2 k$-uniform hypergraph H; the vertices of G are the k-tuples of vertices of H, and two k-tuples P_{1}, P_{2} are adjacent if $P_{1} \cup P_{2}$ is an edge of H. He also gave a construction for a matching lower bound when r is of the form $2^{p}+1$, which we now describe. Let W be a vector space of dimension p over the field $G F(2)$, i.e. the finite field with 2 elements $\{0,1\}$. Partition a set of vertices V as $\bigcup_{w \in W} V_{w}$. Given t and a t-tuple of vertices $X=x_{1} \cdots x_{t}$ with $x_{i} \in V_{w_{i}}$ let $\Sigma X=\sum_{1}^{t} w_{i}$. Define a $2 k$ uniform hypergraph H, where a $2 k$-tuple X is an edge iff $\Sigma X \neq 0$. Observe that this doesn't contain a copy of $\mathcal{C}_{r}^{(2 k)}$. Indeed, if P_{1}, \ldots, P_{r} are disjoint k tuples then there is some $i \neq j$ with $\Sigma P_{i}=\Sigma P_{j}$ (by the pigeonhole principle). Then $\Sigma\left(P_{i} \cup P_{j}\right)=\Sigma P_{i}+\Sigma P_{j}=0$, so $P_{i} \cup P_{j}$ is not an edge. To see that this construction can achieve the stated Turán density, choose the partition so that $\left|V_{w}\right|=|V| /(r-1)$. Then a random (average) $2 k$-tuple is an edge with probability $\frac{r-2}{r-1}+o(1)$, as can be seen by conditioning on the positions of all but one element.

This construction depends essentially on an algebraic structure, which only exists for certain values of r. We will show that this is an intrinsic feature of the problem, by proving a stronger upper bound on the Turán density of $\mathcal{C}_{r}^{(4)}$ when r is not of the form $2^{p}+1$.

Theorem 1.2. Suppose $r \geq 3$, and let H be a 4-uniform hypergraph on n vertices with at least $\left(\frac{r-2}{r-1}-10^{-33} r^{-70}\right)\binom{n}{4}$ edges. If H is $\mathcal{C}_{r}^{(4)}$-free, then $r=2^{p}+1$ for some integer p.

In contrast to Theorem 1.1 this is a result showing that certain constructions do not exist, so it is perhaps surprising that its proof also uses a stability argument. We study the properties of a $\mathcal{C}_{r}^{(4)}$-free hypergraph with density close to $\frac{r-2}{r-1}$ and show that it gives rise to an edge colouring of the complete graph K_{r-1} with special properties. Next we prove that for such an edge-colouring there is a natural $G F(2)$ vector space structure on the colours. Of course, such a space has cardinality 2^{p}, for some p, so we get a contradiction unless $r=2^{p}+1$.

A complication arising in Theorem 1.1 is that the optimum construction is not achieved by a partition into two equal parts. Finding t to maximise the number of edges in $\mathcal{B}^{(2 k)}(n, t)$ is an interesting problem in enumerative combinatorics, equivalent to finding the minima of binary Krawtchouk polynomials. This is a family of polynomials orthogonal with respect to the uniform measure on a n-dimensional cube that play an important rôle in the analysis of binary Hamming association schemes (see, e.g., [5]). Despite some uncertainty in the location of their minima, the known bounds are sufficient for us to show that some $\mathcal{B}^{(2 k)}(n, t)$ must be optimal.

In the case $k=2$ one can compute the size of $\mathcal{B}^{(2 k)}(n)$ precisely, and there are considerable simplifications of the argument, so in the next section for illustrative purposes we start by giving a separate proof for this case. Section 3 contains a stability theorem for $\mathcal{C}_{3}^{(2 k)}$ and the general case of Theorem 1.1. Then in Section 4 we prove a stability result for $\mathcal{C}_{r}^{(4)}$ for all r, and use it to establish Theorem 1.2. The final section of the paper contains some concluding remarks.

We will assume throughout this paper that n is sufficiently large.

2. The Turán number of $\mathcal{C}_{3}^{(4)}$

We start by proving Frankl's conjecture for 4-uniform hypergraphs. This will serve to illustrate our method, as it has fewer complications than the general case. In addition, in this case it is easy to compute the Turán numbers of $\mathcal{C}_{3}^{(4)}$ precisely.

We recall that $\mathcal{C}_{3}^{(4)}$ is the 4 -uniform hypergraph with three edges $\{a b c d, a b e f, c d e f\}$. We can obtain a large $\mathcal{C}_{3}^{(4)}$-free graph on n vertices by partitioning an n-element set into 2 parts and taking those edges which have 1 point in either class and 3 points in the other. To see this, think of an edge as being the union of 2 different types of pairs of vertices: one type consisting of pairs with both vertices in one class, the other consisting of pairs that have one point of each class. Given any 3 pairs there are 2 of the same type, and these do not form an edge in the construction.

To maximise the number of edges in this bipartite construction, it is not the case that the two parts have sizes as equal as possible, but we will see that the difference in the sizes should be at most of order \sqrt{n}. Let $\mathcal{B}(n, t)$ denote the 4 -uniform hypergraph obtained by partitioning an n-element set into 2 parts with sizes $\frac{n}{2}+t$ and $\frac{n}{2}-t$, and taking those edges which have 1 point in either class and 3 points in the other. Let $b(n, t)$ be the number of edges in $\mathcal{B}(n, t)$ and let $d(n, t)$ be the degree of any vertex belonging to
the side with size $\frac{n}{2}+t$. Then the vertices on the side with size $\frac{n}{2}-t$ have degree $d(n,-t)$. We will start with some estimates on these parameters. By definition,

$$
\begin{align*}
b(n, t) & =\left(\frac{n}{2}+t\right)\binom{\frac{n}{2}-t}{3}+\left(\frac{n}{2}-t\right)\binom{\frac{n}{2}+t}{3} \\
& =\frac{n^{4}-6 n^{3}+8 n^{2}-16 t^{4}-32 t^{2}+24 t^{2} n}{48} \\
& =\frac{1}{48}\left(\left(n^{2}-3 n+4\right)^{2}-\left(4 t^{2}-3 n+4\right)^{2}\right) . \tag{1}
\end{align*}
$$

Thus to maximise $b(n, t)$ we should pick a value of t that minimises $4 t^{2}-3 n+4$, subject to the restriction that when n is even t has to be an integer, and when n is odd $t+\frac{1}{2}$ has to be an integer. Let \mathcal{B}_{n} denote a hypergraph $\mathcal{B}\left(n, t^{*}\right)$, where t^{*} is such a value of t. By symmetry we can take $t^{*}>0$. There is usually a unique best choice of t^{*}, but for some n there are 2 equal choices of t^{*}. Note that for any best choice we certainly have $\left|t^{*}-\sqrt{3 n / 4-1}\right| \leq 1 / 2$.

Let $b(n)$ be the number of edges in \mathcal{B}_{n}. Then

$$
\left|48 b(n)-\left(n^{2}-3 n+4\right)^{2}\right|=\left|4\left(t^{*}\right)^{2}-3 n+4\right|^{2}<50 n
$$

It will be useful later to consider the following estimate which follows immediately from the last inequality for sufficiently large n

$$
\begin{equation*}
b(n)-b(n-1)>\frac{1}{12} n^{3}-\frac{1}{2} n^{2} \tag{2}
\end{equation*}
$$

Next we give an explicit formula for the degrees in $\mathcal{B}(n, t)$

$$
\begin{align*}
d(n, t) & =\left(\frac{n}{2}-t\right)\binom{n / 2+t-1}{2}+\binom{n / 2-t}{3} \\
& =\frac{n^{3}-6 n^{2}+8 n+12 t^{2}}{12}+\frac{6 t n-8 t^{3}-16 t}{12} . \tag{3}
\end{align*}
$$

We finish these calculations with an upper bound on the maximum degree of \mathcal{B}_{n}

$$
\begin{align*}
\Delta(n) & =\frac{1}{12}\left(n^{3}-6 n^{2}+8 n+12\left(t^{*}\right)^{2}\right)+\frac{1}{12}\left|6 t^{*} n-8\left(t^{*}\right)^{3}-16 t^{*}\right| \\
& <\frac{1}{12} n^{3}-\frac{1}{2} n^{2}+n^{3 / 2} \tag{4}
\end{align*}
$$

The first step in the proof is to show that any $\mathcal{C}_{3}^{(4)}$-free 4 -uniform hypergraph H with density close to $1 / 2$ has the correct approximate structure. To do so we need a few definitions. If we have a partition of the vertex set of H as $V(H)=V_{1} \cup V_{2}$ we call a 4-tuple of vertices good if it has either 1 point in V_{1} and 3 points in V_{2} or 1 point in V_{2} and 3 points in V_{1}; otherwise we call it bad. With respect to H, we call a 4-tuple correct if it is either a good edge or a bad non-edge; otherwise we call it incorrect. We obtain the following stability result.

Theorem 2.1. For every $\epsilon>0$ there is $\eta>0$ so that if H is a $\mathcal{C}_{3}^{(4)}$-free 4uniform hypergraph with $e(H)>b(n)-\eta n^{4}$ then there is a partition of the vertex set as $V(H)=V_{1} \cup V_{2}$ such that all but ϵn^{4} 4-tuples are correct.

In the proof of this result we need a special case of the Simonovits stability theorem [10] for graphs, which we recall. It states that for every $\epsilon^{\prime}>0$ there is $\eta^{\prime}>0$ such that if G is a triangle free graph on N vertices with at least $\left(1-\eta^{\prime}\right)\binom{N}{2} / 2$ edges then there is a partition of the vertex set as $V(G)=U_{1} \cup U_{2}$ with $e_{G}\left(U_{1}\right)+e_{G}\left(U_{2}\right)<\epsilon^{\prime} N^{2}$.

Proof of Theorem 2.1. Define an auxiliary graph G whose vertices are all pairs of vertices of H, and where the pairs $a b$ and $c d$ are adjacent exactly when $a b c d$ is an edge of H. Since H is $\mathcal{C}_{3}^{(4)}$-free we see that G is triangle-free. Also, each edge of H creates exactly 3 edges in G (corresponding to the 3 ways of breaking a 4-tuple into pairs) so

$$
e(G)>3\left(b(n)-\eta n^{4}\right)>(1-50 \eta) \frac{1}{2}\left(\begin{array}{c}
n \\
2 \\
2
\end{array}\right) .
$$

Choose η so that Simonovits stability applies with $\eta^{\prime}=50 \eta, N=\binom{n}{2}$ and $\epsilon^{\prime}=\epsilon^{2} / 500$. We can also require that $\eta<\epsilon^{2} / 500$. We get a partition of the pairs of vertices of H as $U_{1} \cup U_{2}$, where all but $\epsilon^{\prime} N^{2}<\epsilon^{2} n^{4} / 2000$ edges of H are formed by taking a pair from U_{1} and a pair from U_{2}.

We will call the pairs in U_{1} red, and the pairs in U_{2} blue. A 4-tuple abcd will be called properly coloured if either
(i) $a b c d$ is an edge of H and each of the 3 sets $\{a b, c d\},\{a c, b d\},\{a d, b c\}$ has one red pair and one blue pair, or
(ii) $a b c d$ is not an edge and each of the 3 sets $\{a b, c d\},\{a c, b d\},\{a d, b c\}$ consists of two pairs with the same colour.

An improperly coloured 4-tuple is either an edge that is the union of two pairs of the same colour or a non-edge which is the union of two pairs with different colours. There are at most $\epsilon^{2} n^{4} / 2000$ of the former 4 -tuples, and
the number of latter is at most
$\left|U_{1}\right|\left|U_{2}\right|-\left(e(G)-\epsilon^{\prime} N^{2}\right) \leq \frac{50 \eta}{2} \frac{N^{2}}{2}+\epsilon^{\prime} N^{2} \leq\left(\frac{50 \eta}{16}+\epsilon^{\prime} / 4\right) n^{4}<\epsilon^{2} n^{4} / 140$.
Therefore all but $\left(\epsilon^{2} / 140+\epsilon^{2} / 2000\right) n^{4}<\epsilon^{2} n^{4} / 1304$-tuples are properly coloured.

A simple counting argument shows that there is a pair $a b$ so that for all but $\binom{4}{2}\left(\epsilon^{2} n^{4} / 130\right) /\binom{n}{2}<\epsilon^{2} n^{2} / 10$ other pairs $c d$ the 4 -tuple $a b c d$ is properly coloured. Without loss of generality $a b$ is red. Partition the vertices of $V-a b$ into 4 sets according to the colour of the edges they send to $\{a, b\}$. We label these sets $R R, B B, R B, B R$, where R means 'red', B means 'blue' and a vertex c belongs to the set that labels the colours of the edges $c a, c b$ in this order. Note that if c is in $R R$ and d is in $R B$ then $c a$ and $d b$ are coloured red and blue, whereas $c b$ and $d a$ are are both red, so $a b c d$ is improperly coloured. We deduce that one of $R R$ and $R B$ has size at most $\epsilon n / 3$, since otherwise we would have at least $\epsilon^{2} n^{2} / 9$ improperly coloured 4 -tuples containing $a b$. The same argument applies when take one point from each of $B B$ and $R B$, or $R R$ and $B R$, or $B B$ and $B R$. Therefore, either $R B$ and $B R$ each have size at most $\epsilon n / 3$, or $R R$ and $B B$ each have size at most $\epsilon n / 3$.

In the case when $R B$ and $B R$ each have size at most $\epsilon n / 3$ we look at the pairs in $R R \cup B B$. If c and d are both in $R R$ then both of the opposite pairs $\{a c, b d\}$ and $\{a d, b c\}$ are coloured red. If $c d$ is coloured blue then $a b c d$ is improperly coloured, so all but at most $\epsilon^{2} n^{2} / 10$ pairs in $R R$ are coloured red. Similarly all but at most $\epsilon^{2} n^{2} / 10$ pairs in $B B$ are coloured red, and all but at most $\epsilon^{2} n^{2} / 10$ pairs with one vertex in $R R$ and one in $B B$ are coloured blue. Define a partition $V=V_{1} \cup V_{2}$, where V_{1} contains $R R, V_{2}$ contains $B B$ and the remaining vertices are distributed arbitrarily. Note that all the incorrect 4 -tuples with respect to this partition belong to the one of the following three groups.
(i) Improperly coloured 4 -tuples. There are at most $\epsilon^{2} n^{4} / 130$ of those.
(ii) Properly coloured 4-tuples which use at least one vertex in $R B \cup B R$. There are at most $(2 \epsilon n / 3)\binom{n}{3}$ such 4 -tuples.
(iii) Properly coloured 4 -tuples which contain either a red pair of vertices with one vertex in $R R$ and one in $B B$, or contain a blue pair of vertices from $R R$ or from $B B$. There at most $\left(3 \epsilon^{2} n^{2} / 10\right)\binom{n}{2}$ such 4-tuples.

Therefore all but at most $\frac{\epsilon^{2} n^{4}}{130}+2 \frac{\epsilon n}{3}\binom{n}{3}+3 \frac{\epsilon^{2} n^{2}}{10}\binom{n}{2}<\epsilon n^{4} 4$-tuples are correct with respect to this partition.

The case when $R R$ and $B B$ each have size at most $\epsilon n / 3$ can be treated similarly. Here the conclusion is that all but at most $\epsilon^{2} n^{2} / 5$ pairs within $R B$ or $B R$ are coloured blue, and all but at most $\epsilon^{2} n^{2} / 10$ pairs with one vertex
in $R B$ and one in $B R$ are coloured red. Then, similarly as above one can show that with respect to a partition where V_{1} contains $R B, V_{2}$ contains $B R$ and the remaining vertices are distributed arbitrarily, all but at most $\epsilon n^{4} 4$-tuples are correct.

Using the stability theorem we can now prove the following exact Turán result.

Theorem 2.2. Let H be a 4-uniform hypergraph on n vertices that does not contain a copy of $\mathcal{C}_{3}^{(4)}$ and let n be sufficiently large. Then the number of edges in H is at most $b(n)$, with equality only when H is one of at most 2 hypergraphs \mathcal{B}_{n}.

Proof. Let H be a 4-uniform hypergraph on n vertices, which has $e(H) \geq$ $b(n)$ and contains no $\mathcal{C}_{3}^{(4)}$. First we claim that we can assume that H has minimum degree at least $b(n)-b(n-1)$. Indeed, suppose that we have proved the result under this assumption for all $n \geq n_{0}$. Construct a sequence of hypergraphs $H=H_{n}, H_{n-1}, \ldots$ where H_{m-1} is obtained from H_{m} by deleting a vertex of degree less than $b(m)-b(m-1)$. By setting $f(m)=e\left(H_{m}\right)-b(m)$ we have $f(n) \geq 0$ and $f(m) \geq f(m+1)+1$. If we can continue this process to obtain a hypergraph $H_{n_{0}}$ then $n-n_{0} \leq \sum_{m=n_{0}}^{n-1}(f(m)-f(m+1)) \leq f\left(n_{0}\right) \leq\binom{ n_{0}}{4}$, which is a contradiction for n sufficiently large. Otherwise we obtain a hypergraph $H_{n^{\prime}}$ with $n>n^{\prime}>n_{0}$ having minimal degree at least $b\left(n^{\prime}\right)-b\left(n^{\prime}-1\right)$ and without a $\mathcal{C}_{3}^{(4)}$. Then by the above assumption $e\left(H_{n^{\prime}}\right) \leq b\left(n^{\prime}\right)$ and again we obtain a contradiction, since

$$
e(H)=e\left(H_{n}\right) \leq b\left(n^{\prime}\right)+\sum_{n^{\prime}<m \leq n}(b(m)-b(m-1)-1)<b(n)
$$

Substituting from equation (2) we can assume H has minimum degree

$$
\begin{equation*}
\delta(H) \geq b(n)-b(n-1)>\frac{1}{12} n^{3}-\frac{1}{2} n^{2} \tag{5}
\end{equation*}
$$

Given a partition of $V(H)=V_{1} \cup V_{2}$, we call an edge abcd of H good if $a b c d$ is a good 4-tuple (as defined before) with respect to this partition; otherwise we call it bad. By Theorem 2.1 there is a partition with all but at most $10^{-25} n^{4}$ edges of H being good. Let $V(H)=V_{1} \cup V_{2}$ be the partition which minimises the number of bad edges. With respect to this partition, every vertex belongs to at least as many good edges as bad edges, or we can move it to the other class of the partition. Also, by definition, there are at most $b(n)$ good 4 -tuples with respect to any partition. We must have
$\left|\left|V_{1}\right|-n / 2\right|<10^{-6} n$ and $\left|\left|V_{2}\right|-n / 2\right|<10^{-6} n$. Otherwise by equation (1) we get

$$
e(H)<\frac{1}{48}\left(\left(n^{2}-3 n+4\right)^{2}-\left(4 \cdot 10^{-12} n^{2}-3 n+4\right)^{2}\right)+10^{-25} n^{4}<b(n)
$$

which is a contradiction.
Note that there is no pair of vertices $a b$ for which there are both $10^{-10} n^{2}$ pairs $c d$ such that $a b c d$ is a good edge and $10^{-10} n^{2}$ pairs ef such that abef is an bad edge. Indeed, each such $c d$ and ef which are disjoint give a 4 -tuple cdef which is good, but cannot be an edge as it would create a $\mathcal{C}_{3}^{(4)}$. Moreover, every 4 -tuple can be obtained at most 3 times in this way, and every $c d$ is disjoint from all but at most $2 n$ pairs ef. Thus at least $10^{-10} n^{2}\left(10^{-10} n^{2}-2 n\right) / 3>10^{-21} n^{4}$ good 4-tuples are not edges of H, and therefore $e(H)<b(n)-10^{-21} n^{4}+10^{-25} n^{4}<b(n)$, which is a contradiction.

The next step of the proof is the following claim.
Claim 2.3. Any vertex of H is contained in at most $10^{-5} n^{3}$ bad edges.
Proof. Suppose some vertex a belongs to $10^{-5} n^{3}$ bad edges. Call another vertex b good if there are at most $10^{-10} n^{2}$ pairs $c d$ such that $a b c d$ is a bad edge, otherwise call b bad. By the above discussion, for every bad vertex b there are at most $10^{-10} n^{2}$ pairs ef such that abef is a good edge. Note that there are at least $10^{-5} n$ bad vertices, otherwise we would only have at most $10^{-5} n \cdot\binom{n}{2}+\left(1-10^{-5}\right) n \cdot 10^{-10} n^{2}<10^{-5} n^{3}$ bad edges through a, which is contrary to our assumption. By choice of partition there are at least as many good edges containing a as bad. We know that a has degree at least $\frac{1}{12} n^{3}-\frac{1}{2} n^{2}$, at least half of which is good, so there are at least $n / 24$ good vertices.

Suppose that the number of good vertices is αn, and so there are $(1-\alpha) n-$ 1 bad vertices. We can count the edges containing a as follows. By definition there are at most $10^{-10} n^{3}$ such good edges containing a bad vertex, and at most $10^{-10} n^{3}$ such bad edges containing a good vertex. Now we bound the number of remaining good edges. Note that these edges only contain good vertices. Looking at the vertices of such an edge in some order, we can select the first 2 vertices in $\alpha n(\alpha n-1)$ ways. Since the edge is good, the choice of 2 vertices together with a restricts the fourth vertex to lie in some particular class V_{i}, so it can be chosen in at most $\left(\frac{1}{2}+10^{-6}\right) n$ ways. Note that we have counted each edge 6 times, so we get at most $\alpha n(\alpha n-1)\left(\frac{1}{2}+10^{-6}\right) n / 6<$ $\left(\alpha^{2}+\frac{1}{2} \cdot 10^{-5}\right) \frac{1}{2}\binom{n}{3}$ edges. Similarly there are at most $\left((1-\alpha)^{2}+\frac{1}{2} \cdot 10^{-5}\right) \frac{1}{2}\binom{n}{3}$ remaining bad edges through a. Since $1 / 24 \leq \alpha \leq 1-10^{-5}$, in total the
number of edges containing a is bounded by

$$
\begin{aligned}
&\left(\alpha^{2}+\frac{1}{2} \cdot 10^{-5}\right) \frac{1}{2}\binom{n}{3}+\left((1-\alpha)^{2}+\frac{1}{2} \cdot 10^{-5}\right) \frac{1}{2}\binom{n}{3}+2 \cdot 10^{-10} n^{3} \\
&<\frac{1}{12} n^{3}-\frac{1}{2} n^{2}<\delta(H)
\end{aligned}
$$

This contradiction proves the claim.
Now write $\left|V_{1}\right|=n / 2+t,\left|V_{2}\right|=n / 2-t$ with $-10^{-6} n<t<10^{-6} n$. By possibly renaming the classes (i.e. replacing t with $-t$) we can assume that $d(n, t) \leq d(n,-t)$. Then any vertex of V_{1} belongs to $d(n, t)$ good 4-tuples. Now $d(n, t)$ is the minimum degree of $\mathcal{B}(n, t)$, which is certainly at most the maximum degree of \mathcal{B}_{n}. Comparing with equation (4) we see that any vertex of V_{1} belongs to at most $\frac{1}{12} n^{3}-\frac{1}{2} n^{2}+n^{3 / 2}$ good 4 -tuples. From now on this will be the only property of V_{1} we use that might possibly not be a property of V_{2}. We will eventually end up showing the same bound on the number of good 4-tuples containing a vertex of V_{2}. Then the whole argument will apply verbatim switching V_{1} for V_{2}.

We will use this property in the following manner. Suppose a is a vertex of V_{1} for which K of the good 4-tuples containing a are not edges of H. Then there are at most $\frac{1}{12} n^{3}-\frac{1}{2} n^{2}+n^{3 / 2}-K$ good edges containing a, so by (5) there must be at least

$$
\begin{aligned}
\delta(H)- & \left(\frac{1}{12} n^{3}-\frac{1}{2} n^{2}+n^{3 / 2}-K\right) \\
& \geq\left(\frac{1}{12} n^{3}-\frac{1}{2} n^{2}\right)-\left(\frac{1}{12} n^{3}-\frac{1}{2} n^{2}+n^{3 / 2}-K\right)=K-n^{3 / 2}
\end{aligned}
$$

bad edges containing a. Similarly, if a^{\prime} is a vertex in V_{2} then it belongs to at most
$d(n,-t)=\frac{1}{12}\left(n^{3}-6 n^{2}+8 n+12 t^{2}\right)+\frac{1}{12}\left|6 t n-8 t^{3}-16 t\right|<\frac{1}{12} n^{3}-\frac{1}{2} n^{2}+10^{-6} n^{3}$
good edges. Thus, if it belongs to L good 4-tuples which are not edges of H then it must belong to at least $L-10^{-6} n^{3}$ bad edges.

Suppose for the sake of contradiction that there is some bad edge incident with V_{1}. Denote the set of bad edges containing some vertex v by $\mathcal{Z}(v)$. Let a be a vertex in V_{1} belonging to the maximum number of bad edges and let $Z=|\mathcal{Z}(a)|$. Note that $Z>0$. For every bad edge $a b c d$ containing a, consider a partition of its vertices into pairs, say $a c$ and $b d$. Recall that there are 2 types of pairs, one type consisting of pairs with both vertices in one
class, the other consisting of pairs that have one point of each class. By definition of a bad edge, $a c$ and $b d$ are pairs of the same type. If $e f$ is any pair of the other type which is disjoint from both of them, then acef and bdef are good 4-tuples. One of them is not an edge of H, or we get a $\mathcal{C}_{3}^{(4)}$. The number of such pairs ef is clearly at least

$$
\begin{aligned}
\min \left\{\left(\left|V_{1}\right|-4\right)\left(\left|V_{2}\right|-4\right),\right. & \left.\binom{\left|V_{1}\right|-4}{2}+\binom{\left|V_{2}\right|-4}{2}\right\} \\
& \geq\left(\frac{1}{4}-10^{-12}\right) n^{2}-O(n)>n^{2} / 5
\end{aligned}
$$

Let $\mathcal{Z}_{1}(a)$ be those bad edges for which there is some partition into pairs $a c$ and $b d$, so that for at least $n^{2} / 10$ of the pairs $e f$ defined above, the good 4-tuple acef is not an edge. Let $\mathcal{Z}_{2}(a)=\mathcal{Z}(a)-\mathcal{Z}_{1}(a)$, and write $Z_{i}=\left|\mathcal{Z}_{i}(a)\right|$ for $i=1,2$. Then one of Z_{1}, Z_{2} is at least $Z / 2$.

Case 1. Suppose $Z_{1} \geq Z / 2$. Let C be the (non-empty) set of vertices c such that there is some edge $a b c d$ in $\mathcal{Z}_{1}(a)$, and ace f is a good non-edge for at least $n^{2} / 10$ pairs $e f$. Then we have at least $|C| n^{2} / 30$ good non-edges containing a, as we count each ace f at most 3 times. This implies that there are at least $|C| n^{2} / 30-n^{3 / 2} \geq|C| n^{2} / 31$ bad edges containing a and therefore $n^{2} / 31 \leq Z /|C|$. Since every edge in $\mathcal{Z}_{1}(a)$ contains at most 3 vertices of C there exists $c \in C$ which is contained in at least $\left|\mathcal{Z}_{1}(a)\right| /(3|C|)=Z_{1} /(3|C|) \geq$ $Z /(6|C|)>n^{2} / 200$ bad edges. Fix one such c.

Note that a graph with n vertices and m edges contains a matching of size at least $m / 2 n$, since otherwise there is a set of fewer than m / n vertices that cover all the edges of the graph, which is impossible by direct counting. Consider the set of pairs $b d$ such that $a b c d$ is a bad edge. Then there exists a matching M of size at least $n / 400$ so that for each $b d$ in M we have that $a b c d$ is a bad edge of H. Partition such an edge into pairs $a b$ and $c d$. Then, as we explained above, there are at least $n^{2} / 5$ pairs ef such that one of the 4 -tuples $a b e f$ and cdef is a good non-edge. Since M is a matching we count each such 4 -tuple at most 3 times, so one of a or c belongs to at least $\frac{1}{3} \cdot \frac{1}{2} \cdot \frac{n^{2}}{5} \cdot \frac{n}{400}=n^{3} / 12000$ good non-edges. Therefore it belongs to at least $n^{3} / 12000-10^{-6} n^{3}>10^{-5} n^{3}$ bad edges, which contradicts Claim 2.3.

Case 2. Now suppose $Z_{2} \geq Z / 2$. Note that every bad edge containing a contains at least one other point of V_{1}, so there is some $b \in V_{1}$ belonging to at least Z_{2} / n edges of $\mathcal{Z}_{2}(a)$. Fix one such b. Suppose $c d$ is a pair such that $a b c d$ is in $\mathcal{Z}_{2}(a)$, and consider any partition of $a b c d$ into pairs p_{1}, p_{2} with a in p_{1} and b in p_{2}. Then, by definition of $\mathcal{Z}_{2}(a)$, there are at least $n^{2} / 10$ pairs $e f$ such that $p_{2} \cup e f$ is a good non-edge. Let C be the set of vertices c for
which there exists a vertex d such that $a b c d$ is an edge of $\mathcal{Z}_{2}(a)$. Then there are at least $|C| n^{2} / 30$ good non-edges containing b, as we count each bcef at most 3 times. Thus, there are at least $|C| n^{2} / 30-n^{3 / 2}>|C| n^{2} / 50$ bad edges containing b. By maximality of Z we have $|C| n^{2} / 50 \leq|\mathcal{Z}(b)| \leq Z$. Note that each edge in $\mathcal{Z}_{2}(a)$ that contains b is obtained by picking a pair of vertices in C, so $Z /(2 n) \leq Z_{2} / n \leq\binom{|C|}{2}<1250 Z^{2} / n^{4}$. Therefore $Z \geq n^{3} / 2500$, which again contradicts Claim 2.3.

We conclude that there are no bad edges incident to the vertices of V_{1}, i.e. all bad edges have all 4 vertices in V_{2}. We can use this information to give more precise bounds on the sizes of V_{1} and V_{2}. We recall that $\left|V_{1}\right|=$ $n / 2+t,\left|V_{2}\right|=n / 2-t$ and $d(n, t) \leq d(n,-t)$. Suppose that $|t| \geq \sqrt{n}$, so that $6|t| n-8|t|^{3}-16|t|<-2 n^{3 / 2}$ and by (3)

$$
\begin{aligned}
d(n, t) & =\frac{1}{12}\left(n^{3}-6 n^{2}+8 n+12 t^{2}\right)+\frac{1}{12}\left(6|t| n-8|t|^{3}-16|t|\right) \\
& <\frac{1}{12} n^{3}-\frac{1}{2} n^{2}-\frac{n^{3 / 2}}{12}<\delta(H)
\end{aligned}
$$

This is a contradiction, since the vertices of V_{1} only belong to good edges, of which there are at most $d(n, t)<\delta(H)$. Therefore $|t|<\sqrt{n}$. Now we can bound the number of good 4 -tuples containing a vertex of V_{2}. By (3), this number is at most

$$
\begin{aligned}
d(n,-t) & =\frac{1}{12}\left(n^{3}-6 n^{2}+8 n+12 t^{2}\right)+\frac{1}{12}\left(8|t|^{3}-6|t| n+16|t|\right) \\
& <\frac{1}{12} n^{3}-\frac{1}{2} n^{2}+n^{3 / 2}
\end{aligned}
$$

Now the same argument as we used to show that no bad edges are incident with the vertices of V_{1} shows that none are incident with V_{2} either. We conclude that all edges are good. Then by definition of $b(n)$ we have $e(H) \leq b(n)$, with equality only when H is a \mathcal{B}_{n}, so the theorem is proved.

3. Proof of Frankl's conjecture

In this section we will prove the general case of the Frankl conjecture. We recall that $\mathcal{C}_{3}^{(2 k)}$ is the $2 k$-uniform hypergraph with three edges $\left\{P_{1} \cup P_{2}, P_{2} \cup\right.$ $\left.P_{3}, P_{3} \cup P_{1}\right\}$, where P_{1}, P_{2}, P_{3} are pairwise disjoint sets of k vertices. We can obtain a large $\mathcal{C}_{3}^{(2 k)}$-free graph on n vertices by partitioning an n-element set V into 2 parts V_{1}, V_{2} and taking those edges which intersect each part V_{i} in an odd number of elements. To see this, consider any P_{1}, P_{2}, P_{3} that
are pairwise disjoint sets of k vertices. Then $\left|V_{1} \cap P_{i}\right|$ and $\left|V_{1} \cap P_{j}\right|$ have the same parity for some pair $i j$, so $P_{i} \cup P_{j}$ is not an edge.

Note that this construction is the same as the one we described for $\mathcal{C}_{3}^{(4)}$ when $k=2$. In the 4 -uniform case we were able to calculate the sizes of the parts that maximise the number of edges. For general k this is an interesting problem in enumerative combinatorics, that is equivalent to finding the minima of binary Krawtchouk polynomials. These polynomials play an important rôle in the analysis of binary Hamming association schemes and so many of their properties are well-known in this context (see, e.g., [5]). In particular, the location of their roots is an important problem, but we will need here only a crude estimate that follows easily from known results. In the first subsection of this section we will state this estimate and apply it to various parameters of our construction. The rest of the proof follows the same broad outline as that of the 4 -uniform case, in that it falls naturally into two parts. We will prove the stability part in the second subsection, and the full result we defer to the final subsection.

3.1. Binary Krawtchouk polynomials

Let $\mathcal{B}^{(2 k)}(n, t)$ denote the $2 k$-uniform hypergraph obtained by partitioning an n-element set into two parts with sizes $\frac{n}{2}+t$ and $\frac{n}{2}-t$, and taking as edges all $2 k$-tuples with odd intersection with each part. Let $b_{2 k}(n, t)$ be the number of edges in $\mathcal{B}^{(2 k)}(n, t)$ and let $d_{2 k}(n, t)$ be the degree of any vertex belonging to the side with size $\frac{n}{2}+t$. Then the vertices on the side with size $\frac{n}{2}-t$ have degree $d_{2 k}(n,-t)$.

The binary Krawtchouk polynomials $K_{m}^{n}(x)$ can be defined by the generating function

$$
\sum_{m=0}^{n} K_{m}^{n}(x) z^{m}=(1-z)^{x}(1+z)^{n-x}
$$

From here we get the explicit expression $K_{m}^{n}(x)=\sum_{i=0}^{m}(-1)^{i}\binom{x}{i}\binom{n-x}{m-i}$. Recall that $b_{2 k}(n, t)$ was the number of $2 k$-tuples with odd intersection with both parts in the above partition of an n-element set and so $\binom{n}{2 k}-b_{2 k}(n, t)$ is the number of $2 k$-tuples with even intersection with these parts. This implies that $\left(\binom{n}{2 k}-b_{2 k}(n, t)\right)-b_{2 k}(n, t)=\sum_{i=0}^{2 k}(-1)^{i}\binom{n / 2+t}{i}\binom{n / 2-t}{2 k-i}=K_{2 k}^{n}(n / 2+t)$, which gives

$$
\begin{equation*}
b_{2 k}(n, t)=\frac{1}{2}\left(\binom{n}{2 k}-K_{2 k}^{n}(n / 2+t)\right), \tag{6}
\end{equation*}
$$

so maximising $b_{2 k}(n, t)$ is equivalent to finding the minimum of $K_{2 k}^{n}(x)$. Similarly, we can also express the degrees of $\mathcal{B}^{(2 k)}(n, t)$ in terms of Krawtchouk polynomials. Indeed, by definition, $d_{2 k}(n, t)$ is the number of $(2 k-1)$-tuples with even intersection with the first part in the partition of an $(n-1)$-element set in two parts with sizes $n / 2+t-1$ and $n / 2-t$, and therefore $\binom{n-1}{2 k-1}-d_{2 k}(n, t)$ is the number of $(2 k-1)$-tuples with odd intersection with this part. Then, $d_{2 k}(n, t)-\left(\binom{n-1}{2 k-1}-d_{2 k}(n, t)\right)=\sum_{i=0}^{2 k-1}(-1)^{i}\binom{n / 2+t-1}{i}\binom{n / 2-t}{2 k-1-i}=K_{2 k-1}^{n-1}(n / 2+$ $t-1)$, i.e.

$$
\begin{equation*}
d_{2 k}(n, t)=\frac{1}{2}\left(\binom{n-1}{2 k-1}+K_{2 k-1}^{n-1}(n / 2+t-1)\right) \tag{7}
\end{equation*}
$$

Note that $K_{m}^{n}(x)$ is a polynomial of degree m. It is known that it has m simple roots, symmetric with respect to $n / 2$. The smallest root is given by the following formula obtained by Levenshtein [6]:

$$
r=n / 2-\max \left(\sum_{i=0}^{m-2} x_{i} x_{i+1} \sqrt{(i+1)(n-i)}\right)
$$

where the maximum is taken over x_{i} with $\sum_{i=0}^{m-1} x_{i}^{2}=1$. From the CauchySchwartz inequality we see that $n / 2-r<\sqrt{m n}$. Note that $K_{2 k}^{n}(0)=K_{2 k}^{n}(n)=$ $\binom{n}{2 k}>0$, so the minimum of $K_{2 k}^{n}(x)$ occurs in the range $n / 2 \pm \sqrt{2 k n}$.

Let t^{*} be chosen to maximise the number of edges in $\mathcal{B}^{(2 k)}(n, t)$, and denote any hypergraph obtained in this manner by $\mathcal{B}_{n}^{(2 k)}$. Note that t^{*} may not be unique, but must satisfy $\left|t^{*}\right|<\sqrt{2 k n}$. Also, by symmetry we can assume that $t^{*}>0$. Write $b_{2 k}(n)$ for the number of edges in $\mathcal{B}_{n}^{(2 k)}$.

Lemma 3.1. (i) $K_{m}^{n}(n / 2+t)=\sum_{i=0}^{m / 2}(-1)^{i+m}\binom{n / 2-t}{i}\binom{2 t}{m-2 i}$.
(ii) If $c>1$ and $0 \leq s \leq c \sqrt{n}$ then $\left|d_{2 k}(n, \pm s)-\frac{1}{2}\binom{n-1}{2 k-1}\right|<\left(10 c^{2}\right)^{k} n^{k-1 / 2}$.
(iii) $\left|b_{2 k}(n)-\frac{1}{2}\binom{n}{2 k}\right|<(20 k n)^{k}, \quad\left|d_{2 k}\left(n, \pm t^{*}\right)-\frac{1}{2}\binom{n-1}{2 k-1}\right|<(20 k)^{k} n^{k-1 / 2}$.
(iv) If $C>20^{k}$ then $d_{2 k}(n, C \sqrt{n})<\frac{1}{2}\binom{n-1}{2 k-1}-20^{k} n^{k-1 / 2}$.
(v) $\left|b_{2 k}(n, \epsilon n)-\left(\frac{1}{2}\binom{n}{2 k}-\frac{1}{2}\binom{2 \epsilon n}{2 k}\right)\right|<(10 \epsilon)^{k} n^{2 k-1}, \quad \left\lvert\, d_{2 k}(n, \epsilon n)-\left(\frac{1}{2}\binom{n-1}{2 k-1}-\right.\right.$ $\left.\frac{1}{2}\binom{2 \epsilon n-1}{2 k-1}\right) \mid<(10 \epsilon)^{k} n^{2 k-2}$.

Proof. (i) Rewrite the generating function as $\sum_{m=0}^{n} K_{m}^{n}(n / 2+t) z^{m}=(1-$ $\left.z^{2}\right)^{n / 2-t}(1-z)^{2 t}$ and expand.
(ii) Using part (i) with $t=s-1 / 2$, and applying (7), we get

$$
\begin{aligned}
\left|d_{2 k}(n, s)-\frac{1}{2}\binom{n-1}{2 k-1}\right| & =\frac{1}{2}\left|K_{2 k-1}^{n-1}(n / 2+s-1)\right| \\
& =\frac{1}{2}\left|\sum_{i=0}^{k-1}(-1)^{i+1}\binom{n / 2-s}{i}\binom{2 s-1}{2 k-1-2 i}\right| \\
& <k \cdot(2 c \sqrt{n})^{2 k-1}<\left(10 c^{2}\right)^{k} n^{k-1 / 2}
\end{aligned}
$$

The corresponding inequality for $d_{2 k}(n,-s)$ can be obtained similarly.
(iii) The second statement follows from part (ii) with $c=\sqrt{2 k} \geq t^{*} / \sqrt{n}$. To prove the first statement, we use (6), part (i) and again the fact that $0<t^{*}<\sqrt{2 k n}$. Altogether they imply

$$
\begin{aligned}
\left|b_{2 k}(n)-\frac{1}{2}\binom{n}{2 k}\right|=\frac{1}{2}\left|K_{2 k}^{n}\left(n / 2+t^{*}\right)\right| & <\sum_{i=0}^{k}\binom{n / 2}{i}\binom{2 \sqrt{2 k n}}{2 k-2 i} \\
& <(k+1)(2 \sqrt{2 k n})^{2 k}<(20 k n)^{k}
\end{aligned}
$$

(iv) By (7) we have

$$
\begin{aligned}
d_{2 k}(n, C \sqrt{n})- & \frac{1}{2}\binom{n-1}{2 k-1}=\frac{1}{2} K_{2 k-1}^{n-1}(n / 2+C \sqrt{n}-1) \\
& =\frac{1}{2} \sum_{i=0}^{k-1}(-1)^{i+1}\binom{\frac{n}{2}-C \sqrt{n}}{i}\binom{2 C \sqrt{n}-1}{2 k-1-2 i} \\
& <-\frac{1}{2}\binom{2 C \sqrt{n}-1}{2 k-1}+\frac{1}{2}(k-1)(n / 2)\binom{2 C \sqrt{n}-1}{2 k-3} \\
& =(1+o(1))\left(-\frac{(2 C \sqrt{n})^{2 k-1}}{2(2 k-1)!}+\frac{(k-1) n}{4} \frac{(2 C \sqrt{n})^{2 k-3}}{(2 k-3)!}\right) \\
& <-\left(\frac{C^{2}}{(2 k-1)^{2}}-\frac{k-1}{2}\right) \frac{(2 C)^{2 k-3}}{(2 k-3)!} n^{k-1 / 2}<-20^{k} n^{k-1 / 2}
\end{aligned}
$$

(v) Using the formula for $K_{2 k}^{n}(n / 2+t)$ from part (i) together with (6) we obtain that

$$
\begin{aligned}
\left|b_{2 k}(n, \epsilon n)-\left(\frac{1}{2}\binom{n}{2 k}-\frac{1}{2}\binom{2 \epsilon n}{2 k}\right)\right| & =\left|\frac{1}{2} K_{2 k}^{n}(n / 2+\epsilon n)-\frac{1}{2}\binom{2 \epsilon n}{2 k}\right| \\
& =\frac{1}{2}\left|\sum_{i=1}^{k}(-1)^{i}\binom{n / 2-\epsilon n}{i}\binom{2 \epsilon n}{2 k-2 i}\right| \\
& <\frac{n}{2} \cdot(2 \epsilon n)^{2 k-2}+O\left(n^{2 k-2}\right) \\
& <(10 \epsilon)^{k} n^{2 k-1}
\end{aligned}
$$

The proof of the inequality for $d_{2 k}(n, \epsilon n)$ can be obtained similarly and we omit it here.

We remark that these simple estimates are sufficient for our purposes, but the location of the roots and asymptotic values for Krawtchouk polynomials in the oscillatory region are known with more precision (see, e.g., [5]). With this information one could find better estimates for $b_{2 k}(n)$, and possibly how many different choices of t give the maximum number of edges.

We conclude this section with an estimate on the difference of successive values of $b_{2 k}(n)$.
Lemma 3.2. $b_{2 k}(n)-b_{2 k}(n-1) \geq \frac{1}{2}\binom{n-1}{2 k-1}$.
Proof. Suppose that $\mathcal{H}=\mathcal{B}^{(2 k)}(n-1)$ has $b_{2 k}(n-1)$ edges and has parts $V(\mathcal{H})=A \cup B$. Let \mathcal{H}_{1} be obtained from \mathcal{H} by adding a vertex v_{1} to A, together with all the $2 k$-tuples containing v_{1} and having odd intersections with $A \cup v_{1}$ and B. Let \mathcal{H}_{2} be similarly obtained by adding a vertex v_{2} to B, together with corresponding edges. By definition each \mathcal{H}_{i} has at most $b_{2 k}(n)$ edges, so the degree of each v_{i} is a lower bound for $b_{2 k}(n)-b_{2 k}(n-1)$. On the other hand, for each $(2 k-1)$-tuple X of vertices in \mathcal{H} there is exactly one i such that $X \cup v_{i}$ is an edge of \mathcal{H}_{i}, so one of the v_{i} has degree at least $\frac{1}{2}\binom{n-1}{2 k-1}$.

3.2. A stability result for $\mathcal{C}_{3}^{(2 k)}$

In this subsection we prove a stability result for $\mathcal{C}_{3}^{(2 k)}$. We start by recalling a version of the Kruskal-Katona theorem due to Lovász. Write $[m]=\{1, \ldots, m\}$, let $[m]^{(k)}$ denote the subsets of $[m]$ of size k, and suppose $\mathcal{A} \subset[m]^{(k)}$. The shadow of \mathcal{A} is $\partial \mathcal{A} \subset[m]^{(k-1)}$ consisting of all sets of size $k-1$ that are contained in some element of \mathcal{A}. For any real x write $\binom{x}{k}=x(x-1) \cdots(x-k+1) / k$!. The following result appears in [7] (Exercise 13.31).

Proposition 3.3. If $\mathcal{A} \subset[m]^{(k)}$ and $|\mathcal{A}|=\binom{x}{k}$ then $|\partial \mathcal{A}| \geq\binom{ x}{k-1}$.
Suppose we have a $2 k$-uniform hypergraph H and a partition of the vertex set $V(H)=V_{1} \cup V_{2}$. Our terminology for $2 k$-tuples matches that of the 4 uniform case. We call a $2 k$-tuple of vertices good if it intersects each V_{i} in an odd number of elements; otherwise we call it bad. We call a $2 k$-tuple correct if it is either a good edge or a bad non-edge; otherwise we call it incorrect.
Theorem 3.4. For every $\epsilon>0$ there is $\eta>0$ so that if H is a $\mathcal{C}_{3}^{(2 k)}$-free $2 k$-uniform hypergraph with $e(H)>\frac{1}{2}\binom{n}{2 k}-\eta n^{2 k}$ then there is a partition of the vertex set as $V(H)=V_{1} \cup V_{2}$ such that all but $\epsilon n^{2 k} 2 k$-tuples are correct.

Proof. Define an auxiliary graph G whose vertices are all k-tuples of vertices of H, and where the k-tuples P_{1} and P_{2} are adjacent exactly when $P_{1} \cup P_{2}$ is an edge of H. Since H is $\mathcal{C}_{3}^{(2 k)}$-free we see that G is triangle-free. Also, each edge of H creates exactly $\frac{1}{2}\binom{2 k}{k}$ edges in G (corresponding to the ways of breaking a $2 k$-tuple into two k-tuples) so

$$
e(G)>\frac{1}{2}\binom{2 k}{k}\left(\frac{1}{2}\binom{n}{2 k}-\eta n^{2 k}\right)>\left(1-(k!)^{2} 2^{2 k} \eta\right) \frac{1}{2}\binom{n}{k} .
$$

Choose η so that the Simonovits stability theorem (see Section 2) applies with $\eta^{\prime}=(k!)^{2} 2^{2 k} \eta, N=\binom{n}{k}$ and $\epsilon^{\prime}=10^{-6 k^{2}} \epsilon^{k}$. We can also require that $\eta<10^{-6 k^{2}} \epsilon^{k}$. We get a partition of the k-tuples of vertices of H as $U_{0} \cup U_{1}$, where all but $\epsilon^{\prime} N^{2}=\epsilon^{\prime}\binom{n}{k}^{2}<10^{-6 k^{2}} \epsilon^{k} n^{2 k}$ edges of H are formed by taking a k-tuple from U_{0} and a k-tuple from U_{1}.

We will think of the sets U_{i} as determining a 2-colouring of all k-tuples, and say that the k-tuples in U_{i} have colour i. A $2 k$-tuple I will be called properly coloured if, either it is an edge of H and however we partition I into k-tuples P_{1} and P_{2} they have different colours, or it is not an edge of H and for any partition of I into two k-tuples they have the same colour.

An improperly coloured $2 k$-tuple is either an edge that is the union of two k-tuples of the same colour or a non-edge which is the union of two k-tuples with different colours. There are at most $10^{-6 k^{2}} \epsilon^{k} n^{2 k}$ of the former $2 k$-tuples, and the number of the latter is at most

$$
\begin{aligned}
\left|U_{0}\right|\left|U_{1}\right|-\left(e(G)-\epsilon^{\prime} N^{2}\right) \leq \frac{(k!)^{2} 2^{2 k} \eta}{2} \frac{N^{2}}{2}+\epsilon^{\prime} N^{2} & \leq\left(\frac{(k!)^{2} 2^{2 k} \eta}{4(k!)^{2}}+\frac{\epsilon^{\prime}}{(k!)^{2}}\right) n^{2 k} \\
& \leq 10^{-5 k^{2}-1} \epsilon^{k} n^{2 k}
\end{aligned}
$$

Therefore all but $\left(10^{-6 k^{2}} \epsilon^{k}+10^{-5 k^{2}-1}\right) \epsilon^{k} n^{2 k}<10^{-5 k^{2}} \epsilon^{k} n^{2 k} 2 k$-tuples are properly coloured.

A simple counting argument shows that there is a k-tuple P so that for all but $\binom{2 k}{k} 10^{-5 k^{2}} \epsilon^{k} n^{2 k} /\binom{n}{k}<10^{-4 k^{2}} \epsilon^{k} n^{k}$ other k-tuples Q the $2 k$-tuple $P \cup Q$ is properly coloured. Without loss of generality P has colour 0 . We will call a k-tuple Q proper if $P \cup Q$ is properly coloured; otherwise it is improper. Then by definition there are at most $10^{-4 k^{2}} \epsilon^{k} n^{k}$ improper k-tuples. Call a $(k-1)$-tuple $X \subset V-P$ abnormal if there are at least $2^{-3 k} \epsilon n$ vertices $x \in V-(P \cup X)$ for which $X \cup x$ is improper; otherwise call it normal. It is easy to see that there are at most $k \cdot 10^{-4 k^{2}} \epsilon^{k} n^{k} /\left(2^{-3 k} \epsilon n\right)<10^{-3 k^{2}} \epsilon^{k-1} n^{k-1}$ abnormal $(k-1)$-tuples.

We partition the vertices of $V-P$ according to the colour of the k-tuples that they form when they replace an element of P. To be precise, we fix an order p_{1}, \ldots, p_{k} of P and partition into 2^{k} parts $V-P=\bigcup V_{\mathbf{s}}$, where $\mathbf{s}=\left(s_{1}, \ldots, s_{k}\right) \in\{0,1\}^{k}$ and a vertex x belongs to $V_{\mathbf{s}}$ iff $\left(P-p_{i}\right) \cup x$ has colour s_{i} for every $1 \leq i \leq k$.

Consider a $(k-1)$-tuple $X=x_{1} \cdots x_{k-1}$ and suppose a is a vertex such that $X \cup a$ is proper. Fix $1 \leq i \leq k$ and consider the partitions $P \cup X \cup a=$ $(P) \bigcup(X \cup a)=\left(\left(P-p_{i}\right) \cup a\right) \bigcup\left(X \cup p_{i}\right)$. Let $V_{\mathbf{s}}$ be the class containing a, so that $\left(P-p_{i}\right) \cup a$ has colour s_{i}. We recall that P has colour 0 , so if also $s_{i}=0$ then to be properly coloured $X \cup a$ must have the same colour as $X \cup p_{i}$. On the other hand, if $s_{i}=1$ then $X \cup a$ and $X \cup p_{i}$ must have different colours. If we write $c_{X}(v)$ for the colour of $X \cup v$ for any vertex v, then this can be summarised as
(8) If $a \in V_{s}$ and $X \cup a$ is proper, then $c_{X}(a)+s_{i}=c_{X}\left(p_{i}\right)(\bmod 2)$.

Suppose there are 2 classes $V_{\mathbf{s}}$ and $V_{\mathbf{s}^{\prime}}$ both of size at least $2^{-2 k} \epsilon n$. Since $\binom{2^{-2 k} \epsilon n}{k-1}>10^{-3 k^{2}} \epsilon^{k-1} n^{k-1}$ some $(k-1)$-tuple $X \subset V_{s}$ is normal. This means that there are at most $2^{-3 k} \epsilon n$ vertices $x \in V-(P \cup X)$ for which $X \cup x$ is improper, so there is $a \in V_{\mathbf{s}}$ and $b \in V_{\mathbf{s}^{\prime}}$ such that $X \cup a$ and $X \cup b$ are proper. For any pair of indices i, j we have $c_{X}(a)+s_{i}=c_{X}\left(p_{i}\right), c_{X}(a)+s_{j}=c_{X}\left(p_{j}\right)$, $c_{X}(b)+s_{i}^{\prime}=c_{X}\left(p_{i}\right)$ and $c_{X}(b)+s_{j}^{\prime}=c_{X}\left(p_{j}\right)$. Adding these equations gives $s_{i}+s_{j}+s_{i}^{\prime}+s_{j}^{\prime}=0$. If \mathbf{s} and \mathbf{s}^{\prime} differ in some co-ordinate i then this equation shows that they must also differ in any other co-ordinate j. In other words, if $\mathbf{s}^{\prime} \neq \mathbf{s}$ we must have $\mathbf{s}^{\prime}=\overline{\mathbf{s}}$, where $\overline{\mathbf{s}}$ denotes the sequence whose i th entry is $1-s_{i}$.

Let $V_{\mathbf{s}}$ be the largest class, and write $m=\left|V_{\mathbf{s}}\right|$. Clearly $m \geq 2^{-k}(n-k)$. Then all other classes, except possibly $V_{\overline{\mathbf{s}}}$, have size at most $2^{-2 k} \epsilon n$. Let \mathcal{A}_{i} be the set of proper k-tuples contained in V_{s} that have colour i. Then $\left|\mathcal{A}_{0}\right|+\left|\mathcal{A}_{1}\right|>\binom{m}{k}-10^{-4 k^{2}} \epsilon^{k} n^{k}>\left(1-10^{-3 k^{2}} \epsilon\right)\binom{m}{k}$. Write $\left|\mathcal{A}_{i}\right|=\alpha_{i}\binom{m}{k}$, so that $\alpha_{0}+\alpha_{1}>1-10^{-3 k^{2}} \epsilon$. Suppose both α_{i} are at least $10^{-2 k^{2}} \epsilon$. Observe that
$\left|\mathcal{A}_{i}\right|=\left({ }_{i}^{\alpha_{k}^{1 / k} m}\right)+O\left(m^{k-1}\right)$, so by Proposition 3.3 we have

$$
\left|\partial \mathcal{A}_{i}\right| \geq\binom{\alpha_{i}^{1 / k} m}{k-1}+O\left(m^{k-2}\right)=\alpha_{i}^{(k-1) / k}\binom{m}{k-1}+O\left(m^{k-2}\right)
$$

Note that if $z \leq 2^{-k}$ we have that $z^{-1 / k} \geq 2$ and therefore

$$
\begin{aligned}
z^{(k-1) / k}+\left(1-10^{-3 k^{2}} \epsilon-z\right)^{(k-1) / k} & \geq z^{(k-1) / k}+\left(1-10^{-3 k^{2}} \epsilon-z\right) \\
& \geq 2 z+1-10^{-3 k^{2}} \epsilon-z=1+z-10^{-3 k^{2}} \epsilon .
\end{aligned}
$$

Since $z^{(k-1) / k}$ is concave, $\alpha_{0} \geq 10^{-2 k^{2}} \epsilon$ and $10^{-2 k^{2}} \epsilon<2^{-k}$ we have

$$
\begin{aligned}
\alpha_{0}^{(k-1) / k}+\alpha_{1}^{(k-1) / k} & >\alpha_{0}^{(k-1) / k}+\left(1-10^{-3 k^{2}} \epsilon-\alpha_{0}\right)^{(k-1) / k} \\
& \geq\left(10^{-2 k^{2}} \epsilon\right)^{(k-1) / k}+\left(1-10^{-3 k^{2}} \epsilon-10^{-2 k^{2}} \epsilon\right)^{(k-1) / k} \\
& \geq 1+10^{-2 k^{2}} \epsilon-10^{-3 k^{2}} \epsilon \geq 1+10^{-3 k^{2}} \epsilon
\end{aligned}
$$

We deduce that $\left|\partial \mathcal{A}_{0} \cap \partial \mathcal{A}_{1}\right|>0$, i.e. there is a $(k-1)$-tuple X and points a_{0}, a_{1} such that $X \cup a_{i}$ is proper, with $c_{X}\left(a_{i}\right)=i$. But equation (8) gives $i+s_{1}=c_{X}\left(a_{i}\right)+s_{1}=c_{X}\left(p_{1}\right)$, for $i=0,1$, which is a contradiction. We conclude that there is $t \in\{0,1\}$ for which $\alpha_{1-t}<10^{-2 k^{2}} \epsilon$, and so all but at most $10^{-2 k^{2}} \epsilon\binom{m}{k}+10^{-4 k^{2}} \epsilon^{k} n^{k}<10^{-2 k^{2}} \epsilon n^{k} k$-tuples inside $V_{\mathbf{s}}$ have the same colour t.

For $0 \leq i \leq k$ let \mathcal{D}_{i} be all k-tuples with i points in $V_{\bar{s}}$ and $k-i$ points in $V_{\mathbf{s}}$ and let $\theta_{i}=10^{-2 k^{2}}\left(2 k 2^{2 k}\right)^{i} \epsilon$. We claim that for each i all but at most $\theta_{i} n^{k} k$-tuples of \mathcal{D}_{i} have colour $t+i(\bmod 2)$. Otherwise, choose the smallest i for which this is not true. By the above discussion $i>0$, and there are at least $\theta_{i} n^{k} k$-tuples in \mathcal{D}_{i} with colour $1-(t+i)=t+i-1(\bmod$ 2). Since i was the smallest such index all but at most $\theta_{i-1} n^{k} k$-tuples of \mathcal{D}_{i-1} have colour $t+i-1(\bmod 2)$. Let E_{i-1} be the $(k-1)$-tuples Y with $i-1$ points in $V_{\overline{\mathbf{s}}}$ and $k-i$ points in $V_{\mathbf{s}}$ for which there are at least $2^{-2 k} n$ points $y \in V_{\mathbf{s}}$ such that $Y \cup y$ does not have colour $t+i-1(\bmod 2)$. Then $\left|E_{i-1}\right| \leq k \theta_{i-1} n^{k} /\left(2^{-2 k} n\right)=\frac{1}{2} \theta_{i} n^{k-1}$, so at most $\frac{1}{2} \theta_{i} n^{k} k$-tuples contain an element of E_{i-1}. Recall that there are at most $10^{-4 k^{2}} \epsilon^{k} n^{k}$ improper k-tuples and at most $10^{-3 k^{2}} \epsilon^{k-1} n^{k-1} \cdot n=10^{-3 k^{2}} \epsilon^{k-1} n^{k} k$-tuples that contain some abnormal $(k-1)$-tuple. Since $10^{-4 k^{2}} \epsilon^{k}+10^{-3 k^{2}} \epsilon^{k-1}<10^{-2 k^{2}-1} \epsilon<\theta_{i} / 2$ we can find a proper k-tuple $K \in \mathcal{D}_{i}$ such that K has colour $t+i-1(\bmod 2)$ and for any $(k-1)$-tuple $Y \subset K$ we have Y normal and $Y \notin E_{i-1}$.

Since $i>0$, there is $x \in K \cap V_{\overline{\mathbf{s}}}$. Let $Y=K-x$. Since Y is normal there are at most $2^{-3 k} \epsilon n$ vertices y such that $Y \cup y$ is improper, and by definition of E_{i-1}
there are at most $2^{-2 k} n$ points $y \in V_{\mathbf{s}}$ such that $Y \cup y$ does not have colour $t+i-1(\bmod 2)$. Since $2^{-3 k} \epsilon n+2^{-2 k} n<2^{-k}(n-k)$ there is $y \in V_{\mathbf{s}}$ such that $Y \cup y$ is proper and has colour $t+i-1(\bmod 2)$. Then $c_{Y}(x)=c_{Y}(y)=t+i-1(\bmod 2)$. But $x \in V_{\overline{\mathbf{s}}}$ and $y \in V_{\mathbf{s}}$, so $c_{Y}(x)+1-s_{1}=c_{Y}\left(p_{1}\right)$ and $c_{Y}(y)+s_{1}=c_{Y}\left(p_{1}\right)$, both mod 2. This is a contradiction, so we conclude that all but at most $\theta_{i} n^{k} k$-tuples of \mathcal{D}_{i} have colour $t+i$.

Now partition V into 2 classes V_{1}, V_{2} so that $V_{\mathbf{s}} \subset V_{1}, V_{\mathbf{s}} \subset V_{2}$, and the other vertices are distributed arbitarily. Incorrect $2 k$-tuples with respect to this partition belong to the one of the following three groups.
(i) Improperly coloured $2 k$-tuples. There are at most $10^{-5 k^{2}} \epsilon^{k} n^{2 k}$ of those.
(ii) Properly coloured $2 k$-tuples which use at least one vertex not in $V_{\mathbf{s}} \cup V_{\overline{\mathbf{s}}}$. There are at most $2^{k} 2^{-2 k} \epsilon n\binom{n}{2 k-1}<2^{-k} \epsilon n^{2 k}$ such $2 k$-tuples.
(iii) Properly coloured $2 k$-tuples which contain a k-tuple of \mathcal{D}_{i} with colour $t+i-1(\bmod 2)$. There are at $\operatorname{most} \sum_{i=0}^{k} \theta_{i} n^{k}\binom{n}{k}<\theta_{k} n^{2 k}=$ $10^{-2 k^{2}}\left(2 k 2^{2 k}\right)^{k} \epsilon n^{2 k}<10^{-k^{2}} \epsilon n^{2 k}$ such $2 k$-tuples.

Therefore all but at most $\left(10^{-5 k^{2}} \epsilon^{k}+2^{-k} \epsilon+10^{-k^{2}} \epsilon\right) n^{2 k}<\epsilon n^{2 k} 2 k$-tuples are correct with respect to this partition. This completes the proof of the theorem.

3.3. The Turán number of $\mathcal{C}_{3}^{(2 k)}$

In this subsection we complete the proof of Frankl's conjecture.
Proof of Theorem 1.1. Let H be a $2 k$-uniform hypergraph on n vertices, which has $e(H) \geq b_{2 k}(n)$ and contains no $\mathcal{C}_{3}^{(2 k)}$. By the same argument given in the proof in the case $k=2$ we can assume that H has minimum degree at least $b_{2 k}(n)-b_{2 k}(n-1)$. Applying Lemma 3.2 gives

$$
\begin{equation*}
\delta(H) \geq \frac{1}{2}\binom{n-1}{2 k-1} \tag{9}
\end{equation*}
$$

For convenience of notation we set $\eta=(100 k)^{-10^{k}}$. By Theorem 3.4 there is a partition with all but at most $(\eta / 20 k)^{2 k} n^{2 k}$ edges of H being good, i.e., they have odd intersection with both parts. Let $V(H)=V_{1} \cup V_{2}$ be the partition which minimises the number of bad edges. Then every vertex belongs to at least as many good edges as bad edges, or we can move it to the other class of the partition. Recall that, by definition, the number of good $2 k$-tuples with respect to this partition is at most $b_{2 k}(n)$. We must have $\left|\left|V_{1}\right|-n / 2\right|<\frac{1}{10} \eta n$
and $\left|\left|V_{2}\right|-n / 2\right|<\frac{1}{10} \eta n$. Otherwise by Lemma 3.1, part (v)
$e(H)<\frac{1}{2}\binom{n}{2 k}-\frac{1}{2}\binom{2 \cdot \frac{1}{10} \eta n}{2 k}+\left(10 \cdot \frac{1}{10} \eta\right)^{k} n^{2 k-1}+(\eta / 20 k)^{2 k} n^{2 k}<b_{2 k}(n)$,
which is a contradiction.
Note that there is no k-tuple of vertices P for which there are both $(10 k)^{-k} \eta n^{k} k$-tuples Q such that $P \cup Q$ is a good edge and $(10 k)^{-k} \eta n^{k} k$ tuples R such that $P \cup R$ is a bad edge. Indeed, each such Q and R which are disjoint give a $2 k$-tuple $Q \cup R$ which is good, but cannot be an edge as it would create a $\mathcal{C}_{3}^{(2 k)}$. Moreover, every $2 k$-tuple can be obtained at most $\frac{1}{2}\binom{2 k}{k}$ times in this way, and every Q is disjoint from all but at most $k\binom{n}{k-1} k$-tuples R. Thus at least $(10 k)^{-k} \eta n^{k}\left((10 k)^{-k} \eta n^{k}-k\binom{n}{k-1}\right) /\left(\frac{1}{2}\binom{2 k}{k}\right)>$ $2(\eta / 20 k)^{2 k} n^{2 k}$ good $2 k$-tuples are not edges of H, and therefore $e(H)<$ $b_{2 k}(n)-2(\eta / 20 k)^{2 k} n^{2 k}+(\eta / 20 k)^{2 k} n^{2 k}<b_{2 k}(n)$, which is a contradiction.

Claim 3.5. Any vertex of H is contained in at most $\eta n^{2 k-1}$ bad edges.
Proof. Suppose some vertex a belongs to $\eta n^{2 k-1}$ bad edges. Call a $(k-1)$ tuple X good if there are at most $(10 k)^{-k} \eta n^{k} k$-tuples Q such that $a \cup X \cup Q$ is a bad edge, otherwise call X bad. By the above discussion, for every bad $(k-1)$-tuple X there are at most $(10 k)^{-k} \eta n^{k} k$-tuples R such that $a \cup X \cup R$ is a good edge. There are at least ηn^{k-1} bad $(k-1)$-tuples or we would only have $\eta n^{k-1} \cdot\binom{n}{k}+\left(\binom{n-1}{k-1}-\eta n^{k-1}\right) \cdot(10 k)^{-k} \eta n^{k}<\eta n^{2 k-1}$ bad edges through a.

Note that there are at most $\binom{n}{k-1} \cdot(10 k)^{-k} \eta n^{k}$ good edges that contain a and a bad $(k-1)$-tuple. To see this, we bound the number of such good edges by picking the bad $(k-1)$-tuple X in at most $\binom{n}{k-1}$ ways and then a k-tuple R such that $a \cup X \cup R$ is a good edge in at most $(10 k)^{-k} \eta n^{k}$ ways (as remarked above). By choice of partition there are at least as many good edges containing a as bad, so by (9) we see that a is in at least $\frac{1}{4}\binom{n-1}{2 k-1}$ good edges. It follows that there are at least $\frac{1}{4}\binom{n-1}{2 k-1}-(10 k)^{-k} \eta n^{2 k-1}$ good edges that contain only good $(k-1)$-tuples. In particular there are at least $\left(\frac{1}{4}\binom{n-1}{2 k-1}-(10 k)^{-k} \eta n^{2 k-1}\right) /\binom{n-1}{k} \geq n^{k-1} /(2 k)$! good $(k-1)$-tuples.

Suppose there are $\alpha\binom{n}{k-1}$ good $(k-1)$-tuples, where by the above we see that $(2 k)^{-k-1} \leq \alpha \leq 1-(k-1)!\eta$. We can bound the number of good edges that contain a and do not contain a bad $(k-1)$-tuple as follows. Given any such edge W containing a we consider ordered triples (X, Y, b), where X and Y are good $(k-1)$-tuples, b is a vertex and $X \cup Y \cup b \cup a=W$. Each edge gives rise to $k\binom{2 k-1}{k-1}$ such triples. On the other hand we can choose X and Y in at most $\left(\alpha\binom{n}{k-1}\right)^{2}$ ways; then to make E good b is constrained to lie in some
particular class V_{i} of the partition, so can be chosen in at most $\left(\frac{1}{2}+\frac{1}{10} \eta\right) n$ ways. This shows that the number of such edges W is at most

$$
\left(\left(\alpha\binom{n}{k-1}\right)^{2}\left(\frac{1}{2}+\frac{1}{10} \eta\right) n\right) /\left(k\binom{2 k-1}{k-1}\right)<\left(\alpha^{2}+3 \cdot \frac{1}{10} \eta\right) \frac{1}{2}\binom{n-1}{2 k-1}
$$

A similar argument shows that the number of bad edges that contain a and do not contain a good $(k-1)$-tuple is at most $\left((1-\alpha)^{2}+3 \cdot \frac{1}{10} \eta\right) \frac{1}{2}\binom{n-1}{2 k-1}$. We showed above that there are at most $\binom{n}{k-1} \cdot(10 k)^{-k} \eta n^{k}$ good edges that contain a and a bad $(k-1)$-tuple. Also, by definition there are at most $\binom{n}{k-1} \cdot(10 k)^{-k} \eta n^{k}$ bad edges that contain a and a good $(k-1)$-tuple. Therefore the total number of edges containing a is at most

$$
\left(\alpha^{2}+(1-\alpha)^{2}+6 \cdot \frac{1}{10} \eta\right) \frac{1}{2}\binom{n-1}{2 k-1}+2 \cdot\binom{n}{k-1} \cdot(10 k)^{-k} \eta n^{k}
$$

From the bounds $(2 k)^{-k-1} \leq \alpha \leq 1-(k-1)!\eta$ we see that this is at most $\left(\frac{1}{2}-\eta / 2\right)\binom{n-1}{2 k-1}$. This contradicts equation (9), so the claim is proved.

Now write $\left|V_{1}\right|=n / 2+t,\left|V_{2}\right|=n / 2-t$ with $-\frac{1}{10} \eta n<t<\frac{1}{10} \eta n$. By possibly renaming the classes (i.e. replacing t with $-t$) we can assume that $d(n, t) \leq d(n,-t)$. Now any vertex of V_{1} belongs to $d(n, t)$ good $2 k$-tuples, and $d(n, t)$ is the minimum degree of $\mathcal{B}^{(2 k)}(n, t)$, which is certainly at most the maximum degree of $\mathcal{B}_{n}^{(2 k)}$. From Lemma 3.1, part (iii) we have a bound $d(n, t)<\frac{1}{2}\binom{n-1}{2 k-1}+(20 k)^{k} n^{k-1 / 2}$ but we will only use the weaker bound $d(n, t)<\frac{1}{2}\binom{n-1}{2 k-1}+10^{4 k^{2}} n^{k-1 / 2}$. Later we will show that this weaker bound also holds for $d(n,-t)$, and then the subsequent argument will apply switching V_{1} and V_{2}.

Claim 3.6. 1. If a is a vertex of V_{1} for which K of the good $2 k$-tuples containing a are not edges then there are at least $K-10^{4 k^{2}} n^{k-1 / 2}$ bad edges containing a.
2. If b is a vertex of V_{2} for which L of the good $2 k$-tuples containing b are not edges then there are at least $L-(\eta n / 5)^{2 k-1}$ bad edges containing b.
Proof. 1. By the preceding remarks a belongs to at most $\frac{1}{2}\binom{n-1}{2 k-1}+$ $10^{4 k^{2}} n^{k-1 / 2}$ good $2 k$-tuples and therefore it belongs to at most $\frac{1}{2}\binom{n-1}{2 k-1}+$ $10^{4 k^{2}} n^{k-1 / 2}-K$ good edges. Then by equation (9) a belongs to at least $K-10^{4 k^{2}} n^{k-1 / 2}$ bad edges.
2. From Lemma 3.1, part (v) b belongs to at most $\frac{1}{2}\binom{n-1}{2 k-1}+\binom{2 \cdot \frac{1}{10} \eta n-1}{2 k-1} \operatorname{good}$ $2 k$-tuples, and the stated bound follows as in (1).

Before proving the next claim we make a remark that will be used on several occasions without further comment. Suppose W is a bad edge, so that $\left|W \cap V_{i}\right|$ is even for $i=1,2$. If we partition $W=P \cup Q$ with $|P|=|Q|=k$ then $\left|P \cap V_{i}\right|=\left|Q \cap V_{i}\right|(\bmod 2)$ for $i=1,2$. Then for any k-tuple R disjoint from P and Q with $\left|R \cap V_{i}\right|=\left|P \cap V_{i}\right|+1(\bmod 2)$ both $2 k$-tuples $P \cup R$ and $Q \cup R$ are good. We can obtain such a k-tuple $R \subset V-(P \cup Q)$ by picking any $(k-1)$-tuple, and then another vertex which, because of parity, is constrained to lie in some particular V_{i}. This counts each k-tuple k times, so the number of choices for R is at least

$$
k^{-1}\binom{n-2 k}{k-1}\left(\left(\frac{1}{2}-\frac{1}{10} \eta\right) n-3 k\right)>n^{k} /(3 \cdot k!)
$$

Claim 3.7. Suppose $t \leq k$ and T is a t-tuple of vertices belonging to $\theta n^{2 k-t}$ bad edges, for some $\theta>(20 k)^{k} \eta$. Then any $S \subset T$ with $|S|=t-1$ belongs to at least $(10 k)^{-k} \theta n^{2 k-t+1}$ good non-edges.

Proof. Write $T=S \cup v$. Consider a bad edge W containing T and a partition $W=T \cup X \cup Y$, where $|X|=k-1$ and $|Y|=k+1-t$. By the above remark, there are at least $n^{k} /(3 \cdot k!) k$-tuples R for which $v \cup X \cup R$ and $S \cup Y \cup R$ are both good $2 k$-tuples. Note that they can't both be edges, or we would have a copy of $\mathcal{C}_{3}^{(2 k)}$. Suppose that for at least $\frac{1}{2} \theta n^{2 k-t}$ such W there is a partition $W=T \cup X \cup Y$ for which there are at least $n^{k} / 2(3 \cdot k!) k$-tuples R for which $v \cup X \cup R$ is a good non-edge. This clearly gives at least $\frac{1}{2} \theta n^{k-1}$ choices for X. Each such non-edge can be partitioned in at most $\binom{2 k-1}{k}$ ways in the form $v \cup X \cup R$, so there are at least

$$
\binom{2 k-1}{k}^{-1} \frac{1}{2} \theta n^{k-1} \frac{n^{k}}{2(3 \cdot k!)}>(10 k)^{-k} \theta n^{2 k-1}
$$

good non-edges containing v. Now Claim 3.6 shows that there are at least

$$
(10 k)^{-k} \theta n^{2 k-1}-(\eta n / 5)^{2 k-1}>(20 k)^{-k} \theta n^{2 k-1}>\eta n^{2 k-1}
$$

bad edges containing v, which contradicts Claim 3.5. It follows that for at least $\frac{1}{2} \theta n^{2 k-t}$ such W and any partition of $W=T \cup X \cup Y$ we have a good nonedge $S \cup Y \cup R$ for at least $n^{k} / 2(3 \cdot k!) k$-tuples R. This gives at least $\frac{1}{2} \theta n^{k+1-t}$ choices for Y. Each such non-edge has at most $\binom{2 k-t+1}{k}$ representations as $S \cup Y \cup R$, so there are at least

$$
\binom{2 k-t+1}{k}^{-1} \frac{1}{2} \theta n^{k+1-t} \frac{n^{k}}{2(3 \cdot k!)}>(10 k)^{-k} \theta n^{2 k-t+1}
$$

good non-edges containing S.
Suppose for the sake of contradiction that there is some bad edge incident with V_{1}. Denote the set of bad edges containing some vertex v by $\mathcal{Z}(v)$. Let a be a vertex in V_{1} belonging to the maximum number of bad edges and let $Z=|\mathcal{Z}(a)|$. Note that $Z>0$.

Claim 3.8. Suppose $t \leq k,(20 k)^{k} \eta<\phi<(100 k)^{-k}$ and \mathcal{F} is a set of at least $\phi Z n^{-(2 k-t)} t$-tuples containing a such that each $F \in \mathcal{F}$ is contained in at least $\phi n^{2 k-t}$ bad edges. Then there are at least $\phi^{5} Z n^{-(2 k-t+1)}(t-1)$-tuples containing a each of which is contained in at least $\phi^{5} n^{2 k-t+1}$ bad edges.

Proof. Let \mathcal{G} be the set of $(t-1)$-tuples containing a that are contained in a member of \mathcal{F}. By Claim 3.7 each $G \in \mathcal{G}$ is contained in at least $(10 k)^{-k} \phi n^{2 k-t+1}$ good non-edges. Each such good non-edge is counted by at most $\binom{2 k-1}{t-2}$ different G^{\prime} 's, so there are at least $\binom{2 k-1}{t-2}^{-1}|\mathcal{G}|(10 k)^{-k} \phi n^{2 k-t+1}>$ $(40 k)^{-k}|\mathcal{G}| \phi n^{2 k-t+1}$ good non-edges containing a. Since $a \in V_{1}$ Claim 3.6 gives at least

$$
(40 k)^{-k}|\mathcal{G}| \phi n^{2 k-t+1}-10^{4 k^{2}} n^{k-1 / 2}>(50 k)^{-k}|\mathcal{G}| \phi n^{2 k-t+1}
$$

bad edges containing a, so by definition of Z we get $|\mathcal{G}|<(50 k)^{k} \phi^{-1} Z$. $n^{-(2 k-t+1)}$. Let $\mathcal{G}_{1} \subset \mathcal{G}$ consist of those G that belong to at least $\phi^{3} n$ members of \mathcal{F}. Then

$$
\phi Z n^{-(2 k-t)} \leq|\mathcal{F}|<\left|\mathcal{G}_{1}\right| n+|\mathcal{G}| \phi^{3} n<\left|\mathcal{G}_{1}\right| n+(50 k)^{k} \phi^{2} Z n^{-(2 k-t)}
$$

so $\left|\mathcal{G}_{1}\right|>\phi^{5} Z n^{-(2 k-t-1)}$ with room to spare. For each $G \in \mathcal{G}_{1}$ there are at least $\phi^{3} n$ sets of \mathcal{F} each contributing $\phi n^{2 k-t}$ bad edges containing G. Each such bad edge is counted by at most $2 k-t+1$ different $F \in \mathcal{F}$, so G belongs to at least $(2 k-t+1)^{-1} \phi^{3} n \cdot \phi n^{2 k-t}>\phi^{5} n^{2 k-t+1}$ bad edges.

Let $\mathcal{Z}_{1}(a)$ be those bad edges W containing a for which there is some partition into two k-tuples $W=P \cup Q$ with $a \in P$ so that there are at least $n^{k} / 2(3 \cdot k!) k$-tuples R for which $P \cup R$ is a good non-edge. Let $\mathcal{Z}_{2}(a)=$ $\mathcal{Z}(a)-\mathcal{Z}_{1}(a)$, and write $Z_{i}=\left|\mathcal{Z}_{i}(a)\right|$ for $i=1,2$. Then one of Z_{1}, Z_{2} is at least $Z / 2$.

Case 1. Suppose $Z_{1} \geq Z / 2$. Let \mathcal{P} be the (non-empty) set of k-tuples P containing a such that there is some edge $P \cup Q$ in $\mathcal{Z}_{1}(a)$, and $P \cup R$ is a good non-edge for at least $n^{k} / 2(3 k!) k$-tuples R. Each such good non-edge is counted by at most $\binom{2 k-1}{k-1}$ different P 's, so there are at least $\binom{2 k-1}{k-1}^{-1}|\mathcal{P}| n^{k} / 2(3 \cdot k!)>(10 k)^{-k}|\mathcal{P}| n^{k}$ good non-edges containing a. Now

Claim 3.6 gives at least $(10 k)^{-k}|\mathcal{P}| n^{k}-10^{4 k^{2}} n^{k-1 / 2}>(20 k)^{-k}|\mathcal{P}| n^{k}$ bad edges containing a, so by definition of $Z,|\mathcal{P}|<(20 k)^{k} Z n^{-k}$. On the other hand, let $\mathcal{P}_{1} \subset \mathcal{P}$ consist of those P that belong to at least $\frac{1}{10}(20 k)^{-k} n^{k}$ bad edges. Then

$$
Z / 2 \leq Z_{1}<\left|\mathcal{P}_{1}\right| n^{k}+|\mathcal{P}| \frac{1}{10}(20 k)^{-k} n^{k}<\left|\mathcal{P}_{1}\right| n^{k}+Z / 10
$$

so $\left|\mathcal{P}_{1}\right|>0.4 Z n^{-k}$. Now apply Claim $3.8 k-1$ times, starting with $t=k$ and $\phi=(100 k)^{-k}$. We deduce that a belongs to at least $\phi^{5^{k-1}} n^{2 k-1}>\eta n^{2 k-1} \mathrm{bad}$ edges, which contradicts Claim 3.5.

Case 2. Now suppose $Z_{2} \geq Z / 2$. Note that every bad edge containing a contains at least one other point of V_{1}, so there is some $b \in V_{1}$ belonging to at least Z_{2} / n edges of $\mathcal{Z}_{2}(a)$. Fix one such b. Let \mathcal{X} be the set of $(k-1)$-tuples X for which there exists a $(k-1)$-tuple Y such that $W=a \cup b \cup X \cup Y$ is an edge of $\mathcal{Z}_{2}(a)$. By definition of $\mathcal{Z}_{2}(a)$ for any such partition of W, there are at least $n^{k} / 2(3 \cdot k!) k$-tuples R such that $b \cup X \cup R$ is a good non-edge. This gives at least $\frac{n^{k}}{2(3 \cdot k!)}|\mathcal{X}|>(10 k)^{-k}|\mathcal{X}| n^{k}$ good non-edges containing b, and since $b \in V_{1}$ Claim 3.6 gives at least $(10 k)^{-k}|\mathcal{X}| n^{k}-10^{4 k^{2}} n^{k-1 / 2}>(20 k)^{-k}|\mathcal{X}| n^{k}$ bad edges containing b. Thus, by definition of $Z,|\mathcal{X}|<(20 k)^{k} Z n^{-k}$. Note that each edge in $\mathcal{Z}_{2}(a)$ that contains b is obtained by picking a pair of $(k-1)$-tuples in \mathcal{X}, so $Z /(2 n) \leq Z_{2} / n \leq\binom{|\mathcal{X}|}{2}<\frac{1}{2}(20 k)^{2 k} Z^{2} n^{-2 k}$. Therefore $Z>(20 k)^{-2 k} n^{2 k-1}>\eta n^{2 k-1}$, which contradicts Claim 3.5.

We conclude that there are no bad edges incident to the vertices of V_{1}, i.e. all bad edges are entirely contained in V_{2}. As in the case $k=2$ this gives a more precise bound on t, defined by $\left|V_{1}\right|=n / 2+t,\left|V_{2}\right|=n / 2-t$. If $|t| \geq 20^{k} \sqrt{n}$ then Lemma 3.1, part (iv) gives $d_{2 k}(n, t)<\frac{1}{2}\binom{n-1}{2 k-1}-20^{k} n^{k-1 / 2}$. This is a contradiction, since the vertices of V_{1} only belong to good edges, of which there are at most $d_{2 k}(n, t)<\delta(H)$. Therefore $|t|<20^{k} \sqrt{n}$. Now Lemma 3.1, part (ii) gives

$$
d_{2 k}(n,-t)<\frac{1}{2}\binom{n-1}{2 k-1}+\left(10\left(20^{k}\right)^{2}\right)^{k} n^{k-1 / 2}<\frac{1}{2}\binom{n-1}{2 k-1}+10^{4 k^{2}} n^{k-1 / 2}
$$

As we remarked earlier, this bound allows us to repeat the above argument interchanging V_{1} and V_{2}, so we deduce that there are no bad edges incident with V_{2} either, i.e. all edges are good. Then by definition of $b_{2 k}(n)$ we have $e(H) \leq b_{2 k}(n)$, with equality only when H is a $\mathcal{B}_{n}^{(2 k)}$, so the theorem is proved.

4. Hypergraphs without $\mathcal{C}_{r}^{(4)}$

We recall that $\mathcal{C}_{r}^{(2 k)}$ is the $2 k$-uniform hypergraph obtained by letting P_{1}, \ldots, P_{r} be pairwise disjoint sets of size k and taking as edges all sets $P_{i} \cup P_{j}$ with $i \neq j$. In this section we will be concerned with the case $k=2$ and general r.

Sidorenko [8] showed that the Turán density of $\mathcal{C}_{r}^{(2 k)}$ is at most $\frac{r-2}{r-1}$. This is a consequence of Turán's theorem applied to an auxiliary graph G constructed from a $2 k$-uniform hypergraph H of order n. The vertices of G are the k-tuples of vertices of H, and two k-tuples P_{1}, P_{2} are adjacent if $P_{1} \cup P_{2}$ is an edge of H. It is easy to see that the graph G has $\binom{n}{k}$ vertices, $\frac{1}{2}\binom{2 k}{k} e(H)$ edges and contains no K_{r}. Thus the upper bound on the number of edges of H follows immediately from Turán's theorem. The following construction from [8] gives a matching lower bound when r is of the form $2^{p}+1$.

Let W be a vector space of dimension p over the field $G F(2)$, i.e. the finite field with 2 elements $\{0,1\}$. Partition a set of vertices V as $\bigcup_{w \in W} V_{w}$, $\left|V_{w}\right|=|V| /(r-1)$. Given t and a t-tuple of vertices $X=x_{1} \cdots x_{t}$ with $x_{i} \in V_{w_{i}}$ we define $\Sigma X=\sum_{1}^{t} w_{i}$. Define a $2 k$-uniform hypergraph H, where a $2 k$ tuple X is an edge iff $\Sigma X \neq 0$. Observe that this doesn't contain a copy of $\mathcal{C}_{r}^{(2 k)}$. Indeed, if P_{1}, \ldots, P_{r} are disjoint k-tuples then there is some $i \neq j$ with $\Sigma P_{i}=\Sigma P_{j}$ (by the pigeonhole principle). Then $\Sigma\left(P_{i} \cup P_{j}\right)=\Sigma P_{i}+\Sigma P_{j}=0$, so $P_{i} \cup P_{j}$ is not an edge.

This construction depends essentially on an algebraic structure, which only exists for certain values of r. Perhaps surprisingly, we will show that this is an intrinsic feature of the problem, by proving Theorem 1.2, which gives a stronger upper bound on the Turán density of $\mathcal{C}_{r}^{(4)}$, when r is not of the form $2^{p}+1$. We make no attempt to optimize the constant in this bound.

In addition, our proof of this theorem implies that, for $r=2^{p}+1$, any $\mathcal{C}_{r}^{(4)}$-free 4-uniform hypergraph with density $\frac{r-2}{r-1}-o(1)$ looks approximately like Sidorenko's construction.

Corollary 4.1. Let $r=2^{p}+1$ be an integer and let W be a p-dimensional vector space over the field $G F(2)$. For every $\epsilon>0$ there is $\eta>0$ so that if H is a $\mathcal{C}_{r}^{(4)}$-free 4-uniform hypergraph with $e(H)>\frac{r-2}{r-1}\binom{n}{4}-\eta n^{4}$ then there is a partition of the vertex set as $\bigcup_{w \in W} V_{w}$ such that all but ϵn^{4} edges X of H satisfy $\Sigma X \neq 0$.

The rest of this section is organized as follows. In the first subsection we will prove a lemma showing that certain edge-colourings of the complete graph K_{s} exist only if s is a power of 2 . In the following subsection we will
recall a proof of the Simonovits stability theorem so that we can calculate some explicit constants. The final subsection contains the proof of Theorem 1.2.

4.1. A lemma on edge-colourings of a complete graph

Lemma 4.2. Suppose that we have a colouring of the edges of the complete graph K_{s} in $s-1$ colours, so that every colour is a matching and each subset of 4 vertices spans edges of either 3 or 6 different colours. Then $s=2^{p}$ for some integer p.

Proof. Since the number of colours is $s-1$, every colour is a matching and the total number of edges in K_{s} is $s(s-1) / 2$ it is easy to see that every colour is a perfect matching. Also, if $w x$ and $y z$ are disjoint edges of the same colour, then by hypothesis only 3 different colours appear on wxyz, so $w y$ and $x z$ have the same colour, as do $x y$ and $w z$. Denote the set of colours by $C=\left\{c_{1}, \ldots, c_{s-1}\right\}$. We define a binary operation + on C using the following rule. Pick a vertex x. Given c_{i} and c_{j} let $e_{i}=x y_{i}$ and $e_{j}=x y_{j}$ be the edges incident with x with these colours. These edges exist, as each colour is a perfect matching. Define $c_{i}+c_{j}$ to be the colour of $y_{i} y_{j}$.

To see that this is well-defined, let x^{\prime} be another vertex and suppose $e_{i}^{\prime}=x^{\prime} y_{i}^{\prime}$ has colour c_{i} and $e_{j}^{\prime}=x^{\prime} y_{j}^{\prime}$ has colour c_{j}. If $y_{i}=y_{j}^{\prime}$ then opposite edges of $x y_{j} y_{i} x^{\prime}$ have the same colours, so $x^{\prime} y_{j}$ has colour c_{i}, i.e. $y_{j}=y_{i}^{\prime}$ and there is nothing to prove. Therefore we can assume that all $y_{i}, y_{j}, y_{i}^{\prime}, y_{j}^{\prime}$ are distinct. Consider the 4 -tuple $x x^{\prime} y_{i} y_{i}^{\prime}$. Since $x y_{i}$ and $x y_{i}^{\prime}$ have the same colour we deduce that $x x^{\prime}$ and $y_{i} y_{i}^{\prime}$ have the same colour. Similarly $x x^{\prime}$ and $y_{j} y_{j}^{\prime}$ have the same colour, from which we see that $y_{i} y_{i}^{\prime}$ and $y_{j} y_{j}^{\prime}$ have the same colour. Now looking at $y_{i} y_{i}^{\prime} y_{j} y_{j}^{\prime}$ we see that $y_{i} y_{j}$ and $y_{i}^{\prime} y_{j}^{j}$ have the same colour, so $c_{i}+c_{j}$ is well-defined.

Let D be a set obtained by adjoining another element called $\mathbf{0}$ to C. Extend + to an operation on D by defining $\mathbf{0}+d=d+\mathbf{0}=d$ and $d+d=\mathbf{0}$ for all $d \in D$. We claim that $(D,+)$ is an abelian group. Note that + is commutative by definition, $\mathbf{0}$ is an identity and inverses exist. It remains to show associativity, i.e. for any d_{1}, d_{2}, d_{3} we have $\left(d_{1}+d_{2}\right)+d_{3}=d_{1}+\left(d_{2}+d_{3}\right)$. This is immediate if any of the d_{i} are $\mathbf{0}$ or if they are all equal. If $d_{1}=d_{2} \neq d_{3}$ then $d_{1}+d_{2}=\mathbf{0}$ and there is a triangle with colours $d_{1}, d_{3}, d_{1}+d_{3}$, so $d_{1}+\left(d_{2}+\right.$ $\left.d_{3}\right)=d_{3}$ as required. The same argument applies when $d_{2}=d_{3} \neq d_{1}$. If $d_{1}=d_{3}$ then $d_{1}+d_{2}=d_{2}+d_{3}$ by commutativity, and so $\left(d_{1}+d_{2}\right)+d_{3}=d_{1}+\left(d_{2}+d_{3}\right)$ also by commutativity. So we can assume that the d_{i} are pairwise distinct and non-zero. Pick a vertex x, let $x y_{1}$ be the edge of colour d_{1} and $x y_{2}$ the
edge of colour d_{2}. Let $y_{2} z$ have colour d_{3}. We can suppose $z \neq y_{1}$, otherwise $d_{1}+d_{2}=d_{3}$ and $d_{2}+d_{3}=d_{1}$ and $\left(d_{1}+d_{2}\right)+d_{3}=d_{1}+\left(d_{2}+d_{3}\right)=\mathbf{0}$. Now $y_{1} y_{2}$ has colour $d_{1}+d_{2}$ and $x z$ has colour $d_{2}+d_{3}$. Consider the edge $y_{1} z$. From the triangle it forms with x we see that it has colour $d_{1}+\left(d_{2}+d_{3}\right)$ and from the triangle with y_{2} we see that it has colour $\left(d_{1}+d_{2}\right)+d_{3}$. This proves associativity, so D is an abelian group.

Finally, note that every non-zero element has order 2 , so D is in fact a vector space over the field with 2 elements. If p is its dimension then $s=|D|=2^{p}$.

4.2. The Simonovits stability theorem

In this subsection we will recall a proof of the Simonovits stability theorem [10] so that we can calculate some explicit constants. Let $T_{s}(N)$ be the s partite Turán graph on N vertices, i.e. a complete s-partite graph with part sizes as equal as possible. Write $t_{s}(N)$ for the number of edges in $T_{s}(N)$. Then Turán's theorem states that any K_{s+1}-free graph on N vertices has at most $t_{s}(N)$ edges, with equality only for $T_{s}(N)$. It is easy to show that $\frac{s-1}{s} N^{2} / 2-s<t_{s}(N) \leq \frac{s-1}{s} N^{2} / 2$.

Proposition 4.3. Suppose G is a K_{s+1}-free graph on N vertices with minimum degree $\delta(G) \geq\left(1-\frac{1}{s}-\alpha\right) N$ and $\alpha<1 / s^{2}$. Then there is a partition of the vertex set of G as $V(G)=U_{1} \cup \cdots \cup U_{s}$ with $\sum e\left(U_{i}\right)<s \alpha N^{2}$.

Proof. By Turán's theorem G contains a copy of K_{s}; let $A=\left\{a_{1}, \ldots, a_{s}\right\}$ be its vertex set. Note that any vertex x not in A has at most $s-1$ neighbours in A, or we get a K_{s+1}. Let B be those vertices with exactly $s-1$ neighbours in A, and $C=V(G)-A-B$. Partition $A \cup B$ as $U_{1} \cup \cdots \cup U_{s}$ where U_{i} consists of those vertices adjacent to $A-a_{i}$. Then there are no edges inside any U_{i}, as if $x y$ is such an edge then $x y+A-a_{i}$ forms a K_{s+1}. Distribute the vertices of C arbitrarily among the U_{i}. Counting edges between A and $V-A$ gives
$s(\delta(G)-s+1) \leq e(A, V-A) \leq(s-1)|B|+(s-2)|C|=(s-1)(N-s)-|C|$
so $|C| \leq(s-1) N-s \delta(G) \leq s \alpha N$. Therefore $\sum e\left(U_{i}\right)<s \alpha N^{2}$.
Theorem 4.4. Suppose G is a K_{s+1}-free graph on N vertices with at least $\left(\frac{s-1}{2 s}-c\right) N^{2}$ edges and $c<1 /\left(4 s^{4}\right)$. Then there is a partition of the vertex set of G as $V(G)=U_{1} \cup \cdots \cup U_{s}$ with $\sum e\left(U_{i}\right)<(2 s+1) \sqrt{c} N^{2}$.

Proof. Construct a sequence of graphs $G=G_{N}, G_{N-1}, \ldots$ where if G_{m} has a vertex of degree at most $\left(1-\frac{1}{s}-2 \sqrt{c}\right) m$ then we delete it to get G_{m-1}.

Suppose we can delete $\sqrt{c} N$ vertices by this process and reach a graph $G_{(1-\sqrt{c}) N}$. Then $G_{(1-\sqrt{c}) N}$ is K_{s+1}-free and has at least

$$
\left(\frac{s-1}{2 s}-c-\sqrt{c}\left(1-\frac{1}{s}-2 \sqrt{c}\right)\right) N^{2}>\frac{s-1}{2 s}(1-\sqrt{c})^{2} N^{2}
$$

edges. This contradicts Turán's theorem, so the sequence terminates at some G_{m} with $m \geq(1-\sqrt{c}) N$ and minimum degree at least $\left(1-\frac{1}{s}-2 \sqrt{c}\right) m$. By Proposition 4.3 there is a partition $V\left(G_{m}\right)=U_{1} \cup \cdots \cup U_{s}$ with $\sum e\left(U_{i}\right)<$ $2 s \sqrt{c} N^{2}$. Now distribute the $\sqrt{c} N$ deleted vertices arbitrarily among the U_{i}. Then $\sum e\left(U_{i}\right)<(2 s+1) \sqrt{c} N^{2}$.

4.3. Proof of Theorem 1.2

Let V be the vertex set of H. Define a graph G whose vertices are all pairs in V, where the pairs $a b$ and $c d$ are adjacent exactly when $a b c d$ is an edge of H. Since H is $\mathcal{C}_{r}^{(4)}$-free we see that G is K_{r}-free. Also, each edge of H creates exactly 3 edges in G (corresponding to the 3 ways of breaking a 4 -tuple into pairs) so

$$
e(G)>3\left(\frac{r-2}{r-1}-10^{-33} r^{-70}\right)\binom{n}{4}>\left(\frac{r-2}{2(r-1)}-10^{-33} r^{-70}\right) N^{2},
$$

where $N=\binom{n}{2}$.
Applying Theorem 4.4 with $s=r-1$ gives a partition of the pairs of vertices in V as $\bigcup_{1}^{r-1} P_{i}$ with $\sum_{1}^{r-1} e\left(P_{i}\right)<10^{-16} r^{-34} N^{2}$. If there is some P_{i} with $\left|P_{i}\right|<\left(\frac{1}{r-1}-10^{-3} r^{-7}\right) N$ then

$$
\begin{aligned}
\frac{e(G)}{N^{2}}< & \frac{\binom{r-2}{2}}{(r-2)^{2}}\left(\frac{r-2}{r-1}+10^{-3} r^{-7}\right)^{2} \\
& \quad+\left(\frac{1}{r-1}-10^{-3} r^{-7}\right)\left(\frac{r-2}{r-1}+10^{-3} r^{-7}\right)+10^{-16} r^{-34} \\
& <\frac{r-2}{2(r-1)}-10^{-6} r^{-14} / 2+10^{-16} r^{-34} .
\end{aligned}
$$

This is a contradiction so $\left|P_{i}\right| \geq\left(\frac{1}{r-1}-10^{-3} r^{-7}\right) N$ for all i. Also if some $\left|P_{i}\right|>\left(\frac{1}{r-1}+10^{-3} r^{-6}\right) N$, then there is j such that $\left|P_{j}\right|<\left(\frac{1}{r-1}-10^{-3} r^{-7}\right) N$. Therefore for all i

$$
\begin{equation*}
\left|\left|P_{i}\right|-\frac{1}{r-1} N\right| \leq 10^{-3} r^{-6} n^{2} . \tag{10}
\end{equation*}
$$

Note that all but at most $10^{-16} r^{-34} n^{4}$ edges of H are formed by taking a pair from P_{i} and a pair from P_{j} with $i \neq j$. We think of the P_{i} as a colouring of pairs. A 4-tuple abcd will be called properly coloured if either
(i) $a b c d$ is an edge and each of the 3 sets $\{a b, c d\},\{a c, b d\},\{a d, b c\}$ contains two pairs with different colours, or
(ii) $a b c d$ is not an edge and each of the 3 sets $\{a b, c d\},\{a c, b d\},\{a d, b c\}$ consists of two pairs with the same colour.

An improperly coloured 4 -tuple is either an edge that is the union of two pairs of the same colour or a non-edge which is the union of two pairs with different colours. There are at most $10^{-16} r^{-34} N^{2}$ of the former 4-tuples, and the number of latter is at most

$$
\frac{r-2}{2(r-1)} N^{2}-\left(e(G)-10^{-16} r^{-34} N^{2}\right) \leq\left(10^{-16} r^{-34}+10^{-33} r^{-70}\right) n^{4}
$$

Therefore all but $10^{-15} r^{-34} n^{4}$ 4-tuples are properly coloured. Call a pair $a b b a d$ if there are at least $10^{-12} r^{-32} n^{2}$ pairs $c d$ such that $a b c d$ is improperly coloured; otherwise call it good. Then there are at most $\binom{4}{2}\left(10^{-15} r^{-34} n^{4}\right) /\left(10^{-12} r^{-32} n^{2}\right)<10^{-2} r^{-2} n^{2}$ bad pairs.

Consider a graph on V whose edges are the pairs in P_{1}. As noted in (10) it has at least $\frac{1}{r-1} N-10^{-3} r^{-6} n^{2}$ edges. For vertices a and b in V, let $d(a)$ denote the degree of a and $d(a, b)$ the codegree of a and b (i.e. the size of their common neighbourhood). Then

$$
\sum_{a, b \in V} d(a, b)=\sum_{c \in V}\binom{d(c)}{2} \geq n\binom{\sum d(c) / n}{2}=n\binom{2\left|P_{1}\right| / n}{2}>\frac{1}{5 r^{2}} n N
$$

Suppose there are at most m pairs (a, b) for which $d(a, b)>\frac{n}{10 r^{2}}$. Then $\frac{1}{5 r^{2}} n N<\sum d(a, b) \leq m n+N \frac{n}{10 r^{2}}$, so $\frac{1}{10 r^{2}} N<m$, i.e. there are at least $\frac{1}{10 r^{2}}\binom{n}{2}$ pairs (a, b) for which $d(a, b)>\frac{n}{10 r^{2}}$. At least one such pair is good, as the number of bad pairs is at most $10^{-2} r^{-2} n^{2}<\frac{1}{20 r^{2}} n^{2}$. Let (a, b) be such a pair and suppose it belongs to P_{t}.

Let B be the set of pairs $c d$ for which $a b c d$ is improperly coloured. Since $a b$ is good we have $|B| \leq 10^{-12} r^{-32} n^{2}$. Therefore there are at most $|B|\binom{n}{2}<$ $10^{-12} r^{-32} n^{4} 4$-tuples of vertices that contain any pair of B. We will call a 4-tuple normal if it is properly coloured and does not contain a pair from B; otherwise we call it abnormal. Then all but at most $10^{-12} r^{-32} n^{4}+$ $10^{-15} r^{-34} n^{4}<10^{-11} r^{-32} n^{4} 4$-tuples are normal.

Partition the vertices of $V-a b$ into $(r-1)^{2}$ sets $U_{i j}$, where c is in $U_{i j}$ iff $a c \in P_{i}$ and $b c \in P_{j}$. Then by the above discussion $\left|U_{11}\right| \geq \frac{n}{10 r^{2}}$. Now we claim that for $i \neq j$ we have $\left|U_{i j}\right|<10^{-3} r^{-11} n$. For suppose that $\left|U_{i j}\right| \geq$
$10^{-3} r^{-11} n$. Let P_{k} be the colour that appears most frequently among pairs joining vertices of U_{11} to $U_{i j}$. Then there are at least $\frac{1}{r-1}\left|U_{11}\right|\left|U_{i j}\right|$ pairs of colour P_{k} with one endpoint in U_{11} and the other in $U_{i j}$. Consider the 4tuples of the form $c_{1} c_{2} d_{1} d_{2}$, with $c_{1}, c_{2} \in U_{11}, d_{1}, d_{2} \in U_{i j}$ and $c_{1} d_{1}, c_{2} d_{2} \in P_{k}$. There are at least

$$
\begin{aligned}
\left(\frac{1}{r-1}\left|U_{11}\right|\left|U_{i j}\right|\right)\left(\frac{1}{r-1}\left|U_{11}\right|\left|U_{i j}\right|-2 n\right) / 4 & >r^{-2}\left(10^{-1} r^{-2} n \cdot 10^{-3} r^{-11} n\right)^{2} / 4 \\
& >10^{-11} r^{-32} n^{4}
\end{aligned}
$$

such 4-tuples, so some $c_{1} c_{2} d_{1} d_{2}$ is normal. By definition of normality each of its pairs forms a properly coloured 4-tuple with $a b$. Since $a c_{1}$ and $b c_{2}$ are in P_{1} and $a b$ is in P_{t} we deduce that $c_{1} c_{2}$ is in P_{t} as well. Also $a d_{1} \in P_{i}$, $b d_{2} \in P_{j}$ and $i \neq j$, so $d_{1} d_{2}$ cannot be in P_{t}. But $c_{1} d_{1}$ and $c_{2} d_{2}$ both belong to P_{k} so $c_{1} c_{2} d_{1} d_{2}$ is improperly coloured. This contradicts the definition of normality, so we do have $\left|U_{i j}\right|<10^{-3} r^{-11} n$.

For convenience write $U_{i}=U_{i i}$. Then all but at most $(r-1)^{2} 10^{-3} r^{-11} n \leq$ $10^{-3} r^{-9} n$ vertices belong to one of the U_{i}. Suppose $c d$ is a pair such that $a b c d$ is properly coloured. Since $a b$ is a good pair, this is the case for all but at most $10^{-11} r^{-32} n^{2}$ pairs $c d$. If c and d both belong to some U_{i} then $a c$ and $b d$ both have colour i. Since $a b$ has colour t we see that $c d$ has colour t. Similarly, if $c \in U_{i}$ and $d \in U_{j}$ with $i \neq j$ we see that $c d$ cannot have colour t.

Let E_{i} denote the pairs with both endpoints in U_{i}, so that $\left|E_{i}\right|=\binom{\left|U_{i}\right|}{2}$. By the above discussion, all but at most $10^{-12} r^{-32} n^{2}$ pairs in $\cup_{i} E_{i}$ belong to P_{t}. Suppose $\left|U_{i}\right|<\left(\frac{1}{r-1}-10^{-1} r^{-3}\right) n$ for some i, so that

$$
\begin{aligned}
\sum\left|E_{i}\right|> & \left(\frac{1}{r-1}-10^{-1} r^{-3}\right)^{2} \frac{n^{2}}{2} \\
& \quad+(r-2)\left(\frac{1-1 /(r-1)+10^{-1} r^{-3}-10^{-3} r^{-9}}{r-2}\right)^{2} \frac{n^{2}}{2}-O(n) \\
& >\left(\frac{1}{r-1}+10^{-2} r^{-6}\right) \frac{n^{2}}{2}-O(n)
\end{aligned}
$$

By (10), this gives the following contradiction.

$$
\begin{aligned}
\frac{1}{r-1}\binom{n}{2}+10^{-3} r^{-6} n^{2} \geq\left|P_{t}\right| & \geq \sum_{i}\left|E_{i}\right|-10^{-12} r^{-32} n^{2} \\
& >\frac{1}{r-1} \frac{n^{2}}{2}+\frac{10^{-2} r^{-6}}{3} n^{2}
\end{aligned}
$$

Therefore $\left|U_{i}\right| \geq\left(\frac{1}{r-1}-10^{-1} r^{-3}\right) n$ for each i.
Let $E_{i j}$ denote the edges with one endpoint in U_{i} and the other in U_{j}. We claim that one colour is dominant among these edges, i.e. there is some q such that all but $10^{-2} r^{-4} n^{2}$ edges of $E_{i j}$ belong to P_{q}. Indeed, suppose that there are colours q_{1} and q_{2} for which $E_{i j}$ contains at least $10^{-2} r^{-4} n^{2}$ edges of colour q_{1} and at least $10^{-2} r^{-4} n^{2}$ edges of colour q_{2}. Then there are at least $\left(10^{-2} r^{-4} n^{2}\right)\left(10^{-2} r^{-4} n^{2}-2 n\right)>10^{-11} r^{-32} n^{4} 4$-tuples $c_{1} c_{2} d_{1} d_{2}$ with c_{1}, c_{2} in U_{i}, d_{1}, d_{2} in $U_{j}, c_{1} d_{1}$ of colour q_{1} and $c_{2} d_{2}$ of colour q_{2}. At least one such 4 -tuple $c_{1} c_{2} d_{1} d_{2}$ is normal, since there at most $10^{-11} r^{-32} n^{4}$ abnormal 4 -tuples. But then $c_{1} c_{2}$ and $d_{1} d_{2}$ both have colour t, so $c_{1} c_{2} d_{1} d_{2}$ is improperly coloured, which is a contradiction.

Consider the complete graph K_{r-1} on the vertex set $\{1, \ldots, r-1\}$ and colour edge $i j$ with the dominant colour of $E_{i j}$. We show that this colouring satisfies the hypotheses of Lemma 4.2. First of all we show that colour t doesn't occur in this edge-colouring of K_{r-1}, i.e. there are only $r-2$ colours. Suppose $i j$ has colour t. Then

$$
\begin{aligned}
& \frac{1}{r-1}\binom{n}{2}+10^{-3} r^{-6} n^{2} \\
& \quad \geq\left|P_{t}\right| \geq \sum_{i}\left|E_{i}\right|-10^{-12} r^{-32} n^{2}+\left|U_{i}\right|\left|U_{j}\right|-10^{-2} r^{-4} n^{2} \\
& \quad \geq(r-1)\binom{\left(\frac{1}{r-1}-10^{-1} r^{-3}\right) n}{2}+\left(\left(\frac{1}{r-1}-10^{-1} r^{-3}\right) n\right)^{2}-10^{-1} r^{-4} n^{2} \\
& \quad \geq \frac{1}{r-1} \frac{n^{2}}{2}+\frac{n^{2}}{(r-1)^{2}}-\frac{r+2}{r-1} 10^{-1} r^{-3} n^{2}>\frac{1}{r-1} \frac{n^{2}}{2}+\frac{n^{2}}{r^{2}}
\end{aligned}
$$

is a contradiction.
Now suppose that some colour ℓ is not a matching, i.e. there are edges $i j$ and $i k$ in K_{r-1} both of colour ℓ. Then all but at most $2 \cdot 10^{-2} r^{-4} n^{2}$ pairs of $E_{i j} \cup E_{i k}$ have colour ℓ. Consider the 4-tuples of the form $c_{1} c_{2} d e$, with $c_{1}, c_{2} \in U_{i}, d \in U_{j}$ and $e \in U_{k}$, such that $c_{1} d, c_{2} d, c_{1} e, c_{2} e$ all have colour ℓ. There are at least

$$
\begin{aligned}
& \binom{\left|U_{i}\right|}{2}\left|U_{j}\right|\left|U_{k}\right|-2 \cdot 10^{-2} r^{-4} n^{2}\binom{n}{2} \\
& \quad \geq \frac{1}{2}\left(\frac{1}{r-1}-10^{-1} r^{-3}\right)^{4} n^{4}-O\left(n^{3}\right)-10^{-2} r^{-4} n^{4}>10^{-11} r^{-32} n^{4}
\end{aligned}
$$

such 4-tuples, so there is one such $c_{1} c_{2} d e$ which is normal. But then $c_{1} c_{2}$ has colour t and de cannot have colour t, since by normality abde is properly
coloured. Therefore $c_{1} c_{2} d e$ is improperly coloured. This is a contradiction, so each colour forms a matching.

It remains to show that if some 4 vertices $x_{1} x_{2} x_{3} x_{4}$ in K_{r-1} do not span 6 different colours then they span only 3 colours. Suppose that $x_{1} x_{2}$ and $x_{3} x_{4}$ have colour $\alpha, x_{1} x_{3}$ has colour β and $x_{2} x_{4}$ has colour γ. Recall that all but at most $10^{-2} r^{-4} n^{2}$ pairs in $E_{x_{i} x_{j}}$ have the corresponding colour of $x_{i} x_{j}$. Consider the 4 -tuples in H of the form $c_{1} c_{2} c_{3} c_{4}$ with $c_{i} \in U_{x_{i}}$ such that $c_{i} c_{j}$ has the same colour as $x_{i} x_{j}$. There are at least

$$
\begin{aligned}
\prod_{1}^{4}\left|U_{x_{i}}\right|-4 \cdot 10^{-2} r^{-4} n^{2}\binom{n}{2} & >\left(\frac{1}{r-1}-10^{-1} r^{-3}\right)^{4} n^{4}-2 \cdot 10^{-2} r^{-4} n^{4} \\
& >10^{-11} r^{-32} n^{4}
\end{aligned}
$$

such 4-tuples. Since the the number of abnormal 4-tuples is at most $10^{-11} r^{-32} n^{4}$, some such $c_{1} c_{2} c_{3} c_{4}$ should be normal. Then $\beta=\gamma$, or $c_{1} c_{2} c_{3} c_{4}$ would be improperly coloured. We see that opposite edges of $x_{1} x_{2} x_{3} x_{4}$ have the same colour. Therefore we can apply Lemma 4.2 with $s=r-1$ to deduce that $r-1$ is of the form 2^{p}.

Finally it is not difficult to check that, when $r=2^{p}+1$, the above arguments together with the proof of Lemma 4.2 imply Corollary 4.1.

5. Concluding remarks

Among the various techniques that we used in this paper, the stability approach stands out as one that should be widely applicable in extremal combinatorics. The process of separating the argument into a stability stage and a refinement stage focuses attention on the particular difficulties of each, and often leads to progress where the raw problem has appeared intractable. For recent examples we refer to our proofs of the conjecture of Sós on the Turán number of the Fano plane [4], and a conjecture of Erdős and Rothschild on edge colourings with no monochromatic cliques [1].

Our methods probably apply to $\mathcal{C}_{r}^{(2 k)}$ for general k when r is of the form $2^{p}+1$, although the reader who has grappled with the thornier aspects of this paper will note the formidable technical difficulties that would arise. It would be far more interesting to say more about the behaviour of the Turán density of $\mathcal{C}_{r}^{(2 k)}$ for general r. Even $\mathcal{C}_{4}^{(4)}$ presents an enigma for which there is no obvious plausible conjecture. We find it remarkable that the seemingly similar hypergraphs $\mathcal{C}_{3}^{(4)}$ and $\mathcal{C}_{5}^{(4)}$ are actually distinguished from $\mathcal{C}_{4}^{(4)}$ by a hidden algebraic feature, so are loathe even to speculate on the nature of the best construction for this case.

References

[1] N. Alon, J. Balogh, P. Keevash and B. Sudakov: The number of edge colourings with no monochromatic cliques, J. London Math. Soc., to appear.
[2] P. Frankl: Asymptotic solution of a Turán-type problem, Graphs and Combinatorics 6 (1990), 223-227.
[3] Z. Füredi: Turán type problems, in: Surveys in combinatorics, London Math. Soc. Lecture Note Ser. 166, Cambridge Univ. Press, Cambridge, 1991, 253-300.
[4] P. Keevash and B. Sudakov: The Turán number of the Fano plane, Combinatorica 25(5) (2005), 561-574.
[5] I. Krasikov and S. Litsyn: Survey of binary Krawtchouk polynomials, in: Codes and association schemes, DIMACS Ser. Discrete Math. Theoret. Comput. Sci. 56, Amer. Math. Soc., Providence, RI, 2001, 199-211.
[6] V. Levenshtein: Krawtchouk polynomials and universal bounds for codes and designs in Hamming spaces, IEEE Trans. Inform. Theory 41 (1995), 1303-1321.
[7] L. LovÁsz: Combinatorial Problems and Exercises, North-Holland, Amsterdam, 1993.
[8] A. Sidorenko: An analytic approach to extremal problems for graphs and hypergraphs, in: Extremal problems for finite sets, Bolyai Soc. Math. Stud. 3, Budapest, 1994, 423-455.
[9] A. Sidorenko: What we know and what we do not know about Turán numbers, Graphs and Combinatorics 11 (1995), 179-199.
[10] M. Simonovits: A method for solving extremal problems in graph theory, stability problems; in: Theory of Graphs (Proc. Colloq. Tihany, 1966), Academic Press, New York, and Akad. Kiadó, Budapest, 1968, 279-319.

Peter Keevash

Department of Mathematics
Princeton University
Princeton, NJ 08540
USA
keevash@math.princeton.edu

Benny Sudakov

Department of Mathematics
Princeton University
Princeton, NJ 08540
USA
bsudakov@math.princeton.edu

