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Abstract

In this paper, we consider a simple kinetic model of economy involving both ex-
changes between agents and speculative trading. We show that the kinetic model ad-
mits non trivial quasi-stationary states with power law tails of Pareto type. In order to
do this we consider a suitable asymptotic limit of the model yielding a Fokker-Planck
equation for the distribution of wealth among individuals. For this equation the sta-
tionary state can be easily derived and shows a Pareto power law tail. Numerical
results confirm the previous analysis.

Keywords. Econophysics, Boltzmann equation, wealth and income distributions,
Pareto distribution.

1 Introduction

Microscopic models of simple market economies [6, 7, 11, 13, 14] and financial markets
[12, 16, 22] have been recently introduced by several authors. The main idea is that
an economic system composed by a sufficiently large number of agents can be described
using the laws of statistical mechanics as it happens in a physical system composed of
many interacting particles. The details of the economical interactions between agents
characterize their wealth distribution.

The study of wealth distributions has a long history going back to more then one
century ago with the Italian sociologist and economist Vilfredo Pareto which studied the
distribution of income among people of different western countries and found an inverse
power law [21]. More precisely if f(w) is the probability density function of agents with
wealth w we have

F (w) =
∫ ∞

w
f(w∗) dw∗ ∼ w−µ.
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Pareto mistakenly believed that power laws apply to the whole distribution with a universal
exponent µ approximatively equal to 1.5. Later, Mandelbrot, proposed a weak Pareto law
that applies only to high incomes [18].

Income data from developed countries show Pareto-like behaviors with order 1 expo-
nents for large values of incomes (USA ∼ 1.6, Japan ∼ 1.8 − 2.2 [11]). It is common, in
fact, that 90% of the total wealth is owned by only 5% of the population. According to
data, across the full range of income, we should expect the probability density function
f(w) to increase at low income, reach a maximum and, finally decrease with increasing
wealth [11].

In our discussion we use the terms distribution of income (money) and distribution
of wealth interchangeably (although the two distributions may not exactly coincide there
is a strong dependence on one another). Income, in fact, is only one part of wealth, the
other part being material wealth. Material products have no conservation law and their
monetary value is not constant (they can be manufactured, destroyed, consumed, etc.).
The distinction between the two will not influence the conclusion drawn here from the
dynamical model of economic interactions we consider.

Following this line of thought, we consider here a very simple model of an open market
economy involving both assets exchanges between individuals and speculative trading. In
our non-stationary economy the average wealth is not conserved due to a random dynamics
which describes the spontaneous growth or decrease of wealth due to investments in the
stock market, housing, ect. It is important to note that this mechanism corresponds to
the effects of an open market economy where the investments cause the total economy
to growth (more precisely the rich would get richer and the poor would get poorer).
The conservative exchanges dynamic between individuals redistributes the wealth among
people.

We emphasize that the mathematical analysis of the kinetic model is not as simple as
it may look due to the constraint that debts are not allowed. One immediately sees that
in general the average wealth should grow yet it is not obvious to prove that this grow
occurs exponentially. As usual in similar situations, the best way to extract information
on the large-time behavior of the solution relies in the scaling the solution itself to keep
the average wealth constant. Nevertheless, the determination of an explicit form of the
limit distribution of the kinetic equation remains extremely difficult and requires the use
of suitable numerical methods.

A complementary method to extract information on the tails is linked to the possibil-
ity to obtain particular asymptotics, which hopefully maintain the characteristics of the
solution to the original problem for large times. Along this line, we shall show that the
kinetic model converges in a suitable asymptotic limit (hereafter called continuous trading
limit) towards a partial differential equation of Fokker-Planck type for the distribution of
money among individuals. The same Fokker-Planck equation was obtained in [4] as the
mean field limit of a stochastic dynamical equation, as well as in [24, 17] in the context of
a generalized Lotka-Volterra dynamic.

The equilibrium state of the Fokker-Planck equation can be computed explicitly and
is of Pareto type, namely it is characterized by a power-law tail for the richest individuals.

The mathematical methods we use are close to those used in the context of kinetic
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theory for granular flows, where the limit procedure is known as quasi-elastic asymptotics
[25, 19]. We mention here a similar asymptotic analysis performed on a kinetic model of
a simple market economy with a constant growth mechanism [23].

The paper is organized as follows. In the next section, we introduce the binary inter-
action between agents, which is at the basis of the kinetic model. The main properties of
the model are discussed in section 3. These properties justify the continuous trading limit
procedure, performed in section 4. The limit is illustrated by several numerical results in
section 5.

2 A kinetic model of money asset exchanges

The goal of a kinetic model of simple market economies, is to describe the evolution of the
distribution of money by means of microscopic interactions among agents or individuals
which perform exchange of money. Each trade can indeed be interpreted as an interaction
where a fraction of the money changes hands. We will assume that this wealth after the
interaction is non negative, which corresponds to impose that no debts are allowed. This
rule emphasizes the difference between economic interactions, where not all outcomes are
permitted, and the classical interactions between molecules.

From a microscopic view point, the binary interaction is described by the following
rules

w′ = (1− γ)w + γw∗ + ηw

(1)
w′∗ = (1− γ)w∗ + γw + η∗w∗

where (w, w∗) denote the (positive) money of two arbitrary individuals before the trade
and (w′, w′∗) the money after the trade. In (1) we will not allow agents to have debts,
and thus the interaction takes place only if w′ ≥ 0 and w′∗ ≥ 0. In (1) the transaction
coefficient γ ∈ (0, 1/2) is a given constant, while η and η∗ are random variables with the
same distribution (for example normal) with variance σ2 and zero mean.

Let us describe the three terms in the right hand side. The first term is related to the
marginal saving propensity of the agents, the second corresponds to the money transaction,
and the last contains the effects of an open economy describing the market returns. As we
will show, the main consequence of the natural hypothesis to discard trades that produce
debts, is that the total amount of money in the system is increasing. We refer the reader
to Section 5 for numerical results in this direction.

This binary interaction model can be also related to some recent Lotka-Volterra type
models [4]. A similar trade rule where η and η∗ have the same positive constant value
has been considered recently in [23]. A collection of various types of binary interactions
recently considered in the literature can be found in [20].

In a closed economical system it is assumed that the total amount of money is conserved
(η, η∗ ≡ 0). This conservation law is reminiscent of analogous conservations which take
place in kinetic theory. In such a situation, thanks to the bounds on the transaction
coefficient equations (1) correspond to a granular gas like model (or to a traffic flow
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model[15]) where the stationary state is a Dirac delta centered in the average wealth
(usually referred to as synchronized traffic state in traffic flow modelling). This behavior
is a consequence of the fact that, in a single trade, the difference of wealths is diminishing,
with |w′−w′∗| = (1− 2γ)|w−w∗|. Thus all agents will end up in the market with exactly
the same amount of money.

Let f(w, t) denote the distribution of money w ∈ IR+ at time t ≥ 0. By standard
methods of kinetic theory, it is easy to show that the time evolution of f is driven by the
following integro-differential equation of Boltzmann type,

∂f

∂t
=

∫

IR2

∫ ∞

0

(
β(′w,′w∗)→(w,w∗)

1
J

f(′w)f(′w∗)− β(w,w∗)→(w′,w′∗)f(w)f(w∗)
)

dw∗ dη dη∗

(2)
where (′w,′w∗) are the pre-trading money that generates the couple (w,w∗) after the
interaction. In (2) J is jacobian of the transformation of (w, w∗) into (w′, w′∗),

J = (1− γ + η)(1− γ + η∗)− γ2,

while the kernel β is related to the details of the binary interaction.
As usual in classical kinetic theory of rarefied gases, the interaction integral on right-

hand side of (2) represents the instantaneous variation of the distribution of money, due
to the balance between gain and loss of wealth in binary trades. The presence of the
Jacobian J , guarantees that equation (2) preserves the mass (total number of agents), for
any choice of the rate function β. We shall restrict here to a transition rate of the form

β(w,w∗)→(w′,w′∗) = Θ(η)Θ(η∗)Ψ(w′ ≥ 0)Ψ(w′∗ ≥ 0),

where Ψ(A) is the indicator function of the set A, and Θ(·) is a symmetric probability
density with zero mean and variance σ2. The rate function β(w,w∗)→(w′,w′∗) characterizes
the effects of the open economy through the distribution of the random variables η and η∗
and takes into account the hypothesis that no-debts are allowed. The above equation can
be included in a more general settings where the trade rule has a more complex structure
including, for example, risk, taxes and subsidies as described in [20].

We remark that, for general probability density Θ(·), the rate function β depends on
the wealth variables (w,w∗) through the indicator functions Ψ. This is analogous to what
happens in the classical Boltzmann equation [5, 8], where the rate function depends on
the relative velocity. A simplified situation occurs when the random variables take values
on the set (−(1− γ), 1− γ). In this case in fact, both w′ ≥ 0 and w′∗ ≥ 0, and the kernel
β does not depend on the wealth variables (w, w∗). In this case the kinetic equation (2)
is the corresponding of the classical Boltzmann equation for Maxwell molecules [2], which
presents several mathematical simplifications. In all cases however, methods borrowed
from kinetic theory of rarefied gas can be used to study the evolution of the function f .

3 Main properties of the kinetic equation

We will start our analysis by introducing some notations and by discussing the main
properties of the kinetic equation (2). Our goal here will be both to describe the time
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evolution of the average wealth, and to obtain upper bounds for the evolution of higher
moments. The problem of the determination of a steady state for the equation is addressed
in the next section. As we shall see, the reasonable and simple hypothesis of the constraint
on post-collisional trade (the dept is not allowed) brings to the conclusion that in the
general case the average wealth increases at least exponentially in time.

Let Q(f, f) denote the interaction integral,

Q(f, f)(w) =
∫

IR2

∫ ∞

0
(β(′w,′w∗)→(w,w∗)

1
J

f(′w)f(′w∗)−β(w,w∗)→(w′,w′∗)f(w)f(w∗))dw∗ dη dη∗.

(3)
Let M0 the space of all probability measures in IR+ and by

Mp =
{

Θ ∈M0 :
∫

IR+

|η|pΘ(η) dη < +∞, p ≥ 0
}

, (4)

the space of all Borel probability measures of finite momentum of order p, equipped with
the topology of the weak convergence of the measures.

Let Fp(IR+), p > 1 be the class of all real functions on IR+ such that g(0) = g′(0) = 0,
and g(m)(v) is Hölder continuous of order δ,

‖g(m)‖δ = sup
v 6=w

|g(m)(v)− g(m)(w)|
|v − w|δ < ∞, (5)

the integer m and the number 0 < δ ≤ 1 are such that m + δ = p, and g(m) denotes the
m-th derivative of g.

In the rest of the paper we will assume that the symmetric probability density Θ(η)
which characterizes the transition rate belongs to M2+α, for some α > 0. Moreover,
to simplify computations, we assume that this density is obtained from a given random
variable Y with zero mean and unit variance, that belongs to M2+α. Thus, Θ of variance
σ2 is the density of σY . By this assumption, we can easily obtain the dependence on σ of
the moments of Θ. In fact, for any p > 2 such that the p-th moment of Y exists,

∫

IR
|η|pΘ(η)dη = E (|σY |p) = σpE (|Y |p) .

By a weak solution of the initial value problem for equation (2), corresponding to
the initial probability density f0(w) ∈ Mp, p > 1 we shall mean any probability density
f ∈ C1(IR+,Mp) satisfying the weak form of the equation

d

dt

∫

IR+

φ(w)f(w, t) dw = (Q(f, f), φ) =
∫

IR2

∫

IR2
+

β(w,w∗)→(w′,w′∗)f(w)f(w∗)(φ(w′)− φ(w))dw∗dwdη dη∗, (6)

for t > 0 and all φ ∈ Fp(IR+), and such that for all φ ∈ Fp(IR+)

lim
t→0

∫

IR+

φ(w)f(w, t) dw =
∫

IR+

φ(w)f0(w) dw. (7)
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The form (6) is easier to handle, and it is the starting point to reckon the evolution of
macroscopic quantities (moments). By symmetry reasons, we can alternatively use the
symmetric form

d

dt

∫ ∞

0
f(w)φ(w) dw =

1
2

∫

IR2

∫

IR2
+

β(w,w∗)→(w′,w′∗)f(w)f(w∗)

(8)
(φ(w′) + φ(w′∗)− φ(w)− φ(w∗))dw∗ dw dη dη∗.

Existence of a weak solution to the initial value problem for equation (2) can be eas-
ily obtained by using methods first applied to the Boltzmann equation [5]. The main
difference here is that the classical Boltzmann H-theorem, which prevents formation of
concentration, does not hold.

From (6) (or equivalently from (8)) conservation of the total number of agents is
obtained for φ(w) = 1, which represents the only conservation property satisfied by the
system. The choice φ(w) = w is of particular interest since it gives the time evolution of
the average wealth. We have

d

dt

∫

IR+

wf(w, t) dw =
∫

IR2

∫

IR2
+

β(w,w∗)→(w′,w′∗)f(w)f(w∗)(γ(w∗ −w) + ηw)dw∗dwdη dη∗ =

∫

IR2

∫

IR2
+

β(w,w∗)→(w′,w′∗)f(w)f(w∗)γ(w∗ − w)dw∗dwdη dη∗+

∫

IR2

∫

IR2
+

β(w,w∗)→(w′,w′∗)f(w)f(w∗)ηwdw∗dwdη dη∗ =

∫

IR2

∫

IR2
+

ηΘ(η)Θ(η∗)Ψ(w′ ≥ 0)Ψ(w′∗ ≥ 0)wf(w)f(w∗)dw∗dwdη dη∗. (9)

The previous equality follows from the fact that, by symmetry,
∫

IR2

∫

IR2
+

β(w,w∗)→(w′,w′∗)f(w)f(w∗)γ(w∗ − w)dw∗dwdη dη∗ = 0.

Let us study into details the last integral in formula (9). By definition 1,

Ψ(w′ ≥ 0) = Ψ
(
η ≥ −(1− γ)− γ

w∗
w

)
, Ψ(w′∗ ≥ 0) = Ψ

(
η∗ ≥ −(1− γ)− γ

w

w∗

)
.

Since Θ(·) is a symmetric probability density, we have the bounds

1
2
≤

∫

IR
Θ(η∗)Ψ

(
η∗ ≥ −(1− γ)− γ

w

w∗

)
dη∗ ≤ 1. (10)

For the same reasons,
∫

IR
ηΘ(η)Ψ

(
η ≥ −(1− γ)− γ

w∗
w

)
dη =

∫

IR
ηΘ(η)Ψ

(
η ≥ 1− γ + γ

w∗
w

)
dη > 0. (11)
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Bounds (10) and (11) show that the average wealth is increasing, unless w′ ≥ 0 and w′∗ ≥ 0
for all exchanges (in such case the average wealth would be conserved). This property
enlightens the importance of the choice of the probability density function Θ(η) in the
model. If Θ(η) has unbounded support, an accurate analysis of (9) permits to extract
information on the rate of growth of the average wealth. To this aim, let us remark that

Ψ
(
η ≥ 1− γ + γ

w∗
w

)
≤ Ψ(η ≥ 1− γ) .

Hence, if the random variable X ∈M2+α, for some α > 0
∫

IR
ηΘ(η)Ψ

(
η ≥ 1− γ + γ

w∗
w

)
dη ≤

∫

IR
ηΘ(η)Ψ (η ≥ 1− γ) dη ≤ E(X2+α)

(1− γ)1+α
. (12)

Thanks to (10) and (12), we obtain

d

dt

∫

IR+

wf(w, t) dw ≤ E(X2+α)
(1− γ)1+α

∫

IR+

wf(w) dw. (13)

Moreover, by (10)
∫

IR2

∫

IR2
+

ηΘ(η)Θ(η∗)Ψ(w′ ≥ 0)Ψ(w′∗ ≥ 0)wf(w)f(w∗)dw∗dwdη dη∗ ≥

1
2

∫

IR2
+

wf(w)f(w∗)dw∗dw

∫

IR
ηΘ(η)Ψ (η > 1− γ + γ(w∗/w)) dη ≥

1
2

∫

IR2
+

Ψ(w∗ < w)wf(w)f(w∗)dw∗dw

∫

IR
ηΘ(η)Ψ (η > 1− γ + γ(w∗/w)) dη. (14)

Last, on the set {w∗ < w}, Ψ (η > 1− γ + γ(w∗/w)) ≥ Ψ(η > 1). Moreover
∫

IR2
+

Ψ(w∗ < w)wf(w)f(w∗)dw∗dw =
∫

IR2
+

Ψ(w < w∗)w∗f(w)f(w∗)dw∗dw =

1
2

∫

IR2
+

[Ψ(w∗ < w)w + Ψ(w < w∗)w∗] f(w)f(w∗)dw∗dw ≥

1
2

∫

IR2
+

[Ψ(w∗ < w)w + Ψ(w < w∗)w] f(w)f(w∗)dw∗dw =
1
2

∫

IR+

wf(w) dw. (15)

Grouping together all the previous inequalities we conclude that the average wealth satis-
fies the inequalities

d

dt

∫

IR+

wf(w, t) dw ≥ 1
4

∫

IR
ηΘ(η)Ψ (η > 1) dη

∫

IR+

wf(w, t) dw. (16)

If X is a random variable of density Θ(η), taking values on a interval (−a, a), with a > 1,
∫

IR
ηΘ(η)Ψ (η > 1) dη = A > 0, (17)
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and (16) implies that the average wealth in the model increases at least exponentially with
rate A/4.

Once more, we remark that, if the kernel β does not depend on the wealth variables,
the kinetic model preserves the average wealth.

Similar bounds for moments of order higher than 2 can be obtained in a similar way.
We will consider here only upper bounds, which will be used later on.

Let us fix φ(w) = wp for some p > 2. Using the same trick as in (9) we obtain

d

dt

∫

IR+

wpf(w, t) dw =
∫

IR2

∫

IR2
+

β(w,w∗)→(w′,w′∗)f(w)f(w∗)(|w′|p − wp)dw∗dwdη dη∗ =

∫

IR2

∫

IR2
+

Θ(η)Θ(η∗)f(w)f(w∗)(|w′|p − wp)dw∗dwdη dη∗+

−
∫

IR2

∫

IR2
+

Θ(η)Θ(η∗)
(
1−Ψ(w′ ≥ 0)Ψ(w′∗ ≥ 0)

)
(|w′|p − wp)f(w)f(w∗)dw∗dwdη dη∗ ≤

∫

IR2

∫

IR2
+

Θ(η)Θ(η∗)f(w)f(w∗)(|w′|p − wp)dw∗dwdη dη∗+

+
∫

IR2

∫

IR2
+

Θ(η)Θ(η∗)
(
1−Ψ(w′ ≥ 0)Ψ(w′∗ ≥ 0)

)
wpf(w)f(w∗)dw∗dwdη dη∗. (18)

Using again Markov inequality we obtain
∫

IR2

∫

IR2
+

Θ(η)Θ(η∗)
(
1−Ψ(w′ ≥ 0)Ψ(w′∗ ≥ 0)

)
wpf(w)f(w∗)dw∗dwdη dη∗ ≤

∫

IR2
Θ(η)Θ(η∗) (Ψ(1− γ + η < 0) + Ψ(1− γ + η∗ < 0)) dη dη∗

∫

IR+

wpf(w)dw ≤

2
σ2+α

(1− γ)2+α

∫

IR+

wpf(w)dw. (19)

Moreover, we can write

|w′|p = wp + pwp−1(w′ − w) +
1
2
p(p− 1)|w̃|p−2(w′ − w)2,

where, for some 0 ≤ θ ≤ 1
w̃ = θw′ + (1− θ)w.

Hence, ∫

IR2

∫

IR2
+

Θ(η)Θ(η∗)f(w)f(w∗)(|w′|p − wp)dw∗dwdη dη∗ =

∫

IR2

∫

IR2
+

Θ(η)Θ(η∗)f(w)f(w∗)(pwp−1(w′−w) +
1
2
p(p− 1)|w̃|p−2(w′−w)2)dw∗dwdη dη∗ ≤
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1
2
p(p− 1)

∫

IR2

∫

IR2
+

Θ(η)Θ(η∗)f(w)f(w∗)|w̃|p−2(w′ − w)2dw∗dwdη dη∗. (20)

In fact, ∫

IR2

∫

IR2
+

Θ(η)Θ(η∗)f(w)f(w∗)wp−1(w′ − w)dw∗dwdη dη∗ =

∫

IR2

∫

IR2
+

Θ(η)Θ(η∗)f(w)f(w∗)wp−1(γ(w∗ − w) + ηw)dw∗dwdη dη∗ =

γ

∫

IR2
+

f(w)f(w∗)wp−1(w∗ − w)dw∗dw ≤ 0. (21)

The last bound follows by Hölder inequality since,
∫

IR2
+

f(w)f(w∗)wp−1w∗dw∗dw =
∫

IR+

f(w)wp−1dw

∫

IR+

f(w∗)w∗dw∗ ≤

(∫

IR+

f(w)wpdw

)(p−1)/p (∫

IR+

f(w∗)wp
∗dw∗

)1/p

=
∫

IR+

f(w)wpdw.

Finally, from

|w̃|p−2 = |(1− θγ)w + θγw∗ + θηw|p−2 ≤ cp

[
wp−2 + γp−2wp−2

∗ + |η|p−2wp−2
]
,

we obtain
∫

IR2

∫

IR2
+

Θ(η)Θ(η∗)f(w)f(w∗)|w̃|p−2(w′ − w)2dw∗dwdη dη∗ ≤

cp

∫

IR2

∫

IR2
+

Θ(η)Θ(η∗)f(w)f(w∗)
[
wp−2 + γp−2wp−2

∗ + |η|p−2wp−2
] ·

· [γ2(w∗ − w)2 + η2w2 + 2ηw(w∗ − w)
]
dw∗dwdη dη∗ ≤

cpAp(σ, γ)
∫

IR+

wpf(w)dw, (22)

where
Ap(σ, γ) = σ2(1 + γp−2) + σp + 2γ2 + 2γp + 2γ2σp−2. (23)

Grouping all estimates together, we finally obtain the bound for the moments

d

dt

∫

IR+

wpf(w, t) dw ≤
(

1
2
p(p− 1)cpAp(σ, γ) + 2

σ2+α

(1− γ)2+α

)∫

IR+

wpf(w)dw. (24)

we proved

9



Theorem 3.1 Let the probability density f0 ∈ Mp, where p = 2 + δ for some δ > 0, and
let the symmetric random variable Y which characterizes the kernel have a density Θ in
M2+α, with α > δ. Then, if Θ has unbounded support, the average wealth is increasing
with time at least exponentially

∫

IR+

wf(w, t) dw ≥ exp
{

A

4
t

} ∫

IR+

wf0(w) dw, (25)

where the constant A is given by (17). Moreover, the average wealth does not increase
more than exponentially in time

∫

IR+

wf(w, t) dw ≤ exp
{

σ2+α

(1− γ)1+α
t

} ∫

IR+

wf0(w) dw. (26)

Similarly, higher order moments does not increase more than exponentially, and the bound
∫

IR+

wqf(w, t) dw exp
{(

1
2
p(p− 1)cpAp(σ, γ) + 2

σ2+α

(1− γ)2+α

)
t

} ∫

IR+

wqf0(w) dw, (27)

holds for q ≤ p.

4 The continuous trading limit

The previous analysis shows that in general it is quite difficult both to study in details
the evolution of the wealth function, and to describe the asymptotic behavior. For a
general kernel one has in addition to take into account the exponential growth of the
average wealth. In this case, the only way to get information on the properties of the
solution for large time relies in the scaling of the solution with respect to its average
wealth. This corresponds to study the behavior of f̃(w, t) = m(t)f(m(t)w, t)) where m(t)
is the (variable in time) average amount of money in the system. Note that the density
f̃ is normalized to have the first moment equal to one. We present in Section 5 various
numerical tests which show in particular the exponential growth of the average wealth, and
the formation of heavy tails. As is usual in kinetic theory, however, particular asymptotics
of the equation result in simplified models (generally of Fokker-Planck type), for which it
is relatively easier to find steady states, and to prove their stability. In order to give a
physical basis to these asymptotics, it is relevant to discuss in some detail the interaction
rule (1). To skip inessential difficulties, that as we will see later on do not change the
structure of the limit equation, we suppose here that the random variables take values on
the set (−(1−γ), 1−γ). As remarked in the previous section, in this case both w′ ≥ 0 and
w′∗ ≥ 0, and the kernel β does not depend on the wealth variables (w, w∗). Let us denote
by E(X) the mathematical expectation of the random variable X. Then the following
properties follow from (1)

E[w′ + w′∗] = w + w∗, E[w′ − w′∗] = (1− 2γ)(w − w∗). (28)

The first equality in (28) describes the property of mean conservation of wealth. The
second refers to the tendency of the trade to decrease (in mean) the distance between
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wealths after the interaction. This tendency is a universal consequence of the rule (1), in
that it holds whatever distribution one assigns to Θ, namely to the random variable which
accounts for the effects of the market returns in an open economy. This universality is
false for the first equality, which in general has to be substituted by the inequality

E[w′ + w′∗] ≥ w + w∗. (29)

Hence, in general the effects of the market returns in an open economy account for an
increasing of the microscopic mean wealth.

The second property in (28) is analogous to the similar one that holds in a collision
between molecules in a granular gas. There the quantity e = 2γ is called ”coefficient of
restitution”, and describes the peculiar fact that energy is dissipated [25]. If we want to
consider the situation in which most of the trades corresponds to a very small exchange
of money (γ → 0), and at the same time we want to maintain both properties (28) at a
macroscopic level, we have to pretend that

∫

IR2
+

(w + w∗)f(w)f(w∗)dwdw∗ = 2
∫

IR+

wf(w)dw = 2m(t) (30)

remains constant, while
∫

IR2
+

(w − w∗)2f(w)f(w∗)dwdw∗ = Af (t) (31)

is varying with time, and decays to zero when the market returns are not present (i.e.
σ = 0).

When the kernel β does not depend on the wealth variables, (9) implies that m(t) = m0.
Moreover, explicit computations show that Af (t) varies with law

dAf (t)
dt

= −4
[
γ(1− γ)− σ2

2

]
Af (t) + 2σ2m2. (32)

Hence, when σ = 0, Af (t) decays exponentially to zero. It is now evident that (30) is
satisfied for any value of γ and σ, while (31) looses its meaning as γ an σ tend to zero. Of
course, one can rewrite (32) as

dAf (t)
dt

= −4γ

[(
1− γ − σ2

2γ

)
Af (t)− σ2

2γ
m2

]
. (33)

Hence, if we set
τ = γt, g(w, τ) = f(w, t), (34)

which implies f0(w) = g0(w), we obtain

dAg(τ)
dτ

= −4
(

1− γ − σ2

2γ

)
Ag(τ) + 2

σ2

γ
m2. (35)

11



Letting now both γ → 0 and σ → 0 in such a way that σ2/γ = λ, (35) becomes in the
limit

dAg(τ)
dτ

= − (4− 2λ) Ag(τ) + 2λm2. (36)

This formal argument shows that the value of the ratio σ2/γ is of paramount importance
to get asymptotics which maintain memory of the microscopic interactions. In particular,
while for λ < 2 Ag(τ) converges to the finite value Āg = λm2/(2− λ) , Ag(τ) diverges to
infinity as time goes to infinity when λ ≥ 2.

In the remaining of this section, we shall present a rigorous derivation of a Fokker-
Planck model from the Boltzmann equation for the wealth function g(w, τ), when both
γ → 0 and σ → 0 in such a way that σ2/γ → λ. This derivation, which is similar to the
quasi-elastic limit of granular gases, is of major relevance for the study of the asymptotic
equilibrium states of the kinetic model. First, we show how the Fokker-Planck equation
comes out for the simpler case of a kernel which does not depend on the wealth variables.
Second, we extend the result to a general kernel.

The scaled density g(v, τ) = f(v, t) satisfies the weak form

d

dτ

∫ ∞

0
gφ dw =

1
γ

∫

IR2

∫

IR2
+

Θ(η)Θ(η∗)g(w)g(w∗)(φ(w′)− φ(w))dw∗dwdη dη∗. (37)

Given 0 < δ ≤ α, let us set φ ∈ F2+δ(IR+).
By (1),

w′ − w = γ(w∗ − w) + ηw.

Then, if we use a second order Taylor expansion of φ around w

φ(w′)− φ(w) = (γ(w∗ − w) + ηw)φ′(w) +
1
2
(γ(w∗ − w) + ηw)2φ′′(w̃),

where, for some 0 ≤ θ ≤ 1
w̃ = θw′ + (1− θ)w.

Inserting this expansion in the collision operator, we get

d

dτ

∫ ∞

0
gφ dw =

1
γ

∫

IR2

∫

IR2
+

Θ(η)Θ(η∗)[(γ(w∗ − w) + ηw)φ′(w)+

+
1
2
(γ(w∗ − w) + ηw)2φ′′(w)]g(w∗)g(w)dw∗ dw dη dη∗ + R(γ, σ), (38)

where

R(γ, σ) =
1
2γ

∫

IR2

∫

IR2
+

Θ(η)Θ(η∗)(γ(w∗ − w) + ηw)2 ·

· (φ′′(w̃)− φ′′(w)
)
g(w∗)g(w)dw∗ dw dη dη∗

Since φ ∈ F2+δ(IR+), and |w̃ − w| = θ|w′ − w|
∣∣φ′′(w̃)− φ′′(w)

∣∣ ≤ ‖φ′′‖δ|w̃ − w|δ ≤ ‖φ′′‖δ|w′ − w|δ. (39)
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Hence

|R(γ, σ)| ≤ ‖φ′′‖δ

2γ

∫

IR2

∫

IR2
+

Θ(η)Θ(η∗) ·

·|γ(w∗ − w) + ηw|2+δg(w∗)g(w)dw∗ dw dη dη∗

By virtue of the inequality

|γ(w∗ − w) + ηw|2+δ ≤ 41+δ
(
|γw∗|2+δ + |γw|2+δ + |ηw|2+δ

)
,

we finally obtain the bound

|R(γ, σ)| ≤ 21+2δ‖φ′′‖δ

(
2γ1+δ +

1
γ

∫

IR
|η|2+δΘ(η)dη

) ∫

IR+

w2+δg(w)dw (40)

Since Θ is a probability density with zero mean and λγ variance, and Θ belongs to M2+α,
for α > δ,

∫

IR
|η|2+δΘ(η)dη = E

(∣∣∣
√

λγY
∣∣∣
2+δ

)
= (λγ)1+δ/2E

(
|Y |2+δ

)
,

and E
(
|Y |2+δ

)
is bounded. Using this equality into (40) one shows that R(γ, σ) converges

to zero as γ → 0, if
∫
IR+

w2+δg(w, τ) remains bounded at any fixed time τ > 0, provided
the same bound holds at time τ = 0. By virtue of bound (24), taking σ2 = λγ, we obtain

d

dτ

∫

IR+

w2+δg(w, τ) dw ≤

1
γ

(
1
2
p(p− 1)c2+δA2+δ(

√
λγ, γ) + 2

(λγ)1+α/2

(1− γ)2+α

)∫

IR+

wpg(w, τ)dw. (41)

Since the lower order term in A2+δ(
√

λγ, γ) is λγ(1− γ)δ, it follows that the boundedness
of the moment holds independently of the value of γ. Therefore, at any fixed time τ

|R(γ, σ)|(τ) ≤ 21+2δ‖φ′′‖δ

(
2γ1+δ + λ2+δγδ/2E

(
|Y |2+δ

))
Cτ

∫

IR+

w2+δg0(w).dw (42)

Hence, the remainder R(γ, σ) converges to zero as both γ and σ converge to zero, in such
a way that σ2 = λγ. Within the same scaling,

lim
γ→0

1
γ

∫

IR2

∫

IR2
+

Θ(η)Θ(η∗)[(γ(w∗ − w) + ηw)φ′(w)+

+
1
2
(γ(w∗ − w) + ηw)2φ′′(w)]g(w∗)g(w)dw∗ dw dη dη∗ =

∫

IR+

[
(m− w)φ′(w) +

λ

2
w2φ′′(w)

]
g(w)dw (43)
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The right-hand side of (43) is nothing but the weak form of the Fokker-Planck equation

∂g

∂τ
=

λ

2
∂2

∂w2

(
w2g

)
+

∂

∂w
((w −m)g) . (44)

The limit Fokker-Planck equation can be rewritten as

∂g

∂τ
=

∂

∂w

[(
(1 +

λ

2
)w −m

)
g +

λ

2
w

∂

∂w
(wg)

]
. (45)

The general case of a wealth-variables depending rate function can be easily obtained
from the previous computations. With respect to formula (38) we have to consider two
more terms in the remainder. The first one comes out from the possibility to have negative
wealth variables as outcome of the interaction. This term reads

R1(γ, σ) = −1
γ

∫

IR2

∫

IR2
+

Θ(η)Θ(η∗)·

· (1−Ψ(w′ ≥ 0)Ψ(w′∗ ≥ 0)
)
(φ(w′)− φ(w))g(w)g(w∗)dw∗dwdη dη∗. (46)

The integrand in (46) coincides with the integrand in the right-hand side of (37), multiplied
by the factor 1−Ψ(w′ ≥ 0)Ψ(w′∗ ≥ 0). Proceeding as in (19) we obtain

∫

IR
η2Θ(η) dη = σ2,

∫

{|η|>1−γ}
η2Θ(η) dη ≤ 1

(1− γ)α

∫

{|η|>1−γ}
η2+αΘ(η) dη ≤ σ2+αE(Y 2+α).

Thus, we can use the same expansion following formula (37) to conclude that R1(γ, σ)
converges to zero as γ → 0.

The second remainder we have to take into account comes out from the fact that in
general the average wealth m(t) is not constant in time. Thus we have the additional term

R2(γ, σ) = −1
γ

∫

IR2
Θ(η)Θ(η∗)

(∫

IR+

w∗g(w∗, τ) dw∗ −m

)
g(w, τ)φ′(w)dw∗dwdη dη∗.

(47)
On the other hand, thanks to (26)

∣∣∣∣
∫

IR+

w∗g(w∗, τ) dw∗ −m

∣∣∣∣ ≤
[
exp

{
σ2+α

(1− γ)1+α
τ

}
− 1

]
m,

which implies the convergence to zero of the remainder as γ → 0. Hence we proved

Theorem 4.1 Let the probability density f0 ∈ Mp, where p = 2 + δ for some δ > 0,
and let the symmetric random variable Y which characterizes the kernel have a density
in M2+α, with α > δ. Then, as γ → 0, σ → 0 in such a way that σ2 = λγ the weak
solution to the Boltzmann equation for the scaled density gγ(v, τ) = f(v, t), with τ = γt
converges, up to extraction of a subsequence, to a probability density g(w, τ). This density
is a weak solution of the Fokker-Planck equation (44), and it is such that the mean wealth
is conserved.
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The stationary state of the Fokker-Planck equation can be directly computed and, by
assuming for simplicity

m =
∫

IR+

g∞(w)w dw = 1,

it can be written as

g∞(w) =
(µ− 1)µ

Γ(µ)

exp
(
−µ−1

w

)

w1+µ
(48)

where
µ = 1 +

2
λ

> 1.

Therefore the stationary distribution exhibits a Pareto power law tail for large w’s.
Note that this equation is essentially the same Fokker-Planck equation derived from a

Lotka-Volterra interaction in [4, 24, 17].

5 Numerical results

In this section, we shall present some numerical test and we shall compare the stationary
results obtained by using Monte Carlo simulation of the kinetic model with the stationary
state of the Fokker-Planck model. We start from a situation where all individuals shares
the same money. At each iteration, we choose randomly two individual. Then, the pa-
rameter η is chosen accordingly to a normal centered law (one for each individual) and the
trade is performed if it is admissible i.e. when the new money of each individual remain
positive. We report the results for the density f̃(w, t) = m(t)f(m(t)w, t)) where m(t) is
the (variable in time) average amount of money in the system. Note that the density f̃ is
normalized to have the first moment equal to one.

We use N = 2000 individuals and perform several iterations until a stationary state is
reached. The distribution is then averaged over the next 250 iterations.

We plot the distribution function for different values of (γ, σ2) = {(0.1, 0.2), (0.01, 0.02)}.
The values for γ and σ2 are such that we have a fixed λ = 2 corresponding to a coeffi-

cient µ = 2 which is a realistic value for the income distribution of capitalistic economies
[4, 17]. As prescribed from our theoretical analysis we observe that the equilibrium dis-
tribution converges toward the function f∞ as both γ and σ2 go to 0, with σ2/γ = 2 (see
Figures 1 and 2).

The corresponding behaviors of the average amount of money obtained with N = 10000
agents are given in Figure 3. Note that, as expected, asymptotically the exponential growth
vanishes and the model preserves the average amount of money.

6 Conclusions

We introduced and discussed a nonlinear kinetic model for a simple market economy,
which is based on binary exchanges of money and speculative trading. We showed that
at suitably large times, in presence of a large number of trades in which agents exchange
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Figure 1: Asymptotic behavior of the Fokker-Planck model and the Boltzmann model for
µ = 2.0, γ = 0.1 and σ = 0.2. Figure on the right is in loglog-scale.

a small amount of money, the nonlinear kinetic equation is well-approximated by a linear
Fokker-Planck type equation, which admits a stationary steady state with Pareto tails.
Convergence towards a similar steady state is shown numerically for the solution of the
kinetic model after a suitable normalization which guarantees the conservation of the mean
wealth. Our analysis enlightens both the range of validity of the Fokker-Planck equation
(44), and why in the continuous trading limit the mean wealth, which is increasing for
the kinetic model, remains constant. The present derivation takes advantages of the deep
similarities between the trade rule (1) and a molecular dissipative collision. However, it is
expected that the asymptotic analysis discussed in this paper is not restricted to the trade
rule (1), so that different microscopic interactions could be treated as well. Finally we
remark that the formation of power law tails for large times in the present kinetic model is
in accord with the overpopulated energy tails for the Boltzmann equation for a dissipative
granular Maxwellian gas [3, 1, 9, 10]. Pushing further these analogies may help to clarify
many aspects of large-time behavior of market economies and financial markets.
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