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On a Large Class of Non-Linear Coding Methods Based on
Boolean Invertible Matrices

Costas Karanikas and Nikolaos D. Atreas

Abstract: The main target of this work is to construct a large enumerated class of non-
linear coding methods, based on a discrete invertible transform called Riesz Product,
which is associated to a class of boolean invertible matrices of orderm×m. The
particular class of matrices is uniquely determined by a couple of permutations of the
first m natural numbers{1,2, ...,m}, so for anym = 1,2,3, ..., we get at least(m!)2

different non-linear coding methods.
The resulting encoding/decoding method is very fast and requires low memory. It

can be used both as a new encryption tool or as a boolean randomgenerator.

Keywords: Non-linear coding, Boolean invertibile matrices, permutations, Riesz
products.

1 Introduction

THE MAIN TENET of this work is to construct a large class of non-linear encryp-
tion methods, such that for any message of lengthm = 2,3, ..., any pair of

numbers smaller than or equal tom! determines uniquely a non-linear encryption
method. The stages of this process are the following:

Stage 1:For any pair of permutationsq1 andq2 of the firstmnatural numbers,
we define a unique boolean matrix of orderm×m, calledZ matrix.

Stage 2: We define non-linear transforms, called Riesz Product Transforms
(RP Transforms) associated toZ matrices.
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Let R be the space of all real numbers and letC[0,1] be the space of all contin-
uous functions on[0,1]. Inspired by the well known Riesz Product transform:

R
m →C[0,1] : a = {a1,a2, ...,am}→

m

∏
k=1

(1+ak cos(2π4kx))

associated with trigonometric functions (due to F. Riesz’sidea to construct singular
measures and trigonometric dynamical systems (1912)), we define the following:

Definition 1. Let H = {hk,n} be a matrix of order m×m and let a= {a1, ...,am}
be a sequence of reals. A Riesz Product transform (RP coding), associated to the
matrix H and to the sequence of coefficients a is the map

RP: R
m → R

m : RP(a) =
m

∏
k=1

(1+akhn,k).

Theorem 1. Let H = {hk,n} be an invertible boolean matrix of order m×m and let
ak > −1 for any k, then the RP coding associated to the matrix H is invertible.

In section 2 we present an overview on Riesz Product transforms.

In general, matrix inversion is expensive in storage and computations. So, we
seek for boolean invertible matrices whose corresponding RP coding has low time
and memory requirements. In section 3 we introduce a large class of matrices called
Z-class meeting our criteria.

In section 4 we present several examples of boolean RP transforms and we use
RP transform to create a boolean random generator.

Section 5 is the appendix containing proofs of the theorems.

2 An Overview on RP Transforms

For the rest of this section we present the initial ideas and previous works related
on boolean RP transforms.

In [1] and [2] we constructed large classes of sparse booleanmatrices, i.e. ma-
trices with a low number of non zero entries. These matrices have sparse inverse
matrices with advantages in computations and have been usedfor several applica-
tions, i.e. compression, detection of local information and prediction. Below, we
present a typical example of such a matrix and its inverse:
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U =

















1 1 1 1 1 1
1 1 0 0 0 0
0 0 1 1 0 0
1 0 0 0 0 0
0 0 1 0 0 0
0 0 0 0 1 0

















, U−1 =

















0 1 0 1 0 0
0 0 0 −1 0 0
0 0 1 0 1 0
0 0 0 0 −1 0
0 0 0 0 0 1
1 −1 −1 0 0 −1

















We mention here that all these matrices are special cases of the classZ of matrices
we shall define in section 3.

In [3] and [4], we introduced the discrete RP transform with respect to a class of
orthonormal matricesH(m) of orderm×m. The particular matricesH(m) may be
considered as a generalization of the usual Haar matrices, since their construction
was based on dilation and translation operations on matrices and every row ofH(m)
is an unbalanced Haar function.

ExampleWe present below examples of Haar matrices corresponding tom= 3
andm= 6:
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H(6) =
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.

We proved that the resulting Haar RP transform is invertibleand the coefficients
{an : n = 1, ...,m} are computed via the following:

an =

{

〈t,h1〉−
√

m, n = 1
〈t,hn〉

∏n−1
k=1(1+akhk,n0

)
, n = 2, ...,m

where〈 , 〉 is the usual inner product andhn are the rows of the corresponding Haar
matrix H.

Our first attempt to construct a boolean non linear discrete transform was based
on the well known Walsh system. More general we proved:

Theorem 2. (See [5]) Let{ak : k= 1, ...,m} be a boolean sequence and letΘ(m) =
{θn, j : |θn, j | < π, j = 1, ...,m} be an invertible matrix whose columns satisfy the
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following:

−π ≤
m

∑
n=1

θn, j ≤ π, j = 1, ...,m.

If t = {t j = |t j |ei argt j , j = 1, ...,m} is a sequence of complex numbers, then there is
a unique sequence of boolean coefficients{an : n = 1, ...,m}, such that:

t j =
m

∏
n=1

(1+aneiθn, j ).

Moreover, the coefficients{an : n = 1, ...,m} are computed via the following matrix
equation:

a = 2Θ−1C(t)

where a= [an] and C(t) = [argtn] are column matrices of order m×1.

Example: Walsh-type Riesz Products

Since Walsh orthogonal matricesW(2k), k = 1, ..., produced from the Walsh
system{w0,w1, ...,w2k} (see [5]) have rows with zero mean, except for the first row
which is the constant row(1, ...,1), orthogonal matrices of the form

Θ(2k) =
π
2kW(2k)

satisfy Theorem 2. We present below two examples:

Θ(2) =
π
2

(

1 1
1 −1

)

, Θ(4) =
π
4









1 1 1 1
1 1 −1 −1
1 −1 1 −1
1 −1 −1 1









.

3 A Class of Boolean Matrices Determined by Two Permutations

Let ρ = {ρ1, ...,ρm} be a permutation of the set of the firstmnatural numbers and let
ρ−1 is the inverse permutation ofρ , e.g. ifρ = {3,1,2,4}, thenρ−1 = {2,3,1,4}.

We callrestricted order of a permutation ρ = {ρ1, ...,ρm} the vectorF(ρ) =
{σ1, ...,σm}, whereσm = rm wheneverk = m, whereas fork = 1,2, ...,m− 1, σk

is the position of the numberk of the permutation of the firstk natural numbers
derived fromρ by erasing all numbersk+1, ...,m. Clearly,σk ≤ k, k = 1,2, ...,m.
The set of all images ofF can be considered as a tree, such that from each node
in k generation we have exactlyk+1 branchesk = 0,1, ..,m−1. We call this tree
m-natural tree. This tree is shown in Figure 1.
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Fig. 1. m-natural tree.

Example: F({2,5,4,3,1}) = {1,1,2,2,2} and F({2,4,3,1,5}) =
{1,1,2,2,5}.

Theorem 3. The map F from the set of all permutationsρ = {ρ1, ...,ρm} to the m
natural tree is one to one. Moreover there is a one to one correspondence between
any leaf of the m-natural tree and all integers0≤ k < m!.

Let ρ = {ρ1, ...,ρm} and r = {r1, ..., rm} be two permutations and letF(r) =
{σ1, ...,σm}, we callZ matrix determined by ρ and r the matrix determined by
the following two conditions:

If we denote the support of thek-row of the matrixZ by supp{Zk} = { j ∈
{1, ...,m} : Zk, j 6= 0} then:

1. a) wheneverσk < k: supp{Zk} ⊂ supp{Zσk} and supp{Zk}∩supp{Z j} =
∅, σk < j < k, k = 2, ...,m.

b) wheneverσk = k: supp{Zk}∩supp{Z j} = ∅,for any j 6= k.

2. ρk ∈ supp{Zk} andZ j,ρk = 0 for any j > k, k = 1, ...,m−1.

Examples of matrices Z satisfying conditions (1) and (2):

Z =





1 1 1
1 0 0
0 1 0



 , Z =

















1 1 1 1 1 1
1 1 0 0 0 1
0 0 1 1 0 0
0 0 1 0 0 0
1 0 0 0 0 0
0 0 0 0 0 1

















, ...

The first matrixZ of order 3×3 is determined by the permutationρ = {3,1,2}
and the restricted orderF(r) = {1,1,1}, wherer = {3,2,1}.
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The second matrix matrixZ of order 6x6 is determined by the permuta-
tion ρ = {5,2,4,3,1,6} and the restricted orderF(r) = {1,1,1,3,2,2} where
r = {3,6,5,2,4,1}.

From now on we call the class of matrices satisfying (1) and (2) classZ of
matrices.

Theorem 4. Each matrix in the class Z is invertible.

Corollary 1. Any pair of numbers less than m! corresponds to a unique Z matrix.

4 Examples of RP Transforms and Random Generators

By Theorem 1, the main advantage of RP coding is the fact that any boolean in-
vertible matrix provides RP decoding. Since allZ matrices are invertible, their
associated RP codings are invertible.

Example

Z =

















1 1 1 1 1 1
1 1 0 0 0 1
0 0 1 1 0 0
0 0 1 0 0 0
1 0 0 0 0 0
0 0 0 0 0 1

















, Z−1 =

















0 0 0 0 1 0
0 1 0 0 −1 −1
0 0 0 1 0 0
0 0 1 −1 0 0
1 −1 −1 0 0 0
0 0 0 0 0 1

















Corollary 2. The composition of RP transforms associated to Z matrices is also
an invertible transform.

A fast algorithm to compute RP transform of aZ matrix is given by the follow-
ing:

Theorem 5. The RP transform tn = ∏m
k=1(1+ akZk,n) of a Z matrix determined

from two permutationsρ = {ρ1, ...,ρm} and r= {r1, ..., rm} satisfies the following:

tn =
ρ−1

n

∏
k=1

(1+ak)
b(n,k)

, n = 1, ...,m

where

b(n,k) =

{

1 whenever supp(Zρ−1
n

)∩supp(Zk) 6= /0

0 otherwise
.
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Compositions of RP transforms create boolean random generators based on the
following:

Theorem 6. Let t = {tn, n = 1, ...,m} be a boolean vector, then the inverse RP
transform associated to a Z-matrix:

{tn +1, n = 1, ...,m} → {an, n = 1, ...,m} :

tn +1=
m

∏
k=1

(1+akZk,n), n = 1, ...,m

satisfies:

(i) an ∈ {0,1,−1
2}, n = 1, ...,m

(ii) The map t→{tn +1, n = 1, ...,m} → {an, n = 1, ...,m} →
→ {sgn(an− 1

2), n = 1, ...,m} is a boolean map.

Application Let t be any boolean vector of lengthm, then the inverse boolean
RP transform sendst + 1 to a vector with entries{0,−1

2,1}. We observe that the
sign of the absolute value of this provides random permutation of the 2m numbers.
The Figure 2 is created by the inverse of composition of RP transform form= 9
and provides a random permutation of the first 512 numbers.

100 200 300 400 500
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200

300
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500

Fig. 2. The inverse of composition of RP transform form= 9 which provides a
random permutation of the first 512 numbers.

Appendix

In this section we sketch some of the proofs of our theorems.

Proof of Theorem 1Sincehk,n are binary, we may write:

tn =
m

∏
k=1

(1+akhk,n) =
m

∏
k=1

(1+ak)
hk,n



372 C. Karanikas and N. Atreas:

and so

log(tn) =
m

∑
k=1

log(1+ak)hk,n, n = 1, . . . ,m.

Let H−1 = {h−1
k,n} be the inverse matrix ofH, then it is easy to see that

log(1+ak) =
m

∑
n=1

h−1
n,k log(tn), k = 1, . . . ,m,

and so this RP transform is invertible.

Proof of Theorem 4 It is not difficult to see that conditions (1) and (2) deter-
mine a unique matrix. To show that the determinant of this matrix is non-zero, we
observe that any matrixZ determined by the permutationsρ andr can by reduced
by row operations to the identity matrix.

Proof of Theorem 5 Since the inverse matrixZ−1 = {Z−1
k,n} satisfiesZ−1

k,n ∈
{0,1,−1}, k,n = 1, ...m, (i) and (ii) are obtained from the proof of Theorem 1.
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