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On a Large Class of Non-Linear Coding Methods Based on

1

Boolean Invertible Matrices

Costas Karanikas and Nikolaos D. Atreas

Abstract: The main target of this work is to construct a large enumerel@ss of non-
linear coding methods, based on a discrete invertible toamscalled Riesz Product,
which is associated to a class of boolean invertible magrafeordermx m. The
particular class of matrices is uniquely determined by gpt®of permutations of the
first m natural numberg1,2,...,m}, so for anym=1,2,3,..., we get at leastm!)?
different non-linear coding methods.

The resulting encoding/decoding method is very fast andireg low memory. It
can be used both as a new encryption tool or as a boolean rageloenator.

Keywords: Non-linear coding, Boolean invertibile matrices, perntigias, Riesz
products.

Introduction

HE MAIN TENET of this work is to construct a large class of non-linear epery
tion methods, such that for any message of lengta 2,3, ..., any pair of

numbers smaller than or equal td determines uniquely a non-linear encryption
method. The stages of this process are the following:

Stage 1:For any pair of permutationg; andg of the firstm natural numbers,

we define a unique boolean matrix of oraeix m, calledZ matrix.

Stage 2: We define non-linear transforms, called Riesz Product Toams

(RP Transforms) associatedZamnatrices.
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LetR be the space of all real numbers anddéd, 1] be the space of all contin-
uous functions off0, 1]. Inspired by the well known Riesz Product transform:

m
R™—C[0,1]: a= {a1,a,...am} — [] (1+ a, cog2m4*x))
kel

associated with trigonometric functions (due to F. Riegles to construct singular
measures and trigonometric dynamical systems (1912)) efieedthe following:

Definition 1. Let H= {hxn} be a matrix of order mx m and let a= {ay, ...,am}
be a sequence of reals. A Riesz Product transform (RP codisgdcated to the
matrix H and to the sequence of coefficients a is the map

m
RP:R™ - R"™: RPa) = [1(1+akhnk).
k=1

Theorem 1. Let H= {hxn} be an invertible boolean matrix of order xm and let
ax > —1for any k, then the RP coding associated to the matrix H is tiiler

In section 2 we present an overview on Riesz Product tramsfor

In general, matrix inversion is expensive in storage andpugations. So, we
seek for boolean invertible matrices whose correspondiRg&ling has low time
and memory requirements. In section 3 we introduce a laggsadf matrices called
Z-class meeting our criteria.

In section 4 we present several examples of boolean RP tramsfand we use
RP transform to create a boolean random generator.

Section 5 is the appendix containing proofs of the theorems.

2 An Overview on RP Transforms

For the rest of this section we present the initial ideas aedlipus works related
on boolean RP transforms.

In [1] and [2] we constructed large classes of sparse bootearices, i.e. ma-
trices with a low number of non zero entries. These matrice® Isparse inverse
matrices with advantages in computations and have beenfoisseveral applica-
tions, i.e. compression, detection of local informatior g@nediction. Below, we
present a typical example of such a matrix and its inverse:
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11111 01 0 1 o0 O
110000 0O 0 0 -1 0o O
U— 001100 U-1l_ 0o 0o 1 0 1 O
1 000 0 O 0O 0 0 O -1 0
0 010O00O0 0O 0o 0 0O o0 1
0 00 01 1 -1 -1 0 0 -1

We mention here that all these matrices are special casbe ofdssZ of matrices
we shall define in section 3.

In [3] and [4], we introduced the discrete RP transform wébpect to a class of
orthonormal matricesi (m) of ordermx m. The particular matrices (m) may be
considered as a generalization of the usual Haar matricese their construction
was based on dilation and translation operations on matéind every row ol (m)
is an unbalanced Haar function.

Example We present below examples of Haar matrices corresponding=@
andm=6:

1 1 1 1 1 1
5B A S S G SR SR
H(3)= % Ji? —2 | H(6) = % _% S
vz vz O o 0 % -% 0 0

0O 0 o0 O % —%

We proved that the resulting Haar RP transform is invert#nld the coefficients
{an :n=1,...,m} are computed via the following:

{<t,h1>—m n=1
an = (t,hy) .
|_|E:1L(1+akhk,no)’ n= 27-.-7m

where(, ) is the usual inner product arig are the rows of the corresponding Haar
matrix H.

Our first attempt to construct a boolean non linear discratesform was based
on the well known Walsh system. More general we proved:

Theorem 2. (See [5]) Let{ax : k= 1,...,m} be a boolean sequence and®&m) =
{6nj :|6nj| <m j=1,...,m} be an invertible matrix whose columns satisfy the
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following:
m
—n< Z Oj<m j=1,...m

Ift = {t; = |tj|€@%, j=1,...,m} is a sequence of complex numbers, then there is
a unique sequence of boolean coefficigats: n=1,...,m}, such that:

m
|_| (14 ane®).

Moreover, the coefficientsa, : n=1,...,m} are computed via the following matrix
equation:
a=20"1C(t)

where a= [a,] and t) = [argt,] are column matrices of order m1.

Example: Walsh-type Riesz Products

Since Walsh orthogonal matric®g(2k), k= 1,..., produced from the Walsh
system{wo, W, ...,Wx } (See [5]) have rows with zero mean, except for the first row
which is the constant rod4, ..., 1), orthogonal matrices of the form

TT
?W(Zk)

satisfy Theorem 2. We present below two examples:

024 =

11 1 1
m(l 1 mf1 1 -1 -1
@(2)_§<1 —1>’ °@=711 1 1
1 -1 -1 1

3 ACClass of Boolean Matrices Determined by Two Permutations

Letp ={p1,..., om} be a permutation of the set of the firshatural numbers and let
p~lis the inverse permutation @f, e.g. ifp = {3,1,2,4}, thenp~1 = {2,3,1,4}.

We callrestricted order of a permutation p = {pa, ..., om} the vector=(p) =
{01,...,0m}, whereom = rm wheneverk = m, whereas fok = 1,2,....m— 1, ok
is the position of the numbék of the permutation of the firdt natural numbers
derived fromp by erasing all numbers+1,....m. Clearly,ox <k, k=212 ...m
The set of all images df can be considered as a tree, such that from each node
in k generation we have exactkt 1 branchek = 0,1,...m— 1. We call this tree
m-natural tree. This tree is shown in Figure 1.
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Fig. 1. m-natural tree.

Example: F({2,54,3,1}) = {1,1,2,2,2} and F({2,4,3,1,5}) =
{1,1,2,2,5}.
Theorem 3. The map F from the set of all permutatiops= {p1, ...,om} to the m

natural tree is one to one. Moreover there is a one to one spaadence between
any leaf of the m-natural tree and all integeds< k < m!.

Let p = {p1,...,Pm} @andr = {rq,...,rm} be two permutations and I&t(r) =
{01,...,0m}, we callZ matrix determined by p and r the matrix determined by
the following two conditions:

If we denote the support of therow of the matrixZ by supgzZs} = {j €
{1,...,m} : Zj # O} then:

1. a) wheneveoi < k: supp{Z} C supp{Zg, } and supgzZi} Nsupp(Zj} =
g, 0k< <k k=2,...m

b) whenevewy = k: supp{Z«} Nsuppg(Z;} = @,for any j # k.
2. pc € suppZ} andZj, =0foranyj >k, k=1,..m-1

Examples of matrices Z satisfying conditions (1) and (2):

11111
110001
111
001100
Z(égg)’ Z= 0 01 0 0 0}’
1 000O00O
0 00O0O

The first matrixZ of order 3x 3 is determined by the permutatign= {3,1,2}
and the restricted ordé¥(r) = {1,1,1}, wherer = {3,2,1}.
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The second matrix matriZ of order &6 is determined by the permuta-
tion p = {5,2,4,3,1,6} and the restricted ordef(r) = {1,1,1,3,2,2} where
r={3,6,524,1}.

From now on we call the class of matrices satisfying (1) anjdc{@ssZ of
matrices.

Theorem 4. Each matrix in the class Z is invertible.

Corollary 1. Any pair of numbers less than! morresponds to a unique Z matrix.

4 Examples of RP Transforms and Random Generators

By Theorem 1, the main advantage of RP coding is the fact tiabaolean in-
vertible matrix provides RP decoding. Since Zllmatrices are invertible, their
associated RP codings are invertible.

Example
11111 O 0o 0 0o 1 o
110001 O 1. 0 0 -1 -1
7_ 001100 7-1_ O 0 0 1 0 O
0 01 0 0 Of’ O 0o 1 -1 0 O
1 00000 1 -1 -1 0 0 o0
0 00 0O O 0 0 0o o0 1

Corollary 2. The composition of RP transforms associated to Z matricetsts a
an invertible transform.

A fast algorithm to compute RP transform oEanatrix is given by the follow-
ing:
Theorem 5. The RP transformpt= [ (1+ aZxn) of a Z matrix determined
from two permutationp = {p1, ..., pm} and r= {r1,...,rm} satisfies the following:

where
1 whenever supZ,.i)NsuppZy) # 0

b(n,k) =
(nk) {0 otherwise
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Compositions of RP transforms create boolean random gemgtaased on the
following:

Theorem 6. Let t = {t,, n=1,...,m} be a boolean vector, then the inverse RP
transform associated to a Z-matrix:

{thrt+tl, n=1,...m} - {ap, n=1,...m}:
m

th+1= rl(l+akzk’”)’ n=1,..m
K=

satisfies:

() ane {0,1,—3}, n=1,..m
(i) Themapt— {th+1, n=1,..m} — {a,, n=1,....m} —
— {sgn(a, — %), n=1,..,m} is a boolean map.

Application Lett be any boolean vector of length, then the inverse boolean
RP transform sends+ 1 to a vector with entrieg0, —%,1}. We observe that the
sign of the absolute value of this provides random permuadf the 2" numbers.
The Figure 2 is created by the inverse of composition of RRsftam form= 9
and provides a random permutation of the first 512 numbers.

500
400
300
200

100

100 200 300 400 500

Fig. 2. The inverse of composition of RP transform floe= 9 which provides a
random permutation of the first 512 numbers.

Appendix

In this section we sketch some of the proofs of our theorems.
Proof of Theorem 1Sincehy , are binary, we may write:

m m
tn = I_l (l+akhk,n) = I_l (1+ ak)hk,n
k=1 k=1
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and so
log(tn) = Zlog1+ak)hkn, n=1,....,m.

LetH 1= = {hg 1 be the inverse matrix dfl, then it is easy to see that
log(1+ax) = Z h, Iog (th), k=1,....m,

and so this RP transform is invertible.

Proof of Theorem 41t is not difficult to see that conditions (1) and (2) deter-
mine a unique matrix. To show that the determinant of thisn& non-zero, we
observe that any matriX determined by the permutatiopsandr can by reduced
by row operations to the identity matrix.

Proof of Theorem 5 Since the inverse matrig—! = {7, 1} Sa'[ISerSan
{0,1,—-1}, k,n=1,...m, (i) and (ii) are obtained from the proof of Theorem 1.
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