
Research Article

On a Kantorovich Variant of (�, �)-Szász-Mirakjan Operators

M. Mursaleen,1,2 Abdullah Alotaibi,2,3 and Khursheed J. Ansari1

1Department of Mathematics, Aligarh Muslim University, Aligarh 202002, India
2Operator �eory and Applications Research Group, Department of Mathematics, Faculty of Science, King Abdulaziz University,
P.O. Box 80203, Jeddah 21589, Saudi Arabia
3Department of Mathematics, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia

Correspondence should be addressed to M. Mursaleen; mursaleenm@gmail.com

Received 23 October 2015; Accepted 31 December 2015

Academic Editor: Pasquale Vetro

Copyright © 2016 M. Mursaleen et al. �is is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

We propose a Kantorovich variant of (�, �)-analogue of Szász-Mirakjan operators. We establish the moments of the operators with
the help of a recurrence relation that we have derived and then prove the basic convergence theorem. Next, the local approximation
and weighted approximation properties of these new operators in terms of modulus of continuity are studied.

1. Introduction and Notations

Approximation theory has been an established 	eld of math-
ematics in the past century. �e approximation of func-
tions by positive linear operators is an important research
topic in general mathematics and it also provides powerful
tools to application areas such as computer-aided geometric
design, numerical analysis, and solution of di
erential equa-
tions.

During the last two decades, the applications of �-
calculus emerged as a new area in the 	eld of approximation
theory. �e rapid development of �-calculus has led to the
discovery of various generalizations of Bernstein polynomials
involving �-integers. Several researchers introduced and
studied many positive linear operators based on �-integers,�-Bernstein basis, �-beta basis, �-derivative, �-integrals, and
so forth. Using �-integers, Lupaş [1] introduced the 	rst �-
Bernstein operators [2] and investigated their approximating
and shape-preserving properties. Another �-analogue of the
Bernstein polynomials is due to Phillips [3]. Since then sev-
eral generalizations of well-known positive linear operators
based on �-integers have been introduced and their approxi-
mation properties studied. Aral [4] and Aral and Gupta [5]
proposed and studied some �-analogue of Szász-Mirakjan
operators [6], de	ned on positive real axis. Also Mahmudov
[7] introduced �-parametric Szász-Mirakjan operators and

studied their convergence properties. Recently, approxima-
tion properties forKing’s type �-Bernstein-Kantorovich oper-
ators have been studied in [8].

Very recently, Mursaleen et al. applied (�, �)-calculus in
approximation theory and introduced the (�, �)-analogue
of Bernstein operators [9], (�, �)-Bernstein-Stancu opera-
tors [10], and (�, �)-Bernstein-Schurer operators [11] and
investigated their approximation properties. Also Acar [12]
has introduced (�, �) parametric generalization of Szász-
Mirakjan operators. In the present work, we de	ne a Kan-
torovich variant of Szász-Mirakjan operators and establish
the moments with the help of a recurrence relation that
we have derived and then prove the basic convergence
theorem. Next, the local approximation as well as weighted
approximation properties of these new operators in terms of
modulus of continuity are studied.

�e (�, �)-integer was introduced in order to generalize
or unify several forms of �-oscillator algebras well known
in the earlier physics literature related to the representation
theory of single parameter quantum algebras [13]. Let us
recall certain notations of (�, �)-calculus.

�e (�, �)-integers [�]�,� are de	ned by

[�]�,� fl �� − ��� − � , � = 0, 1, 2, . . . , 0 < � < � ≤ 1. (1)
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�e (�, �)-facorial and (�, �)-Binomial coe�cients are
de	ned by

[�]�,�! fl

{{{
[�]�,� [� − 1]�,� ⋅ ⋅ ⋅ [1]�,� , � ∈ N;
1, � = 0,

[��]�,� fl
[�]�,�![�]�,�! [� − �]�,�! ,

(2)

respectively. Further, the (�, �)-binomial expansions are
given as

(�� + ��)��,� fl
�∑
�=0
�( �−�2 )�( �2 )��−�����−���,

(� − �)��,� fl (� − �) (�� − ��)
⋅ (�2� − �2�) ⋅ ⋅ ⋅ (��−1� − ��−1�) .

(3)

Let� and � be two nonnegative integers. �en the following
assertion is valid:

(� − �)�+��,� fl (� − �)��,� (��� − ���)��,� . (4)

Also, the (�, �)-derivative of a function �, denoted by��,��,
is de	ned by

(��,��) (�) fl � (��) − � (��)
(� − �) � , � ̸= 0,

(��,��) (0) fl �	 (0) ,
(5)

provided that � is di
erentiable at 0. �e (�, �)-derivative
ful	lls the following product rules:

��,� (� (�) � (�)) fl � (��)��,�� (�)
+ � (��)��,�� (�) ,

��,� (� (�) � (�)) fl � (��)��,�� (�)
+ � (��)��,�� (�) .

(6)

Moreover,

��,� (� (�)� (�) ) fl

� (��)��,�� (�) − � (��)��,�� (�)� (��) � (��) ,
��,� (� (�)� (�) )

fl

� (��)��,�� (�) − � (��)��,�� (�)� (��) � (��) .
(7)

We consider the (�, �)-exponential functions in the following
forms:

��,� (�) = ∞∑
�=0
��(�−1)/2 ��[�]�,�! ,

��,� (�) = ∞∑
�=0
��(�−1)/2 ��[�]�,�! ,

(8)

which satisfy the equality ��,�(�)��,�(−�) = 1. �e de	nite
integrals of the function � are de	ned by

∫�
0
� (�) "�,�� = (� − �) �∞∑

�=0

��
��+1�(

��
��+1 �) ,
when

%%%%%%%%
��
%%%%%%%% < 1,

∫�
0
� (�) "�,�� = (� − �) �∞∑

�=0

��
��+1�(

��
��+1 �) ,
when

%%%%%%%%
��
%%%%%%%% > 1.

(9)

Details on (�, �)-calculus can be found in [13, 14]. For � =1, all the notions of (�, �)-calculus are reduced to �-calculus.
2. Operators and Estimation of Moments

Now we set the (�, �)-Szász-Mirakjan basis function as

&� (�, �; �) =: ��,� (− [�]�,� �) ∞∑
�=0
��(�−1)/2 ([�]�,� �)

�

[�]�,�! . (10)

For � ∈ (0, �), � ∈ (�, 1], and � ∈ [0,∞), &�(�, �; �) ≥ 0. We
can easily check that

∞∑
�=0
&� (�, �; �)

=: ��,� (− [�]�,� �) ∞∑
�=0
��(�−1)/2 ([�]�,� �)

�

[�]�,�! = 1.
(11)

For 0 < � < � ≤ 1, the (�, �)-Szász-Mirakjan operators are
de	ned as

-� (�, �, �; �)
= [�]�,� ∞∑

�=0
�−���&�,� (�, �; �) �( [�]�,���−1 [�]�,�) ,

� ∈ [0,∞) .
(12)

From the de	nition of the (�, �)-Szász-Mirakjan opera-
tors we derive the following formulas.

Lemma 1. Let 0 < � < � ≤ 1. One has
(i) -�(1, �, �; �) = 1;
(ii) -�(/, �, �; �) = �;
(iii) -�(/2, �, �; �) = ��2/� + �/[�]�,�;
(iv) -�(/3, �, �; �) = (�3/�3)�3 + ((�2 + 2��)/�[�]�,�)�2 +(�2/[�]2�,�)�;
(v) -�(/4, �, �; �) = (�6/�6)�4 + (�3(�2 + 2� + 3�2)/�4[�]�,�)�3 + (�(�2 + 3�� + 3�2)/�[�]�,�)�2 +

(�3/[�]3�,�)�.
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Now we propose our Kantorovich variant of (�, �)-Szász-
Mirakjan operators (12) as follows.

For� ∈ 5[0,∞), 0 < � < � ≤ 1, and each positive integer�,
6� (�, �, �; �) = [�]�,�
⋅ ∞∑
�=0
�−���&�,� (�, �; �) ∫[�+1]�,�/�

�[�]�,�

[�]�,�/��−1[�]�,�
� (/) "�,�/, (13)

where � is a nondecreasing function. We will derive
the recurrence formula for 6�(/�, �, �; �) and calculate6�(/�, �, �; �) for� = 0, 1, 2.
Lemma 2. For the operators 6�, one has
6� (/�, �, �; �)
= 1[� + 1]�,�

�∑
�=0

�∑

=0

�

�
 [�]�−
�,� (

7
8) -� (/�+
−�, �, �; �) .

(14)

Proof. Using the expansion ��+1 − ��+1 = (� − �)(�� +��−1� + ⋅ ⋅ ⋅ + ���−1 + ��), we have
∫[�+1]�,�/��[�]�,�
[�]�,�/��−1[�]�,�

/�"�,�/

= 1[� + 1]�,� {(
[� + 1]�,��� [�]�,� )

�+1

− ( [�]�,���−1 [�]�,�)
�+1} .

(15)

Using [�+1]�,� = ��+�[�]�,� and also [�+1]�,� = ��+�[�]�,�,
we have

∫[�+1]�,�/��[�]�,�
[�]�,�/��−1[�]�,�

/�"�,�/ = 1[� + 1]�,�
��

�� [�]�,�
⋅ �∑
�=0
([� + 1]�,��� [�]�,� )

� ( [�]�,���−1 [�]�,�)
�−�

= 1[� + 1]�,�
��

�� [�]�,�
⋅ �∑
�=0
(�� + � [�]�,��� [�]�,� )

�

( [�]�,���−1 [�]�,�)
�−�

= 1[� + 1]�,�
��

�� [�]�,�
⋅ �∑
�=0

�∑

=0
(78)

�
 [�]
�,� ��(�−
)
��� [�]��,�

[�]�−��,�
�(�−1)(�−�) [�]�−��,�

= 1[� + 1]�,�
��

�� [�]�,�
⋅ �∑
�=0

�∑

=0
(78)

�
 [�]�+
−��,���
 [�]��,� �(�−1)(�−�) .

(16)

Writing this in the de	nition of6�(/�, �, �; �), we get
6� (/�, �, �; �) = [�]�,�
⋅ ∞∑
�=0
�−���&�,� (�, �; �) ∫[�+1]�,�/�

�[�]�,�

[�]�,�/��−1[�]�,�
/�"�,�/

= 1[� + 1]�,�
⋅ �∑
�=0

∞∑
�=0
&�,� (�, �; �)

�∑

=0

�

�
 [�]�−
�,� (

7
8)

[�]�+
−��,�
�(�−1)(�+
−�) [�]�+
−��,�

= 1[� + 1]�,�
⋅ �∑
�=0

�∑

=0

�

�
 [�]�−
�,� (

7
8)
∞∑
�=0

[�]�+
−��,�
�(�−1)(�+
−�) [�]�+
−��,� &�,� (�, �; �)

= 1[� + 1]�,�
�∑
�=0

�∑

=0

�

�
 [�]�−
�,� (

7
8) -� (/�+
−�, �, �; �) .

(17)

Using recurrence formula (14), we may easily calculate6�(/�, �, �; �) for� = 0, 1, 2.
Lemma 3. One has

(i) 6� (1, �, �; �) = 1;
(ii) 6� (/, �, �; �) = 1�� + 1[2]�,� [�]�,� ;

(iii) 6� (/2, �, �; �) = ��3 �2 + (
� + [2]�,�� [3]�,� [�]�,�

+ 1�2 [�]�,�)� +
1

[3]�,� [�]2�,� ;

(iv) 6� (/3, �, �; �) = �3�6 �3 + (�
2 + 2���4 [�]�,�

+ � (3�2 + 2�� + �2)�3 [4]�,� [�]�,� )�2 + ( 1
� [�]2�,�

+ 3�2 + 2�� + �2�2 [4]�,� [�]2�,� +
3� + �

� [4]�,� [�]2�,�)�
+ 1
[4]�,� [�]3�,� ;

(v) 6� (/4, �, �; �) = �6�10 �4 + (
�3 (�2 + 2� + 3�2)

�8 [�]�,�
+ �3 (4�3 + 3�2� + 2��2 + �3)�6 [5]�,� [�]�,� )�3
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+ (� (�2 + 3�� + 3�2)�5 [�]2�,�
+ (�2 + 2��) (4�3 + 3�2� + 2��2 + �3)�4 [5]�,� [�]2�,�
+ � (6�2 + 3�� + �2)�3 [5]�,� [�]2�,� )�2 + ( 1

� [�]3�,�
+ 4�3 + 3�2� + 2��2 + �3� [5]�,� [�]3�,� + 6�2 + 3�� + �2�2 [5]�,� [�]3�,�
+ 4� + �
� [5]�,� [�]3�,�)� +

1
[5]�,� [�]4�,� ;

(vi) 6� ((/ − �) , �, �; �) = 1 − �� � + 1[2]�,� [�]�,� ;
(18)

(vii) 6� ((/ − �)2 , �, �; �) = ( ��3 − 2� + 1)�2

+ ( � + [2]�,�� [3]�,� [�]�,� +
1�2 [�]�,� −

2[2]�,� [�]�,�)�
+ 1
[3]�,� [�]2�,� ;

(19)

(viii) 6� ((/ − �)4 , �, �; �) = �4 ( �6�10 − 4�
3

�6 + 6��3
− 4� + 1) + �3[�]�,� (

�3 (�2 + 2� + 3�2)
�8

+ �3 (4�3 + 3�2� + 2��2 + �3)�6 [5]�,� − 4 (�2 + 2��)�4
− 4� (3�2 + 2�� + �2)�3 [4]�,� + 6 (2� + �)� [3]�,� + 6�2
− 4[2]�,�) +

�2
[�]2�,� (

� (�2 + 3�� + 3�2)
�5

+ (�2 + 2��) (4�3 + 3�2� + 2��2 + �3)�4 [5]�,�
+ � (6�2 + 3�� + �2)�3 [5]�,� − 4 (3�2 + 2�� + �2)�2 − 4�
+ 6[3]�,�) +

�
[�]3�,� (

1� + 4�
3 + 3�2� + 2��2 + �3� [5]�,�

+ 6�2 + 3�� + �2�2 [5]�,� + 4� + �� [5]�,�) .

(20)

Proof. Obviously, with the help of Lemma 1, we can get

6� (/, �, �; �) = 1[2]�,� {(1 +
��) -� (/, �, �; �)

+ 1[�]�,� -� (1, �, �; �)} =
1�� + 1[2]�,� [�]�,� ,

6� (/2, �, �; �)
= 1[3]�,� {(1 +

�� + �
2

�2 )-� (/2, �, �; �)

+ ( 1[�]�,� +
2�� [�]�,�)-� (/, �, �; �)

+ 1
[�]2�,� -� (1, �, �; �)} =

1�2 -� (/2, �, �; �)

+ � + [2]�,�� [3]�,� [�]�,� -� (/, �, �; �) +
1

[3]�,� [�]2�,�
⋅ -� (1, �, �; �) = ��3 �2 + (

� + [2]�,�� [3]�,� [�]�,�
+ 1�2 [�]�,�)� +

1
[3]�,� [�]2�,� .

(21)

Using the linearity of the operators, we can have

6� ((/ − �)2 , �, �; �)
= 6� (/2, �, �; �) − 2�6� (/, �, �; �)
+ �26� (1, �, �; �)

= ��3 �2 + (
� + [2]�,�� [3]�,� [�]�,� +

1�2 [�]�,�)�

+ 1
[3]�,� [�]2�,� − 2�(

1�� + 1[2]�,� [�]�,�) + �
2

= ( ��3 − 2� + 1)�2

+ ( � + [2]�,�� [3]�,� [�]�,� +
1�2 [�]�,� −

2[2]�,� [�]�,�)�
+ 1
[3]�,� [�]2�,� .

(22)

Remark 4. For � ∈ (0, 1) and � ∈ (�, 1], it is obvious that
(i) when � = 1, lim�→∞[�]�,� = lim�→∞((1 − ��)/(1 −�)) = 1/(1 − �), and (ii) when � < 1, lim�→∞[�]�,� =
lim�→∞((��−��)/(�−�)) = 0. In order to reach convergence
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results of the operator 6�, we take sequences �� ∈ (0, 1) and�� ∈ (��, 1] such that lim�→∞�� = 1, lim�→∞�� = 1. So we
get that lim�→∞[�]��,�� = ∞.

�us the above remark provides an example that such a
sequence can always be constructed. If we choose for � > � >0, �� = �/(� + �) < �/(� + �) = �� such that 0 < �� < �� ≤ 1,
it can be easily seen that lim�→∞�� = 1, lim�→∞�� = 1 and
lim�→∞��� = �−�, lim�→∞��� = �−�. Hence we guarantee that
lim�→∞[�]�� ,�� = ∞.

3. Direct Approximation Results

In this section we study Korovkin’s approximation property
of the Kantorovich variant of (�, �)-Szász operators.
�eorem 5. Let 0 < �� < �� ≤ 1 and G > 0. �en for each� ∈ 5�[0,∞) fl {� ∈ 5[0,∞) : |�(�)| ≤ H�(1 + ��),
for someH� > 0 depending on �, � > 0} where 5�[0,∞) be
endowed with the norm ‖�‖� = sup�∈[0,∞)|�(�)|/(1+��), the
sequence of operators6�(�, ��, ��; �) converges to � uniformly
on [0, G] if and only if lim�→∞�� = 1 and lim�→∞�� = 1.
Proof. First, we assume that lim�→∞�� = 1 and lim�→∞�� =1. Now, we have to show that 6�(�, ��, ��; �) converges to �
uniformly on [0, G].

From Lemma 3, we see that

6� (1, ��, ��; �) J→ 1,
6� (/, ��, ��; �) J→ �,
6� (/2, ��, ��; �) J→ �2

(23)

uniformly on [0, G] as � → ∞.
�erefore, the well-known property of the Korovkin the-

orem implies that 6�(�, ��, ��; �) converges to � uniformly
on [0, G] provided � ∈ 5�[0,∞).

We show the converse part by contradiction. Assume that�� and �� do not converge to 1. �en they must contain
subsequences ��� ∈ (0, 1), ��� ∈ (0, 1), ��� → � ∈ [0, 1),
and ��� → � ∈ [0, 1) as � → ∞, respectively.

�us,

1[��]��� ,��� =
��� − ���(���)�� − (���)�� J→ 0 as � J→ ∞ (24)

and we get

6� (/, ��� , ��� ; �) − � = 1��� � +
1[2]��� ,��� [�]��� ,���

− � J→ �� − � ̸= 0.
(25)

�is leads to a contradiction. �us �� → 1 and �� → 1 as� → ∞.

�eorem 6. Let � ∈ 52[0,∞), � = �� ∈ (0, 1), and � =�� ∈ (�, 1] such that �� → 1, �� → 1 as � → ∞ and let

N�+1(�, O) be the modulus of continuity on the �nite interval[0, � + 1] ⊂ [0,∞), where � > 0. �en

%%%%6� (�, �, �; �) − � (�)%%%%
≤ 4H� (1 + �2) O2� (�) + 2N�+1 (�, O� (�)) , (26)

where O�(�) = √6�((/ − �)2, �, �; �), given by (19).

Proof. For � ∈ [0, �] and / > � + 1, since / − � > 1, we have
%%%%� (/) − � (�)%%%% ≤ H� (2 + �2 + /2)

≤ H� (2 + 3�2 + 2 (/ − �)2)
≤ H� (4 + 3�2) (/ − �)2
≤ 4H� (1 + �2) (/ − �)2 .

(27)

For � ∈ [0, �] and / ≤ � + 1, we have
%%%%� (/) − � (�)%%%% ≤ N�+1 (�, |/ − �|)

≤ (1 + |/ − �|O )N�+1 (�, O) (28)

with O > 0.
From (27) and (28), we may write

%%%%� (/) − � (�)%%%% ≤ 4H� (1 + �2) (/ − �)2
+ (1 + |/ − �|O )N�+1 (�, O) ,

(29)

for � ∈ [0, �] and / ≥ 0. �us, by applying Cauchy-Schwarz’s
inequality, we have

%%%%6� (�, �, �; �) − � (�)%%%% ≤ 6� (%%%%� (/) − � (�)%%%% , �, �; �)
≤ 4H� (1 + �2)6� ((/ − �)2 , �, �; �)
+ (1 + 1O√6� ((/ − �)2 , �, �; �))N�+1 (�, O)

≤ 4H� (1 + �2) O2� (�) + 2N�+1 (�, O� (�))

(30)

on choosing O fl O�(�). �is completes the proof of the
theorem.

4. Local Approximation

In this section we establish local approximation theorem
for the Kantorovich variant of (�, �)-Szász operators. Let5�[0,∞) be the space of all real-valued continuous bounded
functions � on [0,∞), endowed with the norm ‖�‖ =
sup�∈[0,∞)|�(�)|. Peetre’s6-functional is de	ned by

62 (�, O) = inf
�∈�2[0,∞)

{UUUU� − �UUUU + O UUUUU�		UUUUU} , (31)
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where 52�[0,∞) fl {� ∈ 5�[0,∞) : �	, �		 ∈ 5�[0,∞)}.
By [2, p.177, �eorem 2.4], there exists an absolute constantH > 0 such that

62 (�, O) ≤ HN2 (�,√O) , (32)

where O > 0 and the second-order modulus of smoothness is
de	ned as

N2 (�, O)
= sup
0<ℎ≤�

sup
�∈[0,∞)

%%%%� (� + 2ℎ) − 2� (� + ℎ) + � (�)%%%% , (33)

where � ∈ 5�[0,∞) and O > 0.
�eorem 7. Let � ∈ 5�[0,∞) and 0 < � < � ≤ 1. �en, for
every � ∈ [0,∞), one has

%%%%6� (�, �, �; �) − � (�)%%%%
≤ HN2 (�,√O� (�))
+ N(�, 1[2]�,� [�]�,� +

1 − �� �) ,
(34)

whereH is an absolute constant and

O� (�) = 6� ((/ − �)2 , �, �; �)
+ ( 1[2]�,� [�]�,� +

1 − �� �)2 . (35)

Proof. For � ∈ [0,∞), we consider the auxiliary operators6∗�
de	ned by

6∗� (�, �, �; �) = 6� (�, �, �; �)
− �( 1[2]�,� [�]�,� +

1��) + � (�) .
(36)

From Lemma 3, we observe that the operators 6∗� (�, �, �; �)
are linear and reproduce the linear functions. Hence

6∗� ((/ − �) , �, �; �) = 6� ((/ − �) , �, �; �)
− ( 1[2]�,� [�]�,� +

1�� − �)
= 6� (/, �, �; �)
− �6� (1, �, �; �)
− ( 1[2]�,� [�]�,� +

1��) + �
= 0.

(37)

Let � ∈ [0,∞) and � ∈ 52�[0,∞). Using Taylor’s formula,

� (/) = � (�) + �	 (�) (/ − �) + ∫�
�
(/ − Y) �		 (Y) "Y. (38)

Applying 6∗� to both sides of the above equation and using
(37), we have

6∗� (�, �, �; �) − � (�) = 6∗� ((/ − �) �	 (�) , �, �; �)
+ 6∗� (∫�� (/ − Y) �		 (Y) "Y, �, �; �) = �	 (�)
⋅ 6∗� ((/ − �) , �, �; �)
+ 6(�,�)� (∫�

�
(/ − Y) �		 (Y) "Y, �, �; �)

− ∫1/[2]�,�[�]�,�+(1/�)�
�

( 1[2]�,� [�]�,� +
1�� − Y)

⋅ �		 (Y) "Y = 6� (∫�� (/ − Y) �		 (Y) "Y, �, �; �)
− ∫1/[2]�,�[�]�,�+(1/�)�
�

( 1[2]�,� [�]�,� +
1�� − Y)

⋅ �		 (Y) "Y.

(39)

On the other hand, since

%%%%%%%%∫
�

�
(/ − Y) �		 (Y) "Y%%%%%%%% ≤ ∫

�

�
|/ − Y| %%%%%�		 (Y)%%%%% "Y ≤ UUUUU�		UUUUU

⋅ ∫�
�
|/ − Y| "Y ≤ (/ − �)2 UUUUU�		UUUUU ,

%%%%%%%%%∫
1/[2]�,�[�]�,�+(1/�)�

�
( 1[2]�,� [�]�,� +

1�� − Y)

⋅ �		 (Y) "Y%%%%%%%%% ≤ (
1[2]�,� [�]�,� +

1�� − Y)
2 UUUUU�		UUUUU ,

(40)

we conclude that

%%%%6∗� (�, �, �; �) − � (�)%%%%
= %%%%%%%%%6� (∫

�

�
(/ − Y) �		 (Y) "Y, �, �; �)

− ∫1/[2]�,�[�]�,�+(1/�)�
�

( 1[2]�,� [�]�,� +
1�� − Y)

⋅ �		 (Y) "Y%%%%%%%%% ≤
UUUUU�		UUUUU6� ((/ − �)2 , �, �; �)

+ ( 1[2]�,� [�]�,� +
1�� − �)

2 UUUUU�		UUUUU = O� (�) UUUUU�		UUUUU .

(41)

Now, taking into account boundedness of6∗� by (36), we have
%%%%6∗� (�, �, �; �)%%%% ≤ %%%%6� (�, �, �; �)%%%% + 2 UUUU�UUUU ≤ 3 UUUU�UUUU . (42)
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Using (41) and (42) in (36), we obtain

%%%%6� (�, �, �; �) − � (�)%%%%
≤ %%%%6∗� (�, �, �; �) − � (�)%%%%
+ %%%%%%%%%� (�) − �(

1[2]�,� [�]�,� +
1��)

%%%%%%%%%
≤ %%%%6∗� (� − �, �, �; �) − (� − �) (�)%%%%
+ %%%%%%%%%� (�) − �(

1[2]�,� [�]�,� +
1��)

%%%%%%%%%
+ %%%%6∗� (�, �, �; �) − � (�)%%%%

≤ %%%%6∗� (� − �, �, �; �)%%%% + %%%%(� − �) (�)%%%%
+ %%%%%%%%%� (�) − �(

1[2]�,� [�]�,� +
1��)

%%%%%%%%%
+ %%%%6∗� (�, �, �; �) − � (�)%%%%

≤ 4 UUUU� − �UUUU + N(�, 1[2]�,� [�]�,� +
1 − �� �)

+ O� (�) UUUUU�		UUUUU .

(43)

Hence, taking the in	mumon the right-hand side over all� ∈52�[0,∞), we have the following result:
%%%%6� (�, �, �; �) − � (�)%%%%
≤ 462 (�, O� (�))
+ N(�, 1[2]�,� [�]�,� +

1 − �� �) .
(44)

In view of the property of6-functional (32), we get
%%%%6� (�, �, �; �) − � (�)%%%%
≤ HN2 (�,√O� (�))
+ N(�, 1[2]�,� [�]�,� +

1 − �� �) .
(45)

�is completes the proof of the theorem.

5. Weighted Approximation

Let � ∈ 5∗2 [0,∞) fl {� ∈ 52[0,∞) : lim�→∞(|�(�)|/(1 +�2)) < ∞}. �roughout the section, we assume that (��) and(��) are sequences such that 0 < �� < �� ≤ 1 and �� → 1,�� → 1 as � → ∞.

�eorem 8. For each � ∈ 5∗2 [0,∞), one has
lim�→∞

UUUU6� (�, ��, ��; �) − � (�)UUUU2 = 0. (46)

Proof. Using theKorovkin type theoremonweighted approx-
imation in [15], we see that it is su�cient to verify the
following three conditions:

lim�→∞
UUUUU6� (/
, ��, ��; �) − �
UUUUU2 = 0, 8 = 0, 1, 2. (47)

Since6�(1, ��, ��; �) = 1, (47) holds true for� = 0.
By Lemma 3, we have

UUUU6� (/, ��, ��; �) − �UUUU2 = sup
�∈[0,∞)

%%%%6� (/, ��, ��; �) − �%%%%1 + �2
= sup
�∈[0,∞)

11 + �2
%%%%%%%%%
1�� � +

1[2]�,� [�]�,� − �
%%%%%%%%%

≤ ( 1�� − 1) sup
�∈[0,∞)

�1 + �2
+ 1[2]�,� [�]�,� sup

�∈[0,∞)

11 + �2
≤ 1�� − 1 +

1[2]�,� [�]�,� ,

(48)

which implies that the condition in (47) holds for 8 = 1 as� → ∞.
Similarly we can write

UUUUU6� (/2, ��, ��; �) − �2UUUUU2
= sup
�∈[0,∞)

%%%%%6� (/2, ��, ��; �) − �2%%%%%1 + �2
≤ (���3� − 1) sup

�∈[0,∞)

�21 + �2
+ ( 2�� + ���� [3]��,�� [�]��,�� +

1�2� [�]��,�� ) sup
�∈[0,∞)

�1 + �2
+ 1
[3]��,�� [�]2��,�� sup

�∈[0,∞)

11 + �2 ≤ ���3� − 1
+ 2�� + ���� [3]��,�� [�]��,�� +

1�2� [�]��,��
+ 1
[3]��,�� [�]2��,�� ,

(49)

which implies that

lim�→∞
UUUUU6� (/2, ��, ��; �) − �2UUUUU2 = 0, (50)

and equation (47) holds for 8 = 2.�us the proof is completed.

We give the following theorem to approximate all func-
tions in 5∗2 [0,∞). �ese types of results are given in [16] for
classical Szász operators.
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�eorem 9. For each � ∈ 5∗2 [0,∞) and Z > 0, one has
lim�→∞ sup
�∈[0,∞)

%%%%6� (�, ��, ��; �) − � (�)%%%%(1 + �2)1+� = 0. (51)

Proof. Let �0 ∈ [0,∞) be arbitrary but 	xed. �en

sup
�∈[0,∞)

%%%%6� (�, ��, ��; �) − � (�)%%%%(1 + �2)1+�
= sup
�≤�0

%%%%6� (�, ��, ��; �) − � (�)%%%%(1 + �2)1+�
+ sup
�>�0

%%%%6� (�, ��, ��; �) − � (�)%%%%(1 + �2)1+�
≤ UUUU6� (�) − �UUUU�[0,�0]
+ UUUU�UUUU2 sup�>�0

%%%%%6� (1 + /2, �, �; �)%%%%%(1 + �2)1+�
+ sup
�>�0

%%%%� (�)%%%%(1 + �2)1+� .

(52)

Since |�(�)| ≤ ‖�‖2(1 + �2), we have sup�>�0(|�(�)|/(1 +�2)1+�) ≤ ‖�‖2/(1 + �20)�.
Let \ > 0 be arbitrary.We can choose �0 to be so large that

UUUU�UUUU2(1 + �20)� <
\3 . (53)

In view of �eorem 5, we obtain

UUUU�UUUU2 lim�→∞
%%%%%6� (1 + /2, �, �; �)%%%%%(1 + �2)1+� = 1 + �2

(1 + �2)1+�
UUUU�UUUU2

= UUUU�UUUU2(1 + �2)� ≤
UUUU�UUUU2(1 + �20)� <

\3 .
(54)

Using �eorem 6, we can see that the 	rst term of
inequality (52) implies that

UUUU6� (�) − �UUUU�[0,�0] < \3 , as � J→ ∞. (55)

Combining (53)–(55), we get that desired result.
For � ∈ 5∗2 [0,∞), the weighted modulus of continuity is

de	ned as

Ω2 (�, O) = sup
�≥0,0<ℎ≤�

%%%%� (� + ℎ) − � (�)%%%%1 + (� + ℎ)2 . (56)

Lemma 10 (see [17]). If � ∈ 5∗2 [0,∞), then
(i) Ω2(�, O) is monotone increasing function of O,
(ii) lim�→0+Ω2(�, O) = 0,
(iii) for any _ ∈ [0,∞), Ω2(�, _O) ≤ (1 + _)Ω2(�, O).

�eorem 11. If � ∈ 5∗2 [0,∞), then for su�ciently large � one
has

%%%%6� (�, �, �; �) − � (�)%%%% ≤ 6 (1 + �2+�)Ω2 (�, O�) ,
� ∈ [0,∞) , (57)

where _ ≥ 1 and O� = max{Z�, `�, a�}, Z�, `�, a� being
Z� = ��3 − 2� + 1,
`� = � + [2]�,�� [3]�,� [�]�,� +

1�2 [�]�,� −
2[2]�,� [�]�,� ,

a� = 1
[3]�,� [�]2�,� .

(58)

Proof. From the de	nition ofΩ2(�, O) and Lemma 10, wemay
write%%%%� (/) − � (�)%%%%

≤ (1 + (� + |/ − �|)�) ( |/ − �|O + 1)Ω2 (�, O)
≤ (1 + (2� + /)�) ( |/ − �|O + 1)Ω2 (�, O)
fl b� (/) (1 + 1Oc� (/))Ω2 (�, O) .

(59)

�en we obtain%%%%6� (�, �, �; �) − � (�)%%%% ≤ Ω2 (�, O�)
⋅ (6� (b�, �, �; �) + 1O�6� (b�c�, �, �; �)) .

(60)

Applying the Cauchy-Schwartz inequality to the second term
on the right-hand side, we get

%%%%6� (�, �, �; �) − � (�)%%%% ≤ Ω2 (�, O) (6� (b�, �, �; �)
+ 1O�√6� (b2�, �, �; �)√6� (c2�, �, �; �)) .

(61)

From Lemma 3, we get

11 + �26� (1 + /2, �, �; �)
= 11 + �2 + ��3 �21 + �2
+ ( � + [2]�,�� [3]�,� [�]�,� +

1�2 [�]�,�)
�1 + �2

+ 1
[3]�,� [�]2�,�

11 + �2 ≤ 1 + 51,
for su�ciently large �,

(62)

where 51 is a positive constant. From (62), there exists a
positive constant 61 such that 6�(b�, �, �; �) ≤ 61(1 + �2),
for su�ciently large �.
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Proceeding similarly, (1/(1 + �4))6�(1 + /4, �, �; �) ≤1 + 52, for su�ciently large �, where52 is a positive constant.
So there exists a positive constant 62 such that6�(b2�, �, �; �) ≤ 62(1 + �2), where � ∈ [0,∞) � is

large enough. Also we get

6� (c2�, �, �; �)
= ( ��3 − 2� + 1)�2

+ ( � + [2]�,�� [3]�,� [�]�,� +
1�2 [�]�,� −

2[2]�,� [�]�,�)�
+ 1
[3]�,� [�]2�,� = Z��

2 + `�� + a�.

(63)

Hence, from (61), we have%%%%6� (�, �, �; �) − � (�)%%%% ≤ (1 + �2)
⋅ (61 + 1O�62√Z��2 + `�� + a�)Ω2 (�, O�) .

(64)

If we take O� = max{Z�, `�, a�}, then we get%%%%6� (�, �, �; �) − � (�)%%%%
≤ (1 + �2) (61 + 62√�2 + � + 1)Ω2 (�, O�)
≤ 63 (1 + �2+�)Ω2 (�, O�) ,

for su�ciently large �, � ∈ [0,∞) .
(65)

Hence the proof is completed.

6. Conclusion

By using the notion of (�, �)-integers, we introduced Kan-
torovich variant of (�, �)-analogue of Szász-Mirakjan opera-
tors and established the moments of the operators with the
help of a recurrence relation. �e local approximation and
weighted approximation properties of these new operators
in terms of modulus of continuity are studied. �ese results
generalize the approximation results proved for Kantorovich
variant of �-analogue of Szász-Mirakjan operators which are
directly obtained by our results for � = 1.
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