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ON A LATTICE PROBLEM OF H. STEINHAUS

STEVE JACKSON AND R. DANIEL MAULDIN

1. Introduction

Sometime in the 1950’s, Steinhaus posed the following problem. Do there exist
two sets A and S in the plane such that every set congruent to A has exactly
one point in common with S? The trivial case where one of the sets is the plane
and the other consists of a single point is ruled out. The first appearance of this
problem in the literature seems to be in a 1958 paper of Sierpiński [14]. In this
paper, he showed the answer is yes, a result later rediscovered by Erdős [5]. Of
course, there are many variants of this problem. For example, one could specify
the set A. In this direction, Komjáth showed that such a set exists if A = Z, the
set of all integers [13]. Steinhaus also asked about the specific case where A = Z2.
The first reference to this problem also seems to be Sierpiński’s 1958 paper where
he mentions that in this case there is no set S which is bounded and open or else
bounded and closed. This specific problem has been widely noted (see e.g. [3, 4]),
but has remained unsolved until now. In this paper we answer this question in the
affirmative:

Theorem 1.1. There is a set S ⊆ R2 such that for every isometric copy L of the
integer lattice Z2 we have |S ∩ L| = 1.

We note that throughout this paper we work in the theory ZFC; the usual ax-
ioms of set theory with the axiom of choice (AC). AC is used heavily in the main
construction as we require, for example, an enumeration of the equivalence classes
of the lattices under a certain equivalence relation. Also throughout this paper by
“lattice” we mean a set in the plane which is isometric with the integer lattice Z2

(a brief exception occurs in Lemmas 2.2, 2.3 where we consider scaled versions).
Let us point out that there are several things proven in this paper which are

stronger than what is needed to prove Theorem 1.1. Stronger forms of our two main
technical lemmas, Lemma A (Lemma 1.3) and Lemma B (Lemma 1.5), are proven
here than is required for the main theorem. In [9] a shorter argument is given for
the main theorem. For example, a shorter proof of Lemma A of this paper is given
there. Here we give a more involved induction argument in §3. This argument,
which uses only basic number theory and combinatorics, shows something much
stronger and interesting in its own right. We feel that these stronger results may
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818 STEVE JACKSON AND R. DANIEL MAULDIN

be useful in resolving whether the main theorem holds for other lattices and other
dimensions. We note that the geometric Lemma B is also stronger than what is
required for a proof of the main theorem. A weaker alternative is also indicated in
§4. It is also quite possible that something like Lemma B may be needed to resolve
the problem for other lattices.

We note that theorems similar to Lemma B may be found in the theory of
mechanical linkages [10]. Recall a four-bar linkage may be described as two circles
C1, C2, and a rigid “bar” connecting two points p1, p2 constrained to lie on C1, C2

respectively. If we consider a third point p3, and require that the triangle 4p1p2p3

be rigid, then the locus of points traced out by p3 is called a coupler curve for the
linkage. We say the coupler point p3 is non-trivial if it is not one of the endpoints
p1, p2. In this terminology Lemma B is the statement that the curve traced out
by a non-trivial coupler point of a four-bar linkage has, except in the degenerate
case noted, a finite intersection with any circle. In particular, Lemma B is implicit
in the analysis of Gibson and Newstead [8] (we give a brief sketch in §4). Their
analysis uses a fair amount of machinery from algebraic geometry. However, since
we were not able to find the precise statement of the lemma and as it is crucial to
our methods, we give two very different elementary proofs of it in §4.

We call a set S as in Theorem 1.1 a Steinhaus set and note that whether there
can be a Lebesgue measurable Steinhaus set remains unsolved. (We also do not
know whether a Steinhaus set can be connected although one can prove that if it
is measurable, then it is totally disconnected.) Concerning measurable Steinhaus
sets, H. T. Croft [2] and, independently, J. Beck showed that there is no bounded
measurable Steinhaus set [1] and Koulountzakis obtained some further refinements
[11]. Also, Kolountzakis and Wolff showed that there is no measurable Steinhaus
set for the higher dimensional version of Steinhaus’ problem [12]. It is relatively
easy to see that no Steinhaus set can be a Borel set or even have the Baire property
if one follows the arguments given by Croft. We briefly sketch this argument.
Suppose S has the Baire property. Since R2 =

⋃
z∈Z2(S + z), S cannot be meager.

Fixing a ball with respect to which S is comeager and noting that the gaps between
successive lattice distances converge to 0, we see that there is some ball M such
that the part of S outside this ball is meager. Let E be the set of points where
neither S nor R2\S is meager in any neighborhood. Then E is a nonempty closed
nowhere dense set and following the proof of Lemma 3 of Croft’s paper, we see that
there is an isometric copy L of Z2 which meets E in exactly one point, p. Thus,
there is a ball B(p, d) such that neither S nor R2\S is meager in that ball but R2\S
is comeager in B(x, d) for every x ∈ L with x 6= p. But, this would mean there is a
small translation of L which would entirely miss S. We also note that the question
of whether there is a bounded Steinhaus set remains unsolved. Steinhaus’ problem
and variants were discussed in some detail by Croft [2] and have been updated
in §§E10 and G9 of [3]. In particular, Steinhaus also asked about sets meeting
each copy of the lattice points in exactly n points. The fact that the answer to
this question is yes follows directly from our main theorem and is discussed in our
concluding remarks.

The authors thank C. Freiling, D. Goldstein, J. Rosenberg, and R. Solovay for
helpful conversations. We also thank the referees for several valuable suggestions
and corrections.

Let us say a lattice distance is a real number of the form
√
n2 +m2 where

n,m ∈ Z. Theorem 1.1 is clearly equivalent to the existence of a set S ⊆ R2
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ON A LATTICE PROBLEM OF H. STEINHAUS 819

satisfying the following two properties:
(1) For every isometric copy L of Z2, S ∩ L 6= ∅.
(2) For all distinct z1, z2 ∈ S, ρ(z1, z2) is not a lattice distance, where ρ denotes

the usual Euclidean distance.
In fact, we prove in this paper a slight strengthening of Theorem 1.1:

Theorem 1.2. There is a set S ⊆ R2 satisfying:
(1) For every isometric copy L of Z2 we have S ∩ L 6= ∅.
(2) For all distinct z1, z2 ∈ S, ρ(z1, z2)2 /∈ Z.

We call a set S ⊆ R2 satisfying (2) of Theorem 1.2 a partial Steinhaus set.
Note that viewed this way, the Steinhaus problem has a natural interpretation for

smaller sets of lattices. Namely, given an arbitrary set L of lattices (each of which
is an isometric copy of Z2), we may ask whether there is a partial Steinhaus set S
such that S ∩L 6= ∅ for all L ∈ L. Indeed, establishing this restricted version of the
problem for the case where L is the (countable) family of rational translations of Z2

is a central step toward proving Theorem 1.2. Actually, we need a slight technical
strengthening of this “rational translation” case, which we state below.

In proving Theorem 1.2, it is natural to proceed inductively. That is, we build
the desired set S in (transfinitely many) stages. At limit stages, we take unions,
and at successor stages we enlarge Sα to Sα+1 so as to meet a new lattice, while
at the same time keeping property (2). Note that (2) is then trivially satisfied
at limit stages. If we can meet every lattice L along the way, then the final set
S =

⋃
α Sα will be as desired. While this is our general plan, there are several steps

that must be taken to ensure its success. For example, we do not simply enumerate
the lattices L in type 2ω. To appreciate the difference, we note that there does
exist a “finite obstruction”. That is, there is a finite set of points F ⊆ R2 (in fact
F ⊆ Q2) which forms a partial Steinhaus set, but which cannot be extended to
meet even the integer lattice Z2 and remain a partial Steinhaus set. For example
the following set of 17 points forms such an obstruction (this set was constructed by
considering a partial good permutation of 65 of size 17 which cannot be extended
to a good permutation of 65; these concepts are explained in §3):

(216/5, 2/5) (107/5, 4/5) (283/5, 1/5) (174/5, 3/5)
(677/13, 5/13) (340/13, 10/13) (744/13, 2/13) (407/13, 7/13)
(70/13, 12/13) (474/13, 4/13) (137/13, 9/13) (541/13, 1/13)
(204/13, 6/13) (712/13, 11/13) (271/13, 3/13) (779/13, 8/13)
(2601/65, 57/65)

Rather, it is important that we use the “hull construction” which has played an
important role in several other theorems of this general character (see [6, 7]). The
idea, described abstractly, is to consider a continuous elementary chain {Mα}α<2ω

of substructures (say of some large Vκ) with each Mα of size < 2ω, but R ⊆⋃
α<2ω Mα. Let Lα denote the isometric copies of Z2 which are in Mα. At successor

steps, we now enlarge Sα to Sα+1 which meets all lattices L ∈ Lα+1 − Lα, while
of course keeping property (2). While this gives us more to do at each successor
step, it also provides us with a powerful inductive assumption, namely, the closure
of Lα under various operations. For the reader unfamiliar with the set-theoretic
terminology, we may describe the idea as follows. We write the collection of lattices
L as an increasing union of sets Lα where at limit stages we take unions, and we
require each Lα to be closed under certain finitary functions Fk : (L)<ω → L. We
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820 STEVE JACKSON AND R. DANIEL MAULDIN

could specify in advance which functions Fk we need the Lα to be closed under,
but it is more convenient not to. We note that when the continuum is greater than
ω1, the actual construction we will use will be a bit more complicated, essentially
an iteration of this hull construction.

We now state precisely two lemmas, which we call Lemma A and Lemma B,
which we will need to carry out the plan sketched above. The first of these is the
“rational translation” case mentioned above.

Lemma 1.3 (A). Let LQ denote the set of rational translations of Z2, that is,
lattices of the form Z2 + (r, s) where r, s ∈ Q. Then there is a set S ⊆ R2 satisfying
the following:

(1) For every lattice L ∈ LQ, S ∩ L 6= ∅.
(2) For all distinct z1, z2 ∈ S, ρ(z1, z2)2 /∈ Z.

Actually, we require a slight technical strengthening of Lemma A, which we call
Lemma A′. In this lemma, and for the rest of this paper, we adopt the following
terminology. If L ⊆ R2 is a lattice, then by a “rational translation” of L we mean a
lattice of the form L+r~u+s~v where r, s ∈ Q, and ~u, ~v are the unit basis vectors for
L. In other words, we are always referring to the coordinate system of the lattice
L.

Lemma 1.4 (A′). Let L be a lattice, and let w be a point having rational coordi-
nates with respect to L. Let P be a (countable) set of points containing w, all of
which have rational coordinates with respect to L, and satisfying the following: for
all integers d, i, j, a, b, there are infinitely many points of P which have coordi-
nates with respect to L of the form ( id +k, jd + l), where k, l are integers with k ≡ a
mod d, l ≡ b mod d. Then there is a set S satisfying:

(1) For every rational translation L′ of L we have S ∩ L′ 6= ∅.
(2) For all distinct z1, z2 ∈ S we have ρ(z1, z2)2 /∈ Z.
(3) w ∈ S.
(4) S ⊆ P .

Note that Lemma A′ immediately implies Lemma A taking P to be the set of
all points having rational coordinates with respect to L.

The second lemma is a result in pure plane geometry, which arises in carrying
out the hull construction mentioned above.

Lemma 1.5 (B). Let c1, c2, c3 be three distinct points in the plane, and let r1, r2,
r3 > 0 be real numbers. Let C1 be the circle in the plane with center at c1 and
radius r1, and likewise for C2 and C3. Let a, b, c be three distinct points in the
plane. Then, except for the exceptional case described below, there are only finitely
many triples of points (p1, p2, p3) in the plane such that

(1) p1 ∈ C1, p2 ∈ C2, and p3 ∈ C3.
(2) The triangle p1p2p3 is isometric with the triangle abc (we allow the degen-

erate case where the points a, b, c are collinear).
The exceptional case is when r1 = r2 = r3 and the triangle abc is isometric with
c1c2c3.

In §2 we give the proof of Theorem 1.2 assuming Lemmas A′ and B. In §3 we
prove Lemma A′, and in §4 we prove Lemma B. Sections 3 and 4 are self-contained
and may be read independently.
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2. The main theorem

In this section we prove Theorem 1.2 assuming Lemmas A′ and B. Throughout,
“lattice” will mean an isometric copy of Z2. ω denotes the first infinite ordinal,
which we identify with the set of natural numbers.

Recall that by a “rational translation” of a lattice L we are referring to the coor-
dinate system of the lattice L. By a rational rotation of Z2 we mean an operation
of the form Z2 → R(Z2), where R is a rotation of the plane whose corresponding

matrix MR =
(
r11 r12

r21 r22

)
has rational entries. In this case, MR must be of the

form
(
a
d − b

d
b
d

a
d

)
, where a, b, d are integers and a2 + b2 = d2. For a general lattice

L, a rational rotation means a rotation about a point of L which is rational in the
coordinate system of L.

Definition 2.1. Two lattices are equivalent, L1 ∼ L2, if L2 can be obtained from
L1 by rational rotations and translations.

This is equivalent to saying that in the coordinate system determined by L1, the
isometry moving L1 to L2 is of the form(

x
y

)
→
(
q1 q2

q3 q4

)
·
(
x
y

)
+
(
q5

q6

)
,

where all of the qi are rational. Equivalently, L1 ∼ L2 iff all of the points of L2

have rational coordinates with respect to the coordinate system determined by L1

(and vice-versa). This is easily an equivalence relation, with each equivalence class
countable.

We first prove a lemma which will help us deal with rotations.

Lemma 2.2. Let L1 be a lattice, and let L2 be obtained from L1 by a rational
rotation. Let S ⊆ R2 satisfy the following:

(1) For every lattice L which is a rational translation of L1, S ∩ L 6= ∅.
(2) For all distinct z1, z2 ∈ S, ρ(z1, z2)2 /∈ Z.

Then for every lattice L′ which is a rational translation of L2 we have S ∩ L′ 6= ∅.
Proof. Without loss of generality we may assume L1 = Z2. Let the rational rotation

R correspond to the matrix M =
(
a
d − b

d
b
d

a
d

)
, where a, b, d ∈ Z, d > 1, and

a2 + b2 = d2. L2 = R(Z2) has standard basis vectors ~u = (ad ,
b
d ) and ~v = (− b

d ,
a
d ).

It suffices to show, for any positive integer e such that d|e and any rationals of the
form r = m

e , s = n
e (m, n integers), that S ∩L′r,s 6= ∅, where L′r,s = L2 + r~u+ s~v is

the rational translation of L2 by (r, s). Fix a positive integer e with d|e. Consider
the e2 set of points of the form m

e ~u+ n
e~v, where 0 ≤ m,n < e. For each such point

p, we must show that there are integers k = kp, l = lp such that p+ k~u+ l~v ∈ S.
We require the following technical lemma whose proof we give below.

Lemma 2.3. Let e be a positive integer, and let R be the rational rotation with

matrix M =
(
a
d − b

d
b
d

a
d

)
, where d|e. Let L′2 = 1

eR(Z2). Then there are exactly e2

points of the scaled lattice L′2 which are of the form (x, y) with 0 ≤ x, y < 1.

Granting the lemma, we finish the proof of Lemma 2.2. Let T denote the e2 set
of points in L′2 of the form (x, y) with 0 ≤ x, y < 1. Note that each of these points
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822 STEVE JACKSON AND R. DANIEL MAULDIN

has coordinates (x, y) with x and y rational (in fact, their denominators can be
taken to be de). By property (1) of S, for each such point (x, y) there are integers
(k′, l′) such that (x, y)+(k′, l′) ∈ S. For each such (x, y), let (x′, y′) = (x, y)+(k′, l′)
denote the corresponding point in S. Clearly the map f(x, y) = (x′, y′) from T into
S is one-to-one. Thus f [T ] is a subset of S of size exactly e2. Note also that in
the coordinate system determined by L2, each point of f [T ] has coordinates in 1

eZ
2

(since this is true of the points in T , and (k′, l′) has coordinates with respect to
L2 which have denominators d and d|e). For each point (x′, y′) ∈ f [T ], let k′′, l′′

be integers such that (x′′, y′′) .= (x′, y′) + k′′~u + l′′~v has coordinates with respect
to L2 of the form (me ,

n
e ), where 0 ≤ m,n < e. Let g be the function defined on

f [T ] sending (x′, y′) to (x′′, y′′). Note that g is one-to-one, or else we would violate
property (2) of S. Thus, (g ◦ f)[T ] consists of e2 points which in the L2 coordinate
system all have coordinates of the form (me ,

n
e ) where 0 ≤ m,n < e. Since there are

only e2 such points, (g ◦ f)[T ] exhausts this set. By definition of g, we thus have
for any point p having L2 coordinates of the form (me ,

n
e ), 0 ≤ m,n < e, that there

are integers k = −k′′, l = −l′′ such that p+ k~u+ l~v ∈ S. This completes the proof
of Lemma 2.2.

Proof of Lemma 2.3. Scaling by e, the lemma follows immediately from the fol-
lowing well-known more general fact about lattices: Suppose v1, . . . , vd are lin-
early independent vectors in Zd. Let D = det(v1, . . . , vd). Then there are ex-
actly D points of Zd of the form a1v1 + · · · + advd where 0 ≤ a1, . . . , ad < 1.
To see this, let R be the fundamental domain for the lattice determined by the
vi. That is, R = {a1v1 + · · · + advd : 0 ≤ a1, . . . , ad < 1, ai ∈ R}. Sup-
pose there are D′ points of Zd in R. Clearly any translation of R of the form
R+ n1v1 + · · ·+ ndvd, where the ni are integers, also contains exactly D′ points of
Zd. Thus, nR = {a1v1 + · · · + advd : 0 ≤ a1, . . . , ad < n, ai ∈ R} contains exactly
(D′)nd points of Zd. On the other hand, a volume argument shows this number to
be of the form (D + o(1))nd.

Lemma 2.4. Let L be a lattice and z ∈ R2. Suppose z has coordinates (x, y) with
respect to the lattice L, where at least one of x, y is irrational. Then there is a line
l = l(z, L) such that if w has rational coordinates with respect to L and w /∈ l, then
ρ(w, z)2 /∈ Q.

Proof. Without loss of generality, suppose L = Z2. Suppose z = (x, y) with at least
one of x, y irrational and w = (a, b) ∈ Q2. If ρ(w, z)2 ∈ Q, then (x−a)2 +(y−b)2 ∈
Q, and so

x2 + y2 − 2ax− 2yb ∈ Q.
If w1 = (a1, b1) and w2 = (a2, b2) were two such points, then subtracting the
corresponding equations we would have

2(a1 − a2)x+ 2(b1 − b2)y ∈ Q.(1)

If w3 = (a3, b3) were a third such point, then we likewise have

2(a1 − a3)x+ 2(b1 − b3)y ∈ Q.(2)

If w1, w2, w3 were not collinear, then we could solve equations (1), (2) for x and y,
and these numbers would both be rational, a contradiction. Thus, all such points
w (if any) must lie on a single line.
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Lemma 2.5. Let L1, L2 be lattices which are not equivalent. Then there is at most
one point which has rational coordinates with respect to both L1 and L2.

Proof. Assume without loss of generality that L1 = Z2. If there were two points in
Q2 having rational coordinates with respect to L2, then the standard basis vectors
~u, ~v of L2 would also have rational coordinates. Since one point of L2 has rational
coordinates, it follows that all of the points of L2 have rational coordinates, that
is, L1 ∼ L2.

We now turn to the proof of Theorem 1.2.
If L ⊆ R2 is an isometric copy of Z2, let [L] denote the equivalence class of

L under the equivalence relation ∼ of Definition 2.1. Let L denote the family of
all equivalence classes. By AC, let L → L(L) be a function which picks for each
equivalence class L a member L(L) ∈ L.

To carry out the main construction, we first describe a particular enumeration of
the equivalence classes of the lattices. Let κ(∅) = 2ω, and let {Mα0 : α0 < κ(∅)} be
a continuous increasing chain of elementary substructures of a large Vκ (Vω+1 will
actually suffice) with |Mα0 | < κ(∅) for all α0 < κ(∅) and such that every equivalence
class of lattices is in some Mα0 . Assume also M0 = ∅. Let Nα0 = Mα0+1 −Mα0 .
In general, suppose that M~α is defined for ~α in a certain subtree of ON<ω. If
Mα0,...,αk is defined, we assume also that κ(α0, . . . , αk−1) has been defined and is
an uncountable cardinal. Furthermore, we assume in this case that Mα0,...,αk−1,β is
defined iff β < κ(α0, . . . , αk−1). We let Nα0,...,αk denote Mα0,...,αk+1 −Mα0,...,αk .

Suppose now that Mα0,...,αk is defined. If Nα0,...,αk contains only countably
many equivalence classes of lattices, let Lα0,...,αk;n enumerate them. In this case,
(α0, . . . , αk) is a terminal node in the tree of indices ~α for which M~α is defined.
Otherwise, let κ(α0, . . . , αk) = |Nα0,...,αk ∩ L| and write

Nα0,...,αk =
⋃

αk+1<κ(α0,...,αk)

Mα0,...,αk,αk+1

as a continuous, increasing union, where each Mα0,...,αk,αk+1 is the intersection
of Nα0,...,αk with an elementary substructure of Vκ, and each Mα0,...,αk,αk+1 con-
tains fewer than κ(α0, . . . , αk) many equivalence classes of lattices. Assume also
Mα0,...,αk,0 = ∅. Easily, the tree of indices is well founded (since the κ~α are decreas-
ing along any branch).

If ~α is incompatible with ~β, then N~α and N~β have no equivalence class of lattices
in common. Furthermore, every equivalence class occurs as some Lα0,...,αk;n. Thus,
the Lα0,...,αk;n precisely enumerate the equivalence classes of lattices. We consider
the indices to be (well) ordered lexicographically.

The following simple lemma will be used.

Lemma 2.6. Suppose ~α is an index for which M~α is defined. Let a1, . . . , am ∈M~α

and suppose b is definable from a1, . . . , am in Vκ. Then b ∈
⋃
~β≤~αM~β.

Proof. Let ~α = (α0, . . . , αk) and assume b /∈
⋃
~β≤~αM~β . Since Mα0,...,αk is relatively

closed under the skolem functions of Vκ inside of Nα0,...,αk−1 , it follows that b /∈
Nα0,...,αk−1 . Since b /∈Mα0,...,αk−1 by assumption, we thus have b /∈ Mα0,...,αk−1+1.
Continuing, we eventually have b /∈ Mα0+1, a contradiction since Mα0+1 is a sub-
structure of Vk containing the ai.
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824 STEVE JACKSON AND R. DANIEL MAULDIN

Now fix a terminal index ~α = (α0, . . . , αk). Assume inductively we have defined
for each terminal index ~β < ~α a set S~β ⊆ R2 which satisfies the following:

(1) If ~β1 < ~β2 < ~α, then S~β1
⊆ S~β2

.

(2) For every terminal index ~β less than ~α, S~β meets every lattice in every
equivalence class L~β;n.

(3) Every point of S~β −
⋃
~γ<~β S~γ lies on some lattice of the form L~β;n.

(4) For all distinct z1, z2 ∈ S~β , ρ(z1, z2)2 /∈ Z.

(5) Suppose ~β1 < ~β2 < ~α, x ∈ S~β1
, and y ∈ S~β2

−
⋃
~γ<~β2

S~γ . Then, if ρ(x, y)2 ∈
Q, x, y both have rational coordinates with respect to some lattice of the
form L~β2;n.

Let S<~α =
⋃
~β<~α S~β . We show how to extend S<~α to a set S~α also satisfying (4), (5)

and such that S~α meets every lattice in each equivalence class L~α,n. This suffices
to prove Theorem 1.2.

To ease notation, let Ln = L~α;n, and let Ln = L(Ln). From Lemma 2.2, it
suffices to maintain property (4), to have property (5) when ~β2 = ~α, and to have
S~α meet every rational translation of each Ln (recall a rational translation of Ln
refers to a motion which is a translation in the coordinate system of Ln).

For integers n, d, i, j, let Ld,i,jn denote the translation of Ln by the amount ( id ,
j
d)

(in the coordinate system of Ln).
Note for the following the simple fact that if two distinct points y, z lie on a lattice

L, then L is definable from y and z. In fact, there are only finitely many lattices
containing both y and z. More generally, if y, z both have rational coordinates
with respect to L, then L is definable from y and z.

Claim 2.7. For each n and rationals i
d ,

j
d , there is a finite set of lines Gn( id ,

j
d)

with the following property: if c ∈ S<~α does not have rational coordinates with
respect to Ln, if z ∈ Ld,i,jn , and if ρ(c, z)2 ∈ Q, then z ∈

⋃
Gn( id ,

j
d).

Proof. Suppose there is a z1 ∈ Ld,i,jn and a c1 ∈ S<~α not rational with respect to Ln
such that ρ(z1, c1)2 ∈ Q (otherwise there is nothing to prove). Let l1 = l(c1, Ld,i,jn )
be the line (necessarily through z1) given by Lemma 2.4. Suppose there is a z2 /∈ l1,
z2 ∈ Ld,i,jn , and a c2 ∈ S<~α not rational with respect to Ln with ρ(z2, c2)2 ∈ Q
(necessarily c2 6= c1). Let l2 = l(c2, Ld,i,jn ) be given by Lemma 2.4. Continuing,
construct zm ∈ Ld,i,jn , cm ∈ S<~α if possible so that zm /∈ l1 ∪ · · · ∪ lm−1 and
ρ(zm, cm)2 ∈ Q. If the construction fails at some point, then the claim is proved.
Assume toward a contradiction that we continue to produce an infinite sequence
z1, c1, z2, c2, . . . . Note that the ci are distinct. Let ~βm = (βm0 , . . . , β

m
l ) be the

terminal index (where l depends on m) such that cm ∈ N~βm . Thus, ~βm < ~α. Easily,
there is a k′ ≤ k such that for infinitely many m we have βm0 = α0, . . . , βmk′−1 =
αk′−1, and βmk′ < αk′ (we allow k′ = 0, in which case we have βm0 < α0). Let
~γ = (α0, . . . , αk′). Thus ~γ ≤ ~α, and for these infinitely many m we have cm ∈M~γ .
Let m1, m2, m3 be three such m. Let r1 = ρ(cm1 , zm1), and similarly for r2, r3.
We apply Lemma B to the circles with centers at cmi of radii ri and the points zmi .
Note that we are not in the exceptional case of Lemma B, as otherwise we would
have ρ(zm1 , zm2) = ρ(cm1 , cm2). This contradicts the fact that ρ(cm1 , cm2)2 /∈ Z
as they lie in S<~α (note that ρ(zm1 , zm2)2 ∈ Z as zm1 , zm2 lie in Ld,i,jn ). From
Lemma B, the points zm1 , zm2 , and zm3 are definable from cm1 , cm2 , and cm3 .
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Since Ln is definable from zm1 , zm2 , and zm3 (in fact, from any two of them), Ln is
definable from cm1 , cm2 , and cm3 . It follows from Lemma 2.6 that Ln lies in some
M~β, for ~β ≤ ~α. This contradicts Ln ∈ N~α.

We next construct a sequence of points {xm}m∈ω, which we view as “potential
points” to be added to the set S<~α to form S~α. We will in fact have S~α − S<~α ⊆
{xm : m ∈ ω}.

Let (n, d, i, j, a, b, p)→ 〈n, d, i, j, a, b, p〉 ∈ ω be a fixed bijection between ω7 and
ω. For m ∈ ω, let (m)0, (m)1, . . . be the “decoding functions” for our bijection,
that is, m = 〈(m)0, (m)1, . . . , (m)6〉. If the integer m is understood, we will write
n for (m)0, d for (m)1, etc. Let Md,i,j,a,b

n ⊆ Ld,i,jn be the sublattice of points whose
coordinates in the Ln system are of the form ( id + k, jd + l), where k ≡ a, l ≡ b
mod d.

We inductively construct the xm to satisfy the following (here n denotes (m)0,
d denotes (m)1, etc.):

(1) xm ∈Md,i,j,a,b
n .

(2) If m1 6= m2, then xm1 6= xm2 .
(3) Suppose m1 < m2. If xm1 does not have rational coordinates with re-

spect to Ln2 (= L(m2)0), then xm2 /∈ l(xm1 , Ln2), where l(xm1 , Ln2) is as in
Lemma 2.4.

(4) xm /∈
⋃
Gn( id ,

j
d).

Since at each step there are only finitely many points and lines to avoid, there
is no problem defining the sequence {xm}.

Claim 2.8. For each n, there is at most one point in S<~α∪{xm|(m)0 6= n} having
rational coordinates with respect to Ln.

Proof. Suppose y and z were two such points. Suppose first both y and z were in
S<~α. Say y ∈ S~β1

−
⋃
~γ<~β1

S~γ , z ∈ S~β2
−
⋃
~γ<~β2

S~γ where ~β1 ≤ ~β2. If ~β1 = ~β2,
then each of y, z lies on a lattice in N~β2

. Since Ln is definable from y and z,

Ln is definable from two points which lie in some M~β for some ~β ≤ ~α. From

Lemma 2.6 it follows that Ln ∈
⋃
~γ≤~αM~γ , a contradiction. If ~β1 < ~β2, then from

inductive property (5) we have either ρ(y, z)2 /∈ Q which is impossible (as both
y, z have rational coordinates with respect to Ln), or else y, z both have rational
coordinates with respect to some lattice L in N~β2

. This would again imply that
Ln ∈

⋃
~γ≤~αM~γ , a contradiction. Suppose next that y ∈ S<~α and z = xm where

(m)0 6= n. Since y and z are rational with respect to Ln we have ρ(y, z)2 ∈ Q.
Since xm /∈

⋃
G(m)0( id ,

j
d ) (where d = (m)1, i = (m)2, j = (m)3), we must have

that y is rational with respect to L(m)0 (as otherwise ρ(y, z)2 /∈ Q). Thus, both y
and z have rational coordinates with respect to both Ln and L(m)0 , a contradiction
to Lemma 2.5. Suppose now y = xm1 , z = xm2 , where (m1)0, (m2)0 6= n. Let n1 =
(m1)0, n2 = (m2)0, and assume without loss of generality that m1 < m2. Again,
ρ(y, z)2 ∈ Q, as both are rational with respect to Ln. From the definition of xm2 ,
we must have that xm1 is rational with respect to Ln2 (as otherwise ρ(y, z)2 /∈ Q).
Thus, both y and z are rational with respect to Ln and Ln2 , a contradiction.

Let wn, if it exists, be the unique point having rational coordinates with respect
to Ln which is either in S<~α or of the form xm for some m with (m)0 6= n.
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By induction on n we define sets Tn ⊆ {xm : (m)0 = n}. Assume T0, . . . , Tn−1

have been defined, and for i < n, Ti ⊆ {xm : (m)0 = i}. Let P1 = {xm : (m)0 = n}.
Let P2 = P1 − {wi : i < n}. If wn exists and wn ∈ S<~α ∪

⋃
i<n Ti, let w = wn and

P = P2 ∪ {w}. If wn exists, but wn /∈ S<~α ∪
⋃
i<n Ti, let P = P2 − {wn} and let w

be some point in P . If wn does not exist, let P = P2 and let w be some point in
P . Now apply Lemma A′ to the lattice Ln, the set P , and the point w. Let Tn be
the set produced from Lemma A′.

Let S~α = S<~α ∪
⋃
n Tn. Clearly S~α meets each lattice in each Ln, and S~α ⊆⋃

~β≤~α,k ∪L~β,k. Thus, inductive property (2) is still satisfied. Properties (1) and (3)
are trivially satisfied. By construction, if z ∈ S~α − S<α (say z ∈ Tn −

⋃
m<n Tm)

and y ∈ S<~α, then either ρ(y, z)2 /∈ Q or y, z are both rational with respect to Ln.
Thus property (5) continues to hold.

To complete the proof, we show that ρ(y, z)2 /∈ Z for any y, z ∈ S~α. By
induction, we may assume y, z do not both lie in S<~α. Suppose first that y ∈ S<~α
and z ∈ Tn −

⋃
i<n Ti. Say z = xm. Note that (m)0 = n as otherwise z = wn,

and this is impossible since from the construction wn ∈ Tn implies wn ∈
⋃
i<n Ti.

If y does not have rational coordinates with respect to Ln, then since xm ∈ P (P
as in the definition of Tn) and P ∩ (

⋃
Gn( id ,

j
d )) = ∅, we would have ρ(y, z)2 /∈ Q.

So, assume y is rational with respect to Ln, and hence y = wn. In defining Tn
in this case, we took w = wn in applying Lemma A′. Since z ∈ Tn, we therefore
have ρ(y, z)2 /∈ Z. Suppose next that y first appears in Tn1 , and z first appears
in Tn2 . From the construction it again follows that y = xm1 where (m1)0 = n1,
and z = xm2 where (m2)0 = n2 (in fact, y 6= wn1 and z 6= wn2). If n1 = n2, then
from the definition of Tn1 we have ρ(y, z)2 /∈ Z. Assume without loss of generality
that n1 < n2. If xm1 = wn2 , then by definition of Tn2 we have ρ(y, z)2 /∈ Z, so
assume y = xm1 6= wn2 . By construction, z = xm2 6= wn1 , as n1 < n2 (wn1 cannot
first get into Tn2 as n1 < n2; recall the definition of P2). Thus, y does not have
rational coordinates with respect to Ln2 , and z does not have rational coordinates
with respect to Ln1 . If say m1 > m2 (the other case being identical), it now follows
from the definition of xm1 that ρ(xm1 , xm2)2 /∈ Q.

This completes the proof of Theorem 1.2, assuming Lemmas A′ and B.

3. Proof of Lemma A
′

Our goal in this section is to prove Lemma A′. Actually, we concentrate on
proving Lemma A, as a minor adjustment to this proof will prove Lemma A′.

Throughout we use the following notation. For a, b ∈ Z we write a|b for “a
divides b”. If b > 0, we write a mod b for the unique 0 ≤ a′ < b with a′ ≡ a
mod b. For rationals r, s, let Lr,s = Z2 + (r, s) be the rational translation of Z2 by
(r, s).

Recall the statement of Lemma A:

Lemma 3.1 (A). Then there is a set S ⊆ R2 satisfying the following:
(1) For every rational r, s, S ∩ Lr,s 6= ∅.
(2) For all distinct z1, z2 ∈ S, ρ(z1, z2)2 /∈ Z.

Let R = Q2 ∩ ([0, 1)× [0, 1)). For each positive integer d let Rd ⊆ R be defined
by Rd = {( id ,

j
d) : 0 ≤ i, j < d}.

We may reformulate Lemma A as follows. For all (r, s) ∈ R, there are integers
k = k(r, s) and l = l(r, s) such that if S = {(r + k(r, s), s + l(r, s)) : r, s ∈ Q},
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then for all distinct z1, z2 ∈ S, ρ(z1, z2)2 /∈ Z (property (2) of Lemma A). Thus,
our problem is to define the integer valued functions k(r, s) and l(r, s) satisfying
property (2).

Our plan for defining these functions is to proceed inductively as follows. Assume
we have defined the values k(r, s), l(r, s) for all (r, s) ∈ Rd for some d > 1. Assume
that the partial functions k, l so far defined satisfy property (2), more precisely,
assume:

(∗)d: For any distinct ( i1d ,
j1
d ), ( i2d ,

j2
d ) in Rd, if z1 = ( i1d + k1,

j1
d + l1), z2 =

( i2d + k2,
j2
d + l2) where k1 = k( i1d ,

j1
d ), l1 = l( i1d ,

j1
d )), and similarly for k2, l2, then

ρ(z1, z2)2 /∈ Z.
Let p be a prime and d′ = pd. We then show that we can extend the k, l

functions to rational pairs in Rd′ , maintaining property (2). This clearly suffices to
prove Lemma A.

We note that in this inductive step of the proof, it is important that we assume
that the k, l functions are defined on all of the points ( id ,

j
d) in Rd (and satisfy

property (2), of course). It is not true in general that functions k, l which are
defined on a subset of Rd′ (and satisfy property (2)) can be extended to functions
defined on all of Rd′ also satisfying property (2).

We make the following simple general observation. If x = ( i1d + k1,
j1
d + l1) and

y = ( i2d + k2,
j2
d + l2), then ρ(x, y)2 ∈ Z iff

(i1 − i2)2 + (j1 − j2)2 + 2d[(i1 − i2)(k1 − k2) + (j1 − j2)(l1 − l2)] ∈ d2Z.(3)

We use this frequently below. We will also frequently let a denote i1 − i2 and let b
denote j1 − j2, in which case our equation becomes

(a2 + b2) + 2d[a(k1 − k2) + b(l1 − l2)] ∈ d2Z.(4)

3.1. A special case. Since the general inductive step is somewhat technical, we
feel it helps to illustrate the main points involved by considering a special case.
Thus, we first show how to define the k, l functions on the points in Rpn , for p a
prime, and then show how to extend the functions from Rpn to Rpn+1 . [We could
start with n = 1, but this does not really simplify the argument, and would cause
us to repeat part of the argument.] These arguments are not necessary for the
general case, and the reader may choose to skip down to the general argument.

So, let d = pn. Consider two points of the form z1 = ( i1pn + k1,
j1
pn + l1) and z2 =

( i2pn + k2,
j2
pn + l2), where 0 ≤ i1, i2, j1, j2 < pn and k1, k2, l1, l2 are integers. Substi-

tuting into equation (4), we see that ρ(z1, z2)2 /∈ Z unless

(a2 + b2) + 2pn[a(k1 − k2) + b(l1 − l2)] ≡ 0 mod p2n.(5)

First note that if p = 2 or p ≡ 3 mod 4, then we may define the k, l values
arbitrarily and equation (5) will have no solutions. For clearly if equation (4)
holds, then we must have pn|a2 + b2. Since 0 ≤ i1, i2 < pn, pn does not divide a,
and likewise pn does not divide b. Say a = peu, b = pfu, where e, f < n and u, v
are prime to p. Suppose w.l.o.g. that e ≤ f . Dividing equation (5) through by p2e

we get u2 + p2f−2ev2 ≡ 0 mod p. This implies e = f . Hence, u2 + v2 ≡ 0 mod p.
Thus, ( vu )2 ≡ −1 mod p, a contradiction if p ≡ 3 mod 4, since −1 is not a square
mod p in this case. If p = 2, then since u, v are both odd, u2 + v2 ≡ 2 mod 4.
Dividing equation (5) through by p2e gives

(u2 + v2) + 2pn−e[u(k1 − k2) + v(l1 − l2)] ≡ 0 mod p2(n−e).
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This is impossible, however, as 4 divides the remaining terms in this equation.
Thus, if p = 2 or p ≡ 3 mod 4, we may define the k, l functions arbitrarily on
Rpn and property (2) will be satisfied. For the rest of the special case we therefore
assume p ≡ 1 mod 4.

Recall that if p ≡ 1 mod 4, then there are exactly two square roots of −1
mod pm for any m. Let λ, µ, with 0 < λ, µ < pn, be the two square roots of −1
mod pn. Note that λ ≡ −µ mod pn. Note also that for any k < n, (λ mod pk)
and (µ mod pk) are the two square roots of −1 mod pk.

As we remarked above, if equation (5) holds, we must have pn|a2 + b2. In this
case, if (p, a) = 1 (and hence also (p, b) = 1), this gives ( ba )2 ≡ −1 mod pn, and
hence either b ≡ λa mod pn, or b ≡ µa mod pn. Suppose now p|a (and hence
p|b, or else equation (5) cannot hold). Say a = peu, b = pfv, where e, f < n, and
(p, u) = (p, v) = 1. Assuming e ≤ f (the other case being similar), putting these
into equation (5), and dividing through by p2e we have

(u2 + p2f−2ev2) + pn−e[u(k1 − k2) + pf−ev(l1 − l2)] ∈ p2n−2eZ.

This clearly implies e = f . Also, using a previous remark, v ≡ λu mod pn−e or
v ≡ µu mod pn−e. Multiplying through by pe, we conclude that in all cases for
equation (5) to hold, we must have either b ≡ λa mod pn, or b ≡ µa mod pn.

Suppose, for example, that equation (5) holds and b ≡ λa mod pn. Let ̃ be
the integer, 0 ≤ ̃ < pn, such that ̃ + λi1 ≡ j1 mod pn. Note that ̃ + λi2 ≡ j2
mod pn as well. Let ̄1 = ̃+λi1, and let m1 be such that ̄1 = j1 +pnm1. Likewise
define ̄2 and m2. Note that ̄1 − ̄2 = λ(i1 − i2). Also, we may express the points
z1, z2 now as

z1 =
(
i1
pn

+ k1,
̄1
pn

+ (l1 −m1)
)
, z2 =

(
i2
pn

+ k2,
̄2
pn

+ (l2 −m2)
)
.

Substituting into equation (3), and dividing through by pn we obtain:

(i1 − i2)2

(
1 + λ2

pn

)
+ 2(i1 − i2)[(k1 − k2) + λ(l1 − l2 −m1 +m2)] ≡ 0 mod pn.

Note that this makes sense as pn|(1 + λ2). Let r < n be such that i1 − i2 = pru,
where (p, u) = 1. This equation is then equivalent to

(i1 − i2)
(

1
2

)(
1 + λ2

pn

)
+ [(k1 − k2) + λ(l1 − l2 −m1 +m2)] ≡ 0 mod pn−r.

Rearranging, this becomes

(k1 + λl1) + i1

(
1
2

)(
1 + λ2

pn

)
− λm1

≡ (k2 + λl2) + i2

(
1
2

)(
1 + λ2

pn

)
− λm2 mod pn−r.

(6)

This suggests the following definition.

Definition 3.2. A good permutation π = (π(0), π(1), . . . , π(pn − 1)) of length pn

is a permutation of the integers (0, 1, . . . , pn − 1) such that for all i1 6= i2 with
0 ≤ i1, i2 < pn, if i1− i2 = pru where (p, u) = 1, then π(i1)− π(i2) 6≡ 0 mod pn−r.
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We use the following simple fact.

Fact 1. There is a good permutation of length pn.

Proof. If n = 1, let π = (0, 1, 2, . . . , p− 1). For n > 1, suppose i = b0 + b1p+ b2p
2 +

· · · + bn−1p
n−1 where 0 ≤ bi < p. Set π(i) = b0p

n−1 + b1p
n−2 + · · · + bn−1. This

easily works.

With the above arguments as motivation, we are now in a position to state
precisely and prove two lemmas which complete the analysis for the special case
d = pn that we are considering.

Lemma 3.3. Let p be a prime and n ≥ 1. There are integer functions k, l defined
on Rpn such that for all distinct ( i1pn ,

j1
pn ), ( i2pn ,

j2
pn ) ∈ Rpn we have ρ(z1, z2)2 /∈ Z,

where z1 = ( i1pn + k1,
j1
pn + l1), z2 = ( i2pn + k2,

j2
pn + l2), and k1 = k( i1pn ,

j1
pn ), l1 =

l( i1pn ,
j1
pn ), and similarly for k2, l2.

Proof. If p = 2 or p ≡ 3 mod 4, the result is trivial (that is, we may define the
k, l functions arbitrarily) as shown above. So assume p ≡ 1 mod 4, and let λ, µ
be the two square roots of −1 mod pn. Let π = (π(0), . . . , π(pn − 1)) be a good
permutation of length pn.

Suppose now 0 ≤ i, j < pn, and we define the k, l values for the corresponding
point ( i

pn ,
j
pn ). Let ̃ be such that ̃ + λi ≡ j mod pn, and 0 ≤ ̃ < pn. Let

̄ = ̃+λi. Let m be the integer such that ̄ = j+pnm. Consider then the equation

k + λl ≡ π(i) + λm− 1
2

(
1 + λ2

pn

)
i mod pn.(7)

Similarly, let ˜̃ be such that ˜̃+µi ≡ j mod pn, and let ¯̄ =˜̃+µi. Let m′ be such
that ¯̄ = j +m′pn. Consider also the equation

k + µl ≡ π(i) + µm′ − 1
2

(
1 + µ2

pn

)
i mod pn.(8)

Equations (7) and (8) form a non-singular system mod pn, and we let (k, l) be a
solution (to be specific, say the unique solution with 0 ≤ k, l < pn). This completes
the definition of the k, l functions on Rpn .

Suppose now that ( i1pn ,
j1
pn ) and ( i2pn ,

j2
pn ) are given with 0 ≤ i1, i2, j1, j2 < pn.

Let (k1, l1) and (k2, l2) be the corresponding values as defined above. Let z1 =
( i1pn + k1,

j1
pn + l1) and similarly for z2. We must show that ρ(z1, z2)2 /∈ Z.

Again let a = i1 − i2 and b = j1 − j2. From equation (4), we must show that

(a2 + b2) + 2pn[a(k1 − k2) + b(l1 − l2)] 6≡ 0 mod p2n.

As we have already noted, this inequality is immediate unless b ≡ λa mod pn or
b ≡ µa mod pn. Assume b ≡ λa mod pn, the other case being similar. Let ̃
be such that ̃ + λi1 ≡ j1 mod pn. Let ̄1 = ̃ + λi1, and let m1 be such that
̄1 = j1 +pnm1. Since b ≡ λa mod pn, we also have that ̃+λi2 ≡ j2 mod pn. Let
̄2 = ̃+λi2, and let m2 be such that ̄2 = j2 +pnm2. Note that ̄1− ̄2 = λ(i1− i2).
If we let r < n be such that i1 − i2 = pru where (p, u) = 1, then as we showed
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above, this equation reduces to

(k1 + λl1) + i1

(
1
2

)(
1 + λ2

pn

)
− λm1

6≡ (k2 + λl2) + i2

(
1
2

)(
1 + λ2

pn

)
− λm2 mod pn−r.

(9)

Substituting in the definitions of k1, l1, k2, l2 (cf. equation (7); note that this
equation holds mod pn, and so mod pn−r) this becomes π(i1) 6≡ π(i2) mod pn−r.
This, however, follows immediately from the definition of r and the fact that π is
good.

The following remark on the proof just given will be used in the following argu-
ments.

Remark 3.4. Although we used a single permutation π in the proof of Lemma 3.3,
a somewhat more general construction could have been used. Namely, suppose that
for each of the two square roots λ, µ of −1 mod pn, and for each ̃ with 0 ≤ ̃ < pn,
good permutations πλ̃ and πµ̃ of length pn are given. Then in defining k(i, j), l(i, j),
we could have used the analogs to equations (7), (8) where in equation (7) for π(i)
we use πλ̃ (i), and likewise for equation (8) (here ̃ is as in the definition of m). This
follows since in the non-trivial case in the proof of Lemma 3.3, the points ( i1pn ,

j1
pn ),

( i2pn ,
j2
pn ) have the same value of ̃, and thus the analogs of equation (7) for these

two points are referring to the same permutation (and likewise for equation (8)).

The following lemma gives a sort of converse to the argument used in the proof
of Lemma 3.3 and in the statement of Remark 3.4.

Lemma 3.5. Suppose to all 0 ≤ i, j < pn we have assigned a pair of integers
(k, l) = (k(i, j), l(i, j)) such that for any pair of distinct points of the form z1 =
( i1pn +k(i1, j1), j1pn + l(i1, j1)), z2 = ( i2pn +k(i2, j2), j2pn + l(i2, j2)) we have ρ(z1, z2)2 /∈
Z. For each of the two square roots λ, µ of −1 mod pn, for each 0 ≤ ̃ < pn, and
for each 0 ≤ i < pn, define 0 ≤ πλ̃ (i) < pn to be the integer such that

πλ̃ (i) ≡ (k(i, j) + λl(i, j))− λm+
1
2

(
1 + λ2

pn

)
i mod pn.

Here 0 ≤ j < pn is the integer such that ̃ + λi ≡ j mod pn, and also ̃ + λi =
j +mpn. Then, πλ̃ is a good permutation of pn.

Proof. Fix one of the roots, say λ, and a value of ̃. Let i1 and i2 be distinct
integers with 0 ≤ i1, i2 < pn. Let j1 and j2 be as in the statement of the
lemma for i1 and i2 respectively. Let z1 = ( i1pn + k(i1, j1), j1pn + l(i1, j1)) and z2 =
( i2pn + k(i2, j2), j2pn + l(i2, j2)). Note that if a = i1 − i2 and b = j1 − j2, then we
are in the case where b ≡ λa mod pn. Let ̄1 = ̃ + λi1 and ̄2 = ̃ + λi2. Since
ρ(x, y)2 /∈ Z, equation (3) becomes:

(i1 − i2)2 + (λ(i1 − i2)− pn(m1 −m2))2

+ 2pn[(i1 − i2)(k1 − k2) + (λ(i1 − i2)− pn(m1 −m2))(l1 − l2)] 6≡ 0 mod p2n.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



ON A LATTICE PROBLEM OF H. STEINHAUS 831

Dividing through by pn, this is equivalent to:

(i1 − i2)2

(
1 + λ2

pn

)
− 2λ(i1 − i2)(m1 −m2)

+ 2[(i1 − i2)(k1 − k2) + λ(i1 − i2)(l1 − l2)] 6≡ 0 mod pn.

Suppose now i1 − i2 = pru where r < n and (p, u) = 1. Dividing through by
2(i1 − i2) we have:

(i1 − i2)
1
2

(
1 + λ2

pn

)
− λ(m1 −m2) + [(k1 − k2) + λ(l1 − l2)] 6≡ 0 mod pn−r.

Using the definitions of πλ̃ (i1) and πλ̃ (i2), this becomes πλ̃ (i1) 6≡ πλ̃ (i2) mod pn−r,
and we are done.

Suppose now the k, l functions have been defined at all points of Rpn and satisfy
(∗)pn . We now show how to extend these functions to Rpn+1 satisfying (∗)pn+1 . We
again assume p ≡ 1 mod 4, as otherwise the extension is arbitrary. Again let λ, µ
denote the square roots of −1 mod pn. Let λ′, µ′ denote the square roots of −1 mod
pn+1, chosen so that λ ≡ λ′ mod pn and µ ≡ µ′ mod pn. For each 0 ≤ ̃ < pn, let
πλ̃ , πµ̃ be the good permutations of length pn from Lemma 3.5.

For each 0 ≤ ̃ < pn+1 we define good permutations σλ
′

̃ , σµ
′

̃ of length pn+1. If
p does not divide ̃, let these be arbitrary good permutations of length pn+1. It
remains to define the permutations σλ

′

p̃ , σ
µ′

p̃ for 0 ≤ ̃ < pn.
First, for any 0 ≤ i < pn, we define σλ

′

p̃(pi). This is defined as in the statement
of Lemma 3.5, using pn+1. To be specific, let 0 ≤ σλ′p̃(pi) < pn+1 be such that

σλ
′

p̃ (pi) ≡ (k + λ′l)− λ′m′ +
(

1
2

)(
1 + λ′

2

pn+1

)
pi mod pn+1,(10)

where k, l are the values of the functions at the point ( pi
pn+1 ,

pj
pn+1 ), pj ≡ p̃+λ′(pi)

mod pn+1, and p̃+ λ′(pi) = pj + pn+1m′. Since we also have j ≡ ̃+ λi mod pn,
we also have

πλ̃ (i) ≡ (k + λl)− λm+
(

1
2

)(
1 + λ2

pn

)
i mod pn,

where these are the same k, l values, and ̃ + λi = j + pnm. Say λ′ = λ + epn.
Then pj + pn+1m′ = p̃+ λ′(pi) = p(̃+ λi+ epni) = pj + pn+1m+ epn+1i. Hence,
m′ = m+ ei. Thus we have

σλ
′

p̃ (pi) ≡ (k + λl)− λ(m+ ei) +
(

1
2

)(
1 + λ2 + 2eλpn

pn+1

)
pi mod pn

≡ (k + λl)− λm+
(

1
2

)(
1 + λ2

pn

)
i mod pn

≡ πλ̃ (i) mod pn.

(11)

We say a map σ from the integers i, 0 ≤ i < pn+1, which are divisible by p to the
integers mod pn+1 is a partial good permutation if whenever 0 ≤ i1, i2 < pn+1 are
distinct integers with i1− i2 = pru and (p, u) = 1, then σ(i1) 6≡ σ(i2) mod pn+1−r.
Since πλ̃ is a good permutation of length pn, it follows now easily from the above
equation that σλ

′

p̃ is a partial good permutation.
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Lemma 3.6. If σ is a partial good permutation on pn+1, then there is a good
permutation of length pn+1 extending σ.

Proof. For i of the form i = i0 + pm where 0 ≤ i0 < p, extend σ by defining
σ(i) = σ(pm) + i0p

n. This easily works.

Now extend each σλ
′

̃ to a good permutation of length pn+1. Likewise we define

the good permutations σµ
′

̃ . Using these good permutations, Remark 3.4 shows
that we may define k, l functions on Rpn+1 which satisfy (∗)pn+1 . Furthermore,
for points of the form ( pi

pn+1 ,
pj
pn+1 ), we may take the k, l values already defined

on Rpn , since by definition of the (partial) permutations σλ
′

p̃ , σ
µ′

p̃ , these values will
be a solution to the two equations for k + λ′l and k + µ′l (the equation defining
k + λ′l, for example, is just equation (10) rearranged). Thus, we have extended
k, l functions satisfying (∗)pn to functions defined on all of Rpn+1 and satisfying
(∗)pn+1 . This completes the arguments for the special case d = pn.

3.2. The general case. We now give the general proof of Lemma A, and note at
the end how the proof also shows Lemma A′. The following lemma, whose proof
occupies the rest of this section, embodies what must be shown.

Lemma 3.7. Let d > 1, and suppose functions k, l have been defined on Rd and
satisfy (∗)d. Let p be a prime and d′ = pd. Then these functions may be extended
to Rd′ so as to satisfy (∗)d′ .

The proof will use the following definition and lemma, which generalize Defini-
tion 3.2 and Lemma 3.6.

Definition 3.8. Let d > 1, and let d = pa1
1 · · · pann be its prime decomposition. We

say a permutation π = (π(0), . . . , π(d − 1)) of the set (0, 1, . . . , d − 1) is a d-good
permutation if whenever 0 ≤ i1, i2 < d are distinct and i1 − i2 = pb11 . . . pbnn v where
(v, d) = 1, then π(i1) 6≡ π(i2) mod p

η(a1−b1)
1 · · · pη(an−bn)

n . Here, η(m) is defined to
be m if m ≥ 0, and 0 otherwise.

Note that the goodness condition is equivalent to saying that if i1−i2 = uv where
u is a product of powers of primes dividing d and (v, d) = 1, then π(i1) 6≡ π(i2)
mod d

u , where in writing d
u we adopt the convention that if any prime divides u

to a higher power than d, then that prime is removed completely from both the
numerator and denominator. We also adopt this convention for the proof of the
following lemma.

Suppose d > 1, p is a prime, and d′ = pd. Suppose 0 ≤ id < p, and by the
distinguished class we mean those 0 ≤ i < d′ with i ≡ id mod p. If π(i) is defined
on the distinguished class and satisfies π(i1) 6≡ π(i2) mod d′

u whenever i1 6= i2 are
in the distinguished class (recall here our convention above) and i1− i2 = uv where
(v, d′) = 1, then we say π is partially d′-good.

The next lemma is a general extension lemma which allows us to partially extend
d′-good permutations to good permutations.

Lemma 3.9. Let d > 1, let p be a prime, and let d′ = pd. Let 0 ≤ id < p represent
a distinguished class mod p. Let π be defined on the distinguished class and be
partially d′-good. Let u be defined by d′ = upn, where (u, p) = 1. Let s : d′ → d′ be
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a function satisfying the following:
(1) If i1 ≡ i2 mod p, then s(i1) = s(i2).
(2) s(i) is divisible by u for all i.
(3) For i in the distinguished class, s(i) = 0.
(4) For all i, i+ s(i) ≡ id mod p.

Define σ by σ(i) = π(i + s(i) mod d′) + s(i)
u d mod d′. Then σ extends π and

is d′-good.

Proof. From (3) it is clear that σ extends π. To show goodness, suppose 0 ≤
i1, i2 < d′. Let i′1 = i1 + s(i1) mod d′, i′2 = i2 + s(i2) mod d′. Suppose first that
i1 ≡ i2 mod p. Then by (1), i′1 − i′2 ≡ i1 − i2 mod d′. Also, from the definition
of σ, σ(i1)− σ(i2) ≡ π(i′1)− π(i′2) mod d′. Since π is partially d′-good, the result
follows.

Suppose now i1 − i2 is not divisible by p. Say, i1 − i2 = u1v where (v, d′) = 1
and (u1, p) = 1. Consider first the case where i′1 = i′2, with i′1, i′2 as above.
Then σ(i1) − σ(i2) ≡ s(i1)−s(i2)

u d. Since s(i1) − s(i2) 6≡ 0 mod p in this case,
we have σ(i1) 6≡ σ(i2) mod pn (note: d = upn−1). Since pn divides d′

u1
(using

our conventions), the result follows. Suppose finally that i′1 6= i′2. From (2) it
follows that u1|(i′1 − i′2). Also, p|(i′1 − i′2). So by partial goodness, σ(i′1) 6≡ σ(i′2)
mod d′

pu1
= d

u1
. Since σ(i1) ≡ σ(i′1) mod d, and likewise for i2, it follows that

σ(i1) 6≡ σ(i2) mod d′

pu1
, and hence are not equivalent mod d′

u1
.

Let us say that a prime is trivial if p = 2 or p ≡ 3 mod 4. Otherwise, we say
p is non-trivial. The next lemma shows that we need only consider the non-trivial
primes.

Lemma 3.10. If Lemma 3.7 holds for all d which are divisible by only non-trivial
primes, then the lemma holds for all d.

Proof. Let d = pa1
1 · · · pann qc11 · · · qcmm , where the pi are non-trivial and the qi are

trivial. We assume the k, l functions are defined on Rd and satisfy (∗)d. Let
d′ = pd, and assume first that p is non-trivial. Let P = pa1

1 · · · pann , P ′ = pP ,
and Q = qc11 · · · qcmm . Let G be the subgroup of Q/Z × Q/Z of elements of the
form ( id + Z, jd + Z), and likewise define G′ using d′. Let H be the subgroup of
G consisting of elements of the form ( iP + Z, jP + Z), and likewise define H ′ using
P ′. Let K be the subgroup of elements of the form ( iQ + Z, jQ + Z). Note that
the given k, l functions may be viewed as selector functions on the group G, that
is, functions on G with (k(r + Z, s + Z), l(r + Z, s + Z)) ∈ (r + Z, s + Z). We
extend these selector functions to the group G′. The cosets of H ′ in G′ are exactly
enumerated as H ′ + (r + Z, s + Z), where r + Z, s + Z ∈ K/Z. Consider such a
coset of H ′ in G′, say C′ = H ′ + (r + Z, s + Z). The k, l functions are already
defined on the corresponding coset C = H + (r + Z, s + Z) of H . Since C,C′

are translations of H,H ′, we may by assumption extend the k, l functions from
C to functions k′, l′ on C′ so as to satisfy (∗) on C′ (that is, for any distinct
cosets x = (r1 + Z, s1 + Z), y = (r2 + Z, s2 + Z) ∈ C′, ρ(z1, z2)2 /∈ Z, where
z1 = (k′(x), l′(x)), z2 = (k′(y), l′(y))). Doing this for each coset of H ′ in G′ defines
the k′, l′ functions on G′.

To see that this works, let x = (r1 + Z, s1 + Z), y = (r2 + Z, s2 + Z) be dis-
tinct elements of G′. Let z1 = (k′(x), l′(x)), z2 = (k′(y), l′(y)), and we show that
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ρ(z1, z2)2 /∈ Z. We may assume that x, y are in distinct cosets of H ′. Thus
(a, b) .= z1 − z2 /∈ H ′. The result now follows from the fact that if a, b ∈ Q and
a2+b2 ∈ Z, then a, b (when reduced) have denominators divisible only by non-trivial
primes.

The case where p is trivial is similar but easier. Briefly, view G′ now as a union
of cosets of H , with H as above. For those cosets which are subsets of G, the
k, l functions are already defined, and for the other cosets they are defined easily
using the fact that these cosets are translations of H (in this case we do not use
our assumption that the result holds for d divisible by only non-trivial primes). As
above, the resulting k′, l′ functions satisfy (∗)d′ .

Returning to the proof of Lemma 3.7, by Lemma 3.10 be may assume that d and
d′ are divisible by only non-trivial primes. We make this standing assumption for
the remainder of the proof of Lemma 3.7.

Let d = pa1
1 · · · pann , where all of the pi are non-trivial primes. We prove two

lemmas which characterize the existence of the functions k, l on Rd satisfying (∗)d
in terms of the existence of a family of permutations satisfying certain properties.

Suppose k, l functions are given on Rd. Since all of the pi are non-trivial primes,
there are exactly 2n classes λ mod d such that λ2 ≡ −1 mod d. We refer to such
a λ as a d-root. For each d-root λ, each 0 ≤ ̃ < d, and each 0 ≤ i < d, define

πλ̃ (i) = (k + λl)− λm+
1
2

(
1 + λ2

d

)
(i) mod d,(12)

where (k, l) are the values associated to ( id ,
j
d), where 0 ≤ j < d, and j, m are

defined by

j = ̃+ λi−md.

We introduce two conditions on the πλ̃ .
(d-goodness) For each 0 ≤ ̃ < d and each d-root λ, πλ̃ is a d-good permutation.
(d-consistency) Suppose 0 ≤ ̃1, ̃2 < d and λ1, λ2 are both d-roots. Suppose pa

is one of the prime factors pa1
1 , . . . , p

an
n and λ1 ≡ λ2 mod pa. Then

πλ1
̃1

(i)− πλ2
̃2

(i) ≡ −λ(̃1 − ̃2)
d

mod pa(13)

for any 0 ≤ i < d such that

i(λ1 − λ2) ≡ −(̃1 − ̃2) mod d(14)

(in equation (13), λ could be either λ1 or λ2; note that this expression makes sense
since pa|(̃1 − ̃2)).

Note that the values of i satisfying equation (14) are precisely those 0 ≤ i < d
such that if we define 0 ≤ j1, j2 < d (and m1,m2) by

j1 = ̃1 + λ1i−m1d,

j2 = ̃2 + λ2i−m2d,

then j1 = j2.

Lemma 3.11. Let d = pa1
1 · · · pann where each pi is non-trivial. Assume the k,

l functions are defined on Rd and satisfy (∗)d, and the πλ̃ are defined by equa-
tion (12). Then the πλ̃ satisfy the d-goodness and d-consistency conditions.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



ON A LATTICE PROBLEM OF H. STEINHAUS 835

Proof. Fix 0 ≤ ̃ < d and a d-root λ. We show that πλ̃ defined by equation (12) is
d-good. Let 0 ≤ i1, i2 < d be distinct. Let 0 ≤ j1, j2 < d and m1, m2 be defined by

j1 = ̃+ λi1 −m1d,

j2 = ̃+ λi2 −m2d.
(15)

Let k1, l1 be the values associated to the point w1 = ( i1d ,
j1
d ), and k2, l2 the values

associated to w2 = ( i2d ,
j2
d ). If z1 = w1 + (k1, l1) and z2 = w2 + (k2, l2), then since

ρ(z1, z2)2 /∈ Z we have

(i1 − i2)2 + (j1 − j2)2 + 2d[(i1 − i2)(k1 − k2) + (j1 − j2)(l1 − l2)] 6≡ 0 mod d2.

Substituting from equation (15) we have

(i1 − i2)2(1 + λ2)− 2(i1 − i2)(m1 −m2)dλ

+ 2d[(i1 − i2)(k1 − k2) + λ(i1 − i2)(l1 − l2)] 6≡ 0 mod d2.
(16)

Since d divides 1 + λ2, we may divide through by d to get

(i1 − i2)2

(
1 + λ2

d

)
− 2(i1 − i2)(m1 −m2)λ

+ 2[(i1 − i2)(k1 − k2) + λ(i1 − i2)(l1 − l2)] 6≡ 0 mod d.

(17)

Say i1 − i2 = pb11 · · · pbnn u, where (u, d) = 1. Dividing through by 2(i1− i2) we have

(i1 − i2)
(

1 + λ2

2d

)
− (m1 −m2)λ+ [(k1 − k2) + λ(l1 − l2)]

6≡ 0 mod pη(a1−b1)
1 · · · pη(an−bn)

n ,

where we recall η(r) = r if r ≥ 0, and η(r) = 0 for r < 0. Since pη(a1−b1)
1 · · · pη(an−bn)

n

divides d, we have

πλ̃ (i1) ≡ (k1 + λl1)− λm1 +
(

1 + λ2

2d

)
i1 mod p

η(a1−b1)
1 · · · pη(an−bn)

n

6≡ (k2 + λl2)− λm2 +
(

1 + λ2

2d

)
i2 mod p

η(a1−b1)
1 · · · pη(an−bn)

n

≡ πλ̃ (i2) mod pη(a1−b1)
1 · · · pη(an−bn)

n .

(18)

Thus, πλ̃ is d-good.
To verify d-consistency, suppose λ1 and λ2 are both d-roots, and λ1 ≡ λ2

mod pa, where pa is one of the prime powers occurring in d. Let 0 ≤ ̃1, ̃2 < d, and
let 0 ≤ i < d be such that i(λ1 − λ2) ≡ −(̃1 − ̃2) mod d. If we let 0 ≤ j1, j2 < d
and m1, m2 be defined by

j1 = ̃1 + λ1i−m1d,

j2 = ̃2 + λ2i−m2d,

then j1 = j2, which we now denote by j. Say λ2 = λ1 + epa. Thus,

̃1 − ̃2 = −i(λ1 − λ2) + d(m1 −m2) = iepa + d(m1 −m2).
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Let k, l be the values associated to the point ( id ,
j
d). From the definition of the πλ̃

we have:

k + λ1l ≡ πλ1
̃1

(i) + λ1m1 −
1
2

(
1 + λ2

1

d

)
i mod pa,

k + λ2l ≡ πλ2
̃2

(i) + λ2m2 −
1
2

(
1 + λ2

2

d

)
i mod pa

≡ πλ2
̃2

(i) + λ1m2 −
1
2

(
1 + λ2

2

d

)
i mod pa

≡ πλ2
̃2

(i) + λ1m1 + λ1

(
iepa

d
− ̃1 − ̃2

d

)
− 1

2

(
1 + (λ1 + epa)2

d

)
i mod pa

≡ πλ2
̃2

(i) + λ1m1 −
1
2

(
1 + λ2

1

d

)
i− λ1(̃1 − ̃2)

d
mod pa.

Note that pa divides ̃1 − ̃2, so the last two equations make sense. Thus, we have:

πλ1
̃1

(i)− πλ2
̃2

(i) ≡ −λ1(̃1 − ̃2)
d

mod pa.

This verifies d-consistency.

We now establish a converse to Lemma 3.11. Suppose that for each d-root λ and
each 0 ≤ ̃ < d, a d-good permutation πλ̃ is given, and these permutations satisfy
the d-consistency condition. We show how to define the k, l functions on Rd so as
to satisfy (∗)d. Fix a point ( id ,

j
d), where 0 ≤ i, j < d, and define the values of k,

l associated to that point. Let pa be one of the prime powers occurring in d. For
any d-root λ, λpa

.= λ mod pa is one of the two square roots of −1 mod pa. Fix
for the moment such a λ and λpa . Define 0 ≤ ̃ < d and m by

j = ̃+ λi−md.

Consider the following mod pa equation:

k + λpa l ≡ πλ̃ (i) + λpam−
1
2

(
1 + λ2

d

)
i mod pa.(19)

We claim that the right-hand side of this equation depends only on λpa . For, let
λ1 = λ, and suppose λ2 is also a d-root with λ2 ≡ λ1 mod pa. Say, λ2 = λ1 + epa.
Let ̃1, m1 be the values using λ1, and ̃2, m2 the values using λ2. Since

j = ̃1 + λ1i−m1d = ̃2 + λ2i−m2d,

we have i(λ1 − λ2) ≡ −(̃1 − ̃2) mod d. Therefore, by consistency we have

πλ1
̃1

(i)− πλ2
̃2

(i) ≡ −λ1(̃1 − ̃2)
d

mod pa.
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Thus

πλ1
̃1

(i) + λpam1 −
(

1 + λ2
1

2d

)
i

≡ πλ2
̃2

(i)− λ1(̃1 − ̃2)
d

+ λpa

(
m2 +

̃1 − ̃2
d

+ i
λ1 − λ2

d

)
−
(

1 + (λ2 − epa)2

2d

)
i mod pa

≡ πλ2
̃2

(i) + λpam2 − iλpa
epa

d
−
(

1 + (λ2 − epa)2

2d

)
i mod pa

≡ πλ2
̃2

(i) + λpam2 −
(

1 + λ2
2

2d

)
i mod pa.

(20)

This verifies the claim. Thus, for each of the two square roots λpa , −λpn of −1
mod pa we have unambiguous values, say v1 and v2, for the right-hand sides of
equation (19). For each prime factor pa, and each of the two roots ±λpa mod pa,
we solve the system

k + λpa l ≡ v1 mod pa,

k − λpa l ≡ v2 mod pa.

From the Chinese remainder theorem, we may choose (k, l) so that all of these
systems for the various pa are simultaneously satisfied. This completes the definition
of the k, l functions.

To verify (∗)d, let 0 ≤ i1, j1, i2, j2 < d, and let w1 = ( i1d ,
j1
d ), w2 = ( i2d ,

j2
d ). let

z1 = w1 +(k1, l1), z2 = w2 +(k2, l2), where k1, l1 are the values as defined above for
w1, and similarly for k2, l2. We must show ρ(z1, z2)2 /∈ Z. Toward a contradiction,
assume ρ(z1, z2)2 ∈ Z, which becomes as usual

(i1 − i2)2 + (j1 − j2)2 + 2d[(i1 − i2)(k1 − k2) + (j1 − j2)(l1 − l2)] ≡ 0 mod d2.

(21)

Consider for the moment one of the prime powers pa of d such that if pe is the
exact power of p dividing i1 − i2, then e < a (such a factor must clearly exist since
|i1 − i2| < d). Write i1 − i2 = peu where (u, p) = 1. Let f be the exact power
of p dividing j1 − j2, and write j1 − j2 = pfv, where (v, p) = 1. Since e < a,
it follows easily from equation (21) that e = f . Dividing through by p2e shows
that u2 + v2 ≡ 0 mod pa−e. Thus, there is a square root λ̄ of −1 mod pa−e such
that v ≡ λ̄u mod pa−e. There is a square root λpa of −1 mod pa such that λ ≡ λ̄
mod pa−e. Thus, v ≡ λpau mod pa−e as well. Hence j1−j2 ≡ λpa(i1−i2) mod pa.

If pa is a prime power occurring in d for which e ≥ a, equation (21) implies that
f ≥ a as well (using the notation above). Thus, for any square root λpn of −1 mod
pa the equation j1 − j2 ≡ λpa(i1 − i2) mod pa holds trivially.

Now let λ be a d-root such that for any prime power pa occurring in d, λ ≡ λpn
mod pa, with λpa as in the cases above. It follows that j1− j2 ≡ λ(i1− i2) mod d.

Let 0 ≤ ̃ < d and m1 be defined by

j1 = ̃+ λi1 −m1d.(22)

Since j1 − j2 ≡ λ(i1 − i2) mod d, it follows that there is an m2 such that

j2 = ̃+ λi2 −m2d.(23)
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From the definitions of k1, l1 (in which we use the above values of ̃, λ; this is
permissible by d-consistency) we have

k1 + λl1 ≡ πλ̃ (i1) + λm1 −
(

1 + λ2

2d

)
i1 mod d,(24)

since this equation holds mod each prime power paii occurring in d. Likewise,

k2 + λl2 ≡ πλ̃ (i2) + λm2 −
(

1 + λ2

2d

)
i2 mod d.(25)

Substituting equations (22), (23) into equation (21) and dividing through by 2d we
obtain

(i1 − i2)2

(
1 + λ2

2d

)
− λ(i1 − i2)(m1 −m2)

+ [(i1 − i2)(k1 − k2) + λ(i1 − i2)(l1 − l2)] ≡ 0 mod d.

(26)

Dividing through by i1 − i2 gives

(i1 − i2)
(

1 + λ2

2d

)
− λ(m1 −m2) + [(k1 − k2) + λ(l1 − l2)]

≡ 0 mod pη(a1−b1)
1 · · · pη(an−bn)

n ,

(27)

where i1−i2 = pb11 · · · pbnn u and (u, d) = 1. Substituting equations (24) and (25) now
gives πλ̃ (i1) − πλ̃ (i2) ≡ 0 mod p

η(a1−b1)
1 · · · pη(an−bn)

n . This, however, contradicts
the assumed d-goodness of the πλ̃ .

Summarizing, we have shown the following converse to Lemma 3.11.

Lemma 3.12. Let d = pa1
1 · · · pann be a product of non-trivial primes. Assume that

for each 0 ≤ ̃ < d and each d-root λ a d-good permutation πλ̃ is given, and these
permutations satisfy the d-consistency condition. Then we may associate to each
( id ,

j
d ), 0 ≤ i, j < d, integer values k, l such that for all d-roots λ and all 0 ≤ ̃ < d

satisfying j ≡ ̃+ λi mod d (say j = ̃+ λi −md), we have

k + λl ≡ πλ̃ (i) + λm−
(

1 + λ2

2d

)
i mod d.

Furthermore, these k, l functions satisfy (∗)d.

To unify notation, let us now write d = pa1
1 · · · pann and d′ = pa1+1

1 pa2
2 · · · pann

(thus we do not assume these primes are in increasing order, and we allow a1 = 0).
The case a1 = 0 differs in only trivial notational ways from the case a1 ≥ 1, so we
assume below all of the ai are positive. Recall we are assuming the k, l functions
have been defined on Rd and satisfy (∗)d, and we must extend them to functions
k′, l′ on Rd′ satisfying (∗)d′ .

For each 0 ≤ ̃ < d, and each d-root λ, let πλ̃ be as in Lemma 3.11 using the given
k, l functions. Thus, each πλ̃ is a d-good permutation, and this family satisfies the
d-consistency condition.

For each ̃ with 0 ≤ p1̃ < d′, each d′-root λ′ (that is, λ′2 ≡ −1 mod d′), and
each i with 0 ≤ p1i < d′, define

σλ
′

p1 ̃(p1i) = (k + λ′l)− λ′m+
1
2

(
1 + λ′

2

d′

)
(p1i) mod d′(28)
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where (k, l) are the values already assigned to the pair ( id ,
j
d ) = (p1i

d′ ,
p1j
d′ ), and j,m

are defined by

p1j = p1̃+ λ′(p1i)−md′.(29)

This makes sense since the right-hand side is divisible by p1. Thus, each σλ
′

p1 ̃
is

a partial function in that it is only defined on the 0 ≤ i < d′ which are divisible
by p1. We will momentarily extend these to fully d′-good permutations satisfying
the d′-consistency condition, but first we catalog the properties satisfied by these
partial functions.

First note that if λ = λ′ mod d, then σλ
′

p1 ̃
(p1i) ≡ πλ̃ (i) mod d. To see this, let

λ′ = λ + ed. Thus, j = ̃ + λ′i −md = ̃ + λi − (m − ei)d. Hence, if k, l are the
values associated to the pair ( id ,

j
d ), then

σλ
′

p1 ̃(p1i) = (k + λ′l)− λ′m+
1
2

(
1 + λ′

2

d′

)
(p1i) mod d′

≡ (k + λl)− λm+
1
2

(
1 + λ′

2

d′

)
(p1i) mod d

≡ (k + λl)− λ(m− ei)− ieλ+
1
2

(
1 + (λ+ ed)2

d

)
i mod d

≡ (k + λl)− λ(m− ei) +
1
2

(
1 + λ2

d

)
i mod d

≡ πλ̃ (i) mod d.

(30)

We introduce now the following “partial” goodness and consistency conditions
for the σλ

′

p1 ̃
.

(partial d′-goodness) If 0 ≤ p1̃ < d′, 0 ≤ p1i1, p1i2 < d′, and (p1i1 − p1i2) =
pb11 · · · pbnn v, where (v, d′) = 1, then

σλ
′

p1 ̃(p1i1) 6≡ σλ′p1 ̃(p1i2) mod pη(a1+1−b1)
1 · · · pη(an−bn)

n .

(partial d′-consistency) If 0 ≤ p1̃1, p1̃2 < d′ and λ′1, λ
′
2 are d′-roots with λ′1 ≡ λ′2

mod pa where pa is one of the prime factors pa1+1
1 , . . . , pann of d′, then for any

0 ≤ p1i < d′ with (p1i)(λ′1 − λ′2) ≡ −(p1̃1 − p1̃2) mod d′ we have

σ
λ′1
p1 ̃1

(p1i)− σλ
′
2
p1 ̃2

(p1i) ≡ −
λ′(p1̃1 − p1̃2)

d′
mod pa.

Lemma 3.13. The partial functions σλ
′

p1 ̃
satisfy the d′-partial goodness and d′-

partial consistency conditions.

Proof. The proof is essentially identical to that of Lemma 3.11. For example, to
verify partial d′-consistency, let j, m′1, m′2 be defined by

p1j = p1̃1 + λ′1(p1i)−m′1d′

= p1̃2 + λ′2(p1i)−m′2d′.
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Let (k, l) be the values associated to (p1i
d′ ,

p1j
d′ ), and let λ′2 = λ′1 + epa. Then we

have:

σ
λ′1
p1 ̃1

(p1i) ≡ (k + λ′1l)− λ′1m1 +
1
2

(
1 + λ′1

2

d′

)
(p1i) mod pa

≡ (k + λ′2l)− λ′2m2 − λ′2
p1(̃1 − ̃2) + (λ′1 − λ′2)(p1i)

d′

+
1
2

(
1 + (λ′2 − epa)2

d′

)
(p1i) mod pa

≡ (k + λ′2l)− λ′2m2 +
1
2

(
1 + λ′2

2

d′

)
(p1i)−

λ′2(p1̃1 − p1̃2)
d′

mod pa

≡ σλ
′
2
p1 ̃2

(p1i)−
λ′2(p1̃1 − p1̃2)

d′
mod pa.

We now define the permutations σλ
′

̃ (i) for all 0 ≤ ̃ < d′, all d′-roots λ′, and all
0 ≤ i < d′, and which extend the partial permutations so far defined (the σλ

′

p1 ̃
(p1i)).

Since we do not need to refer to the d-roots anymore, we will henceforth use λ to
refer to the d′ roots. Also, we refer to the i, j, ̃ which are divisible by p1 as “old”,
and the other i, j, ̃ as “new”. Thus, σλ̃ (i) is currently defined for the old ̃ and i,
and we wish to extend to the new values.

We introduce two families of functions, rλ̃ and sλ̃ , from d′ to d′. These “shift”
functions will tell us how to extend certain partially defined permutations to fully
good permutations. These functions are defined for each d′ root λ. The r functions
are defined for old ̃, and the s functions for new ̃. Actually, for the construction
below it suffices (though it is not necessary) to take rλ̃ functions which are inde-
pendent of ̃ and λ, that is, we have a single function r : d′ → d′. In general, the
properties we desire of the r and s functions are described in the following lemma.

Definition 3.14. Let λ be a root mod d′, and let 0 ≤ ̃ < d′. By the λ, ̃-
distinguished class we mean the equivalence class mod p1 of 0 ≤ i < d′ satisfying
i(λ− λ̄) ≡ −̃ mod p1, where λ̄ is a root not equivalent to λ mod p1 (so, λ̄ ≡ −λ
mod p1).

Note that for a given ̃, there are really only two distinguished classes, one for
each of the two possible values of a root mod p1, and each of these classes is the
negative of the other, mod p1.

Lemma 3.15. There are functions r, sλ̃ : d′ → d′ satisfying the following:
(1) For each 0 ≤ i < d′, i+ r(i) is divisible by p1. Further, if p1|i, then r(i) = 0.
(2) For each root λ, new ̃, and 0 ≤ i < d′, i + sλ̃ (i) is in the λ, ̃-distinguished

class. Further, if i is in the λ, ̃-distinguished class, then sλ̃ (i) = 0.
(3) r(i), sλ̃ (i) only depend on the classes of ̃ and i mod p1.
(4) sλ̃ (i) depends only on the class of λ mod p1.
(5) r(i), sλ̃ (i) are divisible by u (recall u = pa2

2 · · · pann ).
For the remaining statements we fix some notation. Let 0 ≤ ̃1, ̃2 < d′, with ̃1,

̃2 new. Let λ1, λ2 be d′ roots with λ1 ≡ −λ2 mod p1. Let 0 ≤ i < d′. Suppose
i(λ1 − λ2) ≡ −(̃1 − ̃2) mod p1.
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(6) sλ1
̃1

(i) + r(i + sλ1
̃1

(i)) = sλ2
̃2

(i) + r(i + sλ2
̃2

(i)) mod d′.
(7) sλ1

̃1
(i) = r(i + sλ2

̃2
(i)).

With the notation as fixed in the statement of the lemma, if we let s1 abbreviate
sλ1
̃1

(i), r2 = r(i + sλ1
̃1

(i)), s2 = sλ2
̃2

(i), and r1 = r(i + sλ2
̃2

(i)), then the last two
statements become

(6) s1 + r2 = s2 + r1.
(7) s1 = r1.
Of course, we also have in this case that s2 = r2.

Proof. We give an algorithm for constructing the r, sλ̃ functions. First, let r(i) =
(− i

u mod p1)u, where u = pa2
2 · · · pann . Clearly (1) is satisfied.

Suppose that λ is a root and ̃ is new. Let 0 ≤ id < p1 represent the λ, ̃-
distinguished class. Let sλ̃ (i) be the unique value in {r(0), . . . , r(p1− 1)} such that
i+ sλ̃ (i) ≡ id mod p1.

This completes the definition of the r and sλ̃ functions. Property (2) is clear,
and (3) is also since the λ, ̃-distinguished class depends on the class of ̃ mod p1.
Likewise, this class depends only the value of λ mod p1, and so (4) follows. (5) is
immediate from the definitions.

To see (6), fix i, ̃1, ̃2, λ1, λ2 with λ1 ≡ −λ2 mod p1 and i(λ1−λ2) ≡ −(̃1− ̃2)
mod p1. Let s1, r2, s2, r1 be as above. Let i1 = i + s1 mod d′, so i1 is in the
λ1, ̃1-distinguished class. Likewise, let i2 = i + s2 mod d′, which is in the λ2, ̃2-
distinguished class. Since i1 is in the distinguished class we have i1(λ1−λ2) ≡ −̃1
mod p1, and likewise we have i2(λ2−λ1) ≡ −̃2. Subtracting these equations gives

(i1 + i2)(λ1 − λ2) ≡ −(̃1 − ̃2) ≡ i(λ1 − λ2) mod p1.

Thus, i ≡ i1 + i2 mod p1. Also, by definition of the r function we have r2 ≡ −i1
mod p1 and r1 ≡ −i2 mod p1. Thus, i + r2 ≡ i − i1 ≡ i2 mod p1. From the
definition of s2 it now follows that s2 = r2. Similarly, r1 ≡ −i2 mod p1 and so
i+ r1 ≡ i− i2 ≡ i1 mod p1 from which it follows that s1 = r1. This verifies (7) as
well.

We now define the σλ̃ . First assume that ̃ is old. In this case, σλ̃ (i) is already
defined for the old i. We extend the partial function σλ̃ to all values of i using
Lemma 3.9 and the r function. Thus,

σλ̃ (i) = σλ̃ (i + r(i) mod d′) +
(
r(i)
u

)
d mod d′.

It is immediate from Lemma 3.9 that σλ̃ is d′-good.
Suppose now ̃ is new. Let id represent the congruence class mod p1 of the

distinguished class. We first define σλ̃ (i) for i ≡ id mod p1, that is, in the dis-
tinguished class. Fix such an i, and define σλ̃ (i) by defining its congruence class
mod pa1+1

1 , . . . , pann . Consider one of these prime powers pa, and suppose first that
p 6= p1. Let λ2 be a root with λ2 ≡ λ mod pa and λ2 ≡ −λ mod p1. Define ̃2 by
i(λ−λ2) ≡ −(̃− ̃2) mod d′. Note that since i is in the distinguished class, p1|̃2,
that is, ̃2 is old. Then define

σλ̃ (i) ≡ σλ2
̃2

(i)− λ(̃− ̃2)
d′

mod pa.
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We check that this is well defined, that is, it does not depend on the choice of λ2.
Suppose λ3 is another root with λ3 ≡ λ mod pa and λ3 ≡ −λ mod p1, so λ3 ≡ λ2

mod pa1+1
1 as well. Let ̃3 be such that i(λ− λ3) ≡ −(̃− ̃3) mod d′. Since

i(λ− λ2) ≡ −(̃− ̃2) and i(λ− λ3) ≡ −(̃− ̃3) mod d′,

it follows that

i(λ2 − λ3) ≡ −(̃2 − ̃3) mod d′.

Let i′ = i+ r(i) mod d′. Then we also have i′(λ2 − λ3) ≡ −(̃2− ̃3) mod d′ since
(i− i′)(λ2 − λ3) is divisible by d′ (recall r(i) is divisible by u). Since i′, ̃2, ̃3 are
old, by partial d′-consistency we therefore have

σλ2
̃2

(i′)− σλ3
̃3

(i′) ≡ −λ(̃2 − ̃3)
d′

mod pa.

Since σλ2
̃2

(i)− σλ3
̃3

(i) ≡ σλ2
̃2

(i′)− σλ3
̃3

(i′) mod d′, it follows that

σλ2
̃2

(i)− σλ3
̃3

(i) ≡ −λ(̃2 − ̃3)
d′

mod pa.

Consequently, σλ2
̃2

(i)− λ(̃−̃2)
d′ ≡ σλ3

̃3
(i)− λ(̃−̃3)

d′ mod pa, and we are done.
For i still in the λ, ̃-distinguished class, we now define σλ̃ (i) mod pa1+1

1 . Let
π be a fixed good permutation of length pa1

1 . For i in the distinguished class let

i′ = i−(i mod p1)
p1

. Then define σλ̃ (i) ≡ π(i′)− λ(̃−(̃ mod p
a1+1
1 ))

d′ mod pa1+1
1 .

This defines σλ̃ (i) for i in the distinguished class. We extend this to a full
permutation using the sλ̃ function. Thus,

σλ̃ (i) ≡ σλ̃ (i+ sλ̃ (i) mod d′) +

(
sλ̃ (i)
u

)
d mod d′.

This completes the definition of the σλ̃ functions. It remains to verify that they
satisfy the goodness and consistency conditions.

Lemma 3.16. The σλ̃ satisfy the d′-goodness condition.

Proof. We have already observed that this is the case for old ̃, so assume ̃ is
new. It is enough to check that σλ̃ restricted to the distinguished class is a par-
tially good function. To see this, suppose i1, i2 are in the distinguished class
(in particular, i1 ≡ i2 mod p1). Let i1 − i2 = pb11 . . . pbnn v where (v, d′) = 1.
Suppose first that b1 < a1 + 1. Let i′1, i′2 correspond to i1, i2 as in the defini-
tion of σλ̃ mod pa1+1

1 . So, i′1 − i′2 = (i1−i2)
p1

. By goodness of π, π(i′1) 6≡ π(i′2)

mod pa1−(b1−1)
1 = p

(a1+1)−b1
1 , and so σλ̃ (i1) 6≡ σλ̃ (i2) mod pa1+1−b1

1 , and thus also

inequivalent mod p
η(a1+1−b1)
1 · · · pη(an−bn)

n .
Assume next that b1 ≥ a1 + 1. We must show that σλ̃ (i1) 6≡ σλ̃ (i2) mod w

.=

p
η(a2−b2)
2 · · · pη(an−bn)

n . Let λ2 be the root with λ2 ≡ −λ mod pa1+1
1 , but λ2 ≡ λ

mod paii for i ≥ 2. Let ̃2 be defined by i1(λ − λ2) ≡ −(̃ − ̃2) mod d′. Note
then that we also have i2(λ− λ2) ≡ −(̃− ̃2) mod d′, as pa1+1

1 divides i1− i2. By
the well-definedness noted above, we may use λ2 and ̃2 in the definitions of both
σλ̃ (i1) and σλ̃ (i2) modulo any of the powers paii , i ≥ 2. Let pa denote one of these
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powers. From the definition of the σλ̃ we have

σλ̃ (i1) ≡ σλ2
̃2

(i1)− λ(̃− ̃2)
d′

mod pa

and

σλ̃ (i2) ≡ σλ2
̃2

(i2)− λ(̃− ̃2)
d′

mod pa,

and thus

σλ̃ (i1)− σλ̃ (i2) ≡ σλ2
̃2

(i1)− σλ2
̃2

(i2) mod pa.

Since this is true for each of the prime powers pa, we also have

σλ̃ (i1)− σλ̃ (i2) ≡ σλ2
̃2

(i1)− σλ2
̃2

(i2) mod u,

where u = pa2
2 · · · pann . Hence it is enough to show that σλ2

̃2
(i1) 6≡ σλ2

̃2
(i2) mod w.

Since i1 ≡ i2 mod p1, r(i1) = r(i2). If i∗1 denotes i1 + r(i1) mod d′ and likewise
for i∗2, then i∗1− i∗2 ≡ i1− i2 mod d′, and also σλ2

̃2
(i1)−σλ2

̃2
(i2) ≡ σλ2

̃2
(i∗1)−σλ2

̃2
(i∗2)

mod d′ from the definition of σλ̃ for the old ̃. So, it is enough to show that
σλ2
̃2

(i∗1) 6≡ σλ2
̃2

(i∗2) mod w. This, however, follows immediately from the partial
goodness of σλ2

̃2
and the fact that i∗1 − i∗2 ≡ i1 − i2 mod d′.

We have now shown that σλ̃ restricted to the distinguished class is partially good.
The goodness of the full function σλ̃ now follows immediately from the extension
Lemma 3.9.

Lemma 3.17. The σλ̃ functions satisfy the d′-consistency conditions.

Proof. Fix i, ̃1, ̃2, λ1, λ2 with i(λ1 − λ2) ≡ −(̃1 − ̃2) mod d′. Let pa be a
prime power with λ1 ≡ λ2 mod pa. We may assume that ̃1, ̃2 are not both
old, and without loss of generality that ̃1 is new. For if ̃1, ̃2 are both old, then
as in an argument above we would have i′(λ1 − λ2) ≡ −(̃1 − ̃2) mod d′ and
σλ1
̃1

(i′)− σλ2
̃2

(i′) ≡ σλ1
̃1

(i)− σλ2
̃2

(i) mod d′, where i = i+ r(i) mod d′. The result
then follows.

Assume first that ̃2 is old. In this case we must have i is new and λ2 ≡ −λ1

mod p1. In particular, p 6= p1. From well-definedness, we may use ̃2, λ2 in the
definition of σλ1

̃1
(i) mod pa. However, it is then immediate that

σλ1
̃1

(i)− σλ2
̃2

(i) ≡ −λ(̃1 − ̃2)
d′

mod pa,

where λ denotes either λ1 or λ2.
Assume henceforth that ̃1, ̃2 are both new. Consider first the case p = p1.

Thus, λ1 ≡ λ2 mod pa1+1
1 , and so ̃1 ≡ ̃2 mod pa1+1

1 . Thus, sλ1
̃1

= sλ2
̃2

= s,
say. Let i′ = i+ s(i) mod d′. Then i′ is in the λ1, ̃1-distinguished class, which is
the same as the λ2, ̃2-distinguished class. From the definition of the permutation
extension, it follows that

σλ1
̃1

(i)− σλ2
̃2

(i) ≡ σλ1
̃1

(i′)− σλ2
̃2

(i′) mod d′.

Thus, it suffices to show that σλ1
̃1

(i′) − σλ2
̃2

(i′) ≡ −λ(̃1−̃2)
d′ mod pa1+1

1 . Let i∗ =
i−(i mod p1)

p1
. Then

σλ1
̃1

(i′) ≡ π(i∗)− λ(̃1 − (̃1 mod pa1+1
1 ))

d′
mod pa1+1

1 ,
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where again λ denotes either λ1 or λ2. Likewise

σλ2
̃2

(i′) ≡ π(i∗)− λ(̃2 − (̃2 mod pa1+1
1 ))

d′
mod pa1+1

1 ,

and so σλ1
̃1

(i′)− σλ2
̃2

(i′) ≡ −λ(̃1−̃2)
d′ mod pa1+1

1 .
Consider finally the case p 6= p1. First, we argue that we may assume λ1 6≡ λ2

mod pa1+1
1 . For assume we can prove consistency in this case, and suppose λ1 ≡ λ2

mod pa1+1
1 . Let λ3 ≡ λ1 ≡ λ2 mod pa, but λ3 ≡ −λ1 ≡ −λ2 mod p1. Define ̃3

by i(λ1 − λ3) ≡ −(̃1 − ̃3) mod d′. Since i(λ1 − λ2) ≡ −(̃1 − ̃2) mod d′, it also
follows that i(λ2 − λ3) ≡ −(̃2 − ̃3) mod d′. By assumption we can show that

σλ1
̃1

(i)− σλ3
̃3

(i) ≡ −λ(̃1 − ̃3)
d′

mod pa,

and also

σλ2
̃2

(i)− σλ3
̃3

(i) ≡ −λ(̃2 − ̃3)
d′

mod pa.

Subtracting, it follows that

σλ1
̃1

(i)− σλ2
̃2

(i) ≡ −λ(̃1 − ̃2)
d′

mod pa.

So, we may assume λ1 ≡ −λ2 mod p1. Consider first the definition of σλ1
̃1

(i).
Let s1 = sλ1

̃1
(i). Let i1 = i + s1 mod d′. Thus,

σλ1
̃1

(i) ≡ σλ1
̃1

(i1) +
(s1

u

)
d mod d′.

Recall i1 is in the λ1, ̃1-distinguished class. In defining σλ1
̃1

(i1) mod pa, we may
use the root λ2 as λ2 ≡ λ1 mod pa and λ2 ≡ −λ1 mod pa1+1

1 . Let ̃3 be defined
by i1(λ1 − λ2) ≡ −(̃1 − ̃3) mod d′. We then have

σλ1
̃1

(i1)− σλ2
̃3

(i1) ≡ −λ(̃1 − ̃3)
d′

mod pa,

where again λ denotes either λ1 or λ2. Note that ̃3 is old. Let r2 = r(i1). Let
i′ = i1 + r1 mod d′. Then again by definition we have

σλ2
̃3

(i1)− σλ2
̃3

(i′) ≡
(r2

u

)
d mod d′.

Combining these, we get

σλ1
̃1

(i) ≡ σλ2
̃3

(i′) +
(
s1 + r2

u

)
d− λ(̃1 − ̃3)

d′
mod pa.

Now consider σλ2
̃2

(i). Let s2 = s̃2λ2
(i) and i2 = i+ s2 mod d′. So,

σλ2
̃2

(i)− σλ2
̃2

(i2) ≡
(s2

u

)
d mod d′.

In defining σλ2
̃2

(i2), we may use λ1 as the auxiliary root. Let ̃4 be defined by
i2(λ2 − λ1) ≡ −(̃2 − ̃4) mod d′. Thus we have

σλ2
̃2

(i2)− σλ1
̃4

(i2) ≡ −λ(̃2 − ̃4)
d′

mod pa.
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Let r1 = r(i2). Let i′′ = i2 + r1 mod d′. Since i′ ≡ i + s1 + r2 mod d′ and
i′′ ≡ i + s2 + r1 mod d′, from (6) of Lemma 3.15 it follows that i′ = i′′. We
therefore have

σλ1
̃4

(i2)− σλ1
̃4

(i′) ≡
(r1

u

)
d mod d′.

Combining, we get

σλ2
̃2

(i) ≡ σλ1
̃4

(i′)− λ(̃2 − ̃4)
d′

+
(
s2 + r1

u

)
d mod pa.

Thus,

σλ1
̃1

(i)− σλ2
̃2

(i) ≡ σλ2
̃3

(i′)− σλ1
̃4

(i′) +
λ(̃3 − ̃4)

d′
− λ(̃1 − ̃2)

d′
mod pa.

We now claim that i′ satisfies the hypothesis of the consistency condition for λ2, ̃3
and λ1, ̃4, that is, we claim that i′(λ2 − λ1) ≡ −(̃3 − ̃4) mod d′. If so, then by
partial consistency (note: i′, ̃3, ̃4 are old) we have

σλ2
̃3

(i′)− σλ1
̃4

(i′) ≡ −λ(̃3 − ̃4)
d′

mod pa.

It then follows that

σλ1
̃1

(i)− σλ2
̃2

(i) ≡ −λ(̃1 − ̃2)
d′

mod pa,

and we are done.
It remains to show the claim. Collecting the above definitions we have (all the

following equations are mod d′):

i(λ1 − λ2) ≡ −(̃1 − ̃2),

i1(λ1 − λ2) ≡ −(̃1 − ̃3),

i2(λ2 − λ1) ≡ −(̃2 − ̃4),
i1 ≡ i+ s1,

i2 ≡ i+ s2,

i′ ≡ i+ s1 + r2 ≡ i+ s2 + r1.

Thus,

i′(λ2 − λ1) ≡ (i+ s2 + r1)(λ2 − λ1) ≡ (̃1 − ̃2) + (s2 + r1)(λ2 − λ1).

On the other hand,

−(̃3 − ̃4) ≡ −[̃1 + i1(λ1 − λ2)− ̃2 − i2(λ2 − λ1)]

≡ −(̃1 − ̃2)− (i1 + i2)(λ1 − λ2)

≡ −(̃1 − ̃2)− (2i+ s1 + s2)(λ1 − λ2) mod d′.

Thus,

i′(λ2 − λ1) + (̃3 − ̃4)

≡ 2(̃1 − ̃2)− (s2 + r1)(λ1 − λ2) + (2i+ s1 + s2)(λ1 − λ2)

≡ −2i(λ1 − λ2)− (s2 + r1)(λ1 − λ2) + (2i+ s1 + s2)(λ1 − λ2)

≡ (λ1 − λ2)(s1 − r1) mod d′.

From (7) of Lemma 3.15 we have s1 = r1, and so i′(λ2−λ1)+(̃3− ̃4) ≡ 0 mod d′,
which gives the claim.
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We now summarize and finish the proof of Lemma 3.7. Let d = pa1
1 · · · pann and

d′ = p1d. Assume the k, l functions are defined on Rd and satisfy (∗)d. From
Lemma 3.10, we may assume all of the pi are non-trivial (congruent to 1 mod
4). By Lemma 3.11, we get d-good permutations πλ̃ for all 0 ≤ ̃ < d and d-
roots λ which satisfy the d-consistency condition. From Lemmas 3.16, 3.17, the
family σλ

′

̃ for 0 ≤ ̃ < d′, λ′ a d′-root, satisfies the d′-goodness and d′-consistency
conditions. From Lemma 3.12, we have functions k′, l′ defined on Rd′ which satisfy
(∗)d′ . Finally, without loss of generality, we may assume the k′, l′ functions extend
the k, l functions. This follows from d′-consistency, since for points of the form
( id ,

j
d ) = (p1i

d′ ,
p1j
d′ ), by definition of the σλ

′

p1 ̃
the given values of k, l for this point

satisfy the defining equations for k′ + λ′l′ mod each prime power of d′. More
specifically, for any d′ root λ′, the definition of the σλ

′

p1 ̃
, equation (28), rewritten

becomes

(k + λ′l) ≡ σλ′p1 ̃(p1i) + λ′m− 1
2

(
1 + λ′

2

d′

)
(p1i) mod d′,(31)

where ̃ and m are such that 0 ≤ ̃ < d and p1j = p1̃+λ′p1i−md′. If pa is a prime
power occurring in d′ and λ′pa = λ′ mod pa, then

(k + λ′pa l) ≡ σλ
′

p1 ̃(p1i) + λ′pam−
1
2

(
1 + λ′

2

d′

)
(p1i) mod pa,(32)

and this is precisely equation (19) (with σλ
′

p1 ̃
replacing πλ̃ , and λ′ replacing λ),

which is a typical defining equation for k′, l′.
This completes the proof of Lemma 3.7, and of Lemma A. We now indicate

the minor adjustments necessary to get Lemma A′. There are two differences
between Lemma A and Lemma A′. First, in Lemma A′ there is a distinguished
point (r, s) ∈ Q2 ∩ R for which there are prescribed values for the k, l functions.
Secondly, in Lemma A′ we must arrange that all of the points z + (k(z), l(z)) for
z ∈ Q2 ∩R lie in the set P as in the statement of Lemma A′.

Fix i, j, d such that r = i
d , s = j

d . Let kd, ld be functions on Rd satisfying (∗)d. If
we add constant values k0, l0 to the kd, ld functions respectively, the new functions
k′d, l

′
d also satisfy (∗)d. We choose k0, l0 so that k′d, l

′
d take the prescribed values

at (r, s). Inspecting equation (3), we see that if functions k′′d , l′′d satisfy k′′d (z) ≡ k′d
mod d, l′′d(z) ≡ l′d mod d for all z ∈ Rd, then k′′d , l′′d also satisfy (∗)d. From the
assumed property of P , we may choose k′′d , l′′d so that z + (k′′d (z), l′′d(z)) ∈ P for all
z ∈ Rd. Similarly, at each step when we extend the k, l functions from Rd to Rd′ ,
only the values of the extended functions mod d′ matter in determining (∗)d′ . We
may therefore adjust these values mod d′ so that z+(k(z), l(z)) ∈ P for all z ∈ Rd′ .
This completes the proof of Lemma A′.

4. Proof of Lemma B

In this section we prove Lemma B, which completes the proof of Theorem 1.2.
First, we note that a weaker version of Lemma B due to Komjáth (Lemma 1.1 of
[13]) would suffice for our main theorem. Specifically,

Lemma 4.1 (Komjáth). There is a bound s ∈ ω such that if c1, . . . , cs are points
in the plane with ρ(ci, cj)2 /∈ Z for distinct ci, cj, and if z1, . . . , zs are colinear points
with ρ(ci, zi)2 ∈ Q and ρ(zi, zj)2 ∈ Z, then the zi are definable from {c1, . . . , cs};
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in fact, for fixed c1, . . . , cs, distances ρ(ci, zi) and ρ(zi, zj), there are only finitely
many such {z1, . . . , zs}.

To see this suffices, consider (in the notation of Claim 2.7) the set En of points
z having rational coordinates with respect to Ln such that ρ2(c, z) ∈ Q for some
c ∈ S<~α, where c is not rational respect to Ln. Using Lemma 4.1 it is easy to see
that En is semi-small with respect to Ln. By this we mean that for any rational
translation L of Ln, there is a finite set F of lines such that for any line l /∈ F ,
l∩L∩En is finite. Then at each stage in the construction of the points xm (following
Claim 2.7) we must have xm avoid a certain semi-small set, which is no problem.

As we mentioned earlier, Lemma B is implicit in the analysis of Gibson-Newstead
[8], although it is not explicitly stated there. Newstead (private communication)
pointed out the following argument. Consider the coupler curve traced out by the
point p3, where triangle 4p1p2p3 is rigid and p1, p2 are constrained to lie on circles
C1, C2 respectively. From [8], the complexification of this curve is a degree 6 curve
C in the complex projective plane. They show it is the projection of a higher
dimensional curve (the “residual curve”) also of degree 6, whose singularities they
analyze. Thus, the irreducible components of C precisely correspond to those of R.
The components of R are analyzed in [8]. The list on pp. 119, 120 gives two cases
where R (and thus C) can have a component of degree two, namely:

(i) c1c2p2p1 is a parallelogram.
(ii) p1 = c2 or p2 = c1.

The second case forces c3 = c2 or c3 = c1, which is forbidden as we require c1, c2,
c3 to be distinct. The first case is our exceptional case of Lemma B.

We now present two elementary proofs of Lemma B. The first is a short algebraic
proof using some computer algebra, and the second is a purely geometric argument.

4.1. An algebraic proof. The following algebraic computations were performed
using Maple.

We assume without loss of generality that C1 is the circle centered at c1 = (0, 0)
of radius 1, C2 is the circle centered at c2 = (a, 0) of radius r, and C3 is the circle
centered at (b, c) of radius s. Let p1 = (x, y) be a point on C1. If we let d denote
the fixed distance between p1 and the point p2 on C2, then we may coordinatize
p2 = (x2, y2) by

x2 = x+ d cos(θ),

y2 = y + d sin(θ),
(33)

where θ denotes the angle that p1p2 makes with the horizontal, measured in the
usual way. Let α denote the fixed angle of the triangle p1p2p3, and let e = ρ(p1, p3).
Thus, the coordinates of p3 are of the form

x3 = x+ e cos(α+ θ) = x+ u cos(θ)− v sin(θ),

y3 = y + e sin(α+ θ) = y + v cos(θ) + u sin(θ),
(34)

where we let u = e cos(α) and v = e sin(α). Since p1, p2, p3 lie on C1, C2, C3, we
have

x2 + y2 − 1 = 0,

(x2 − a)2 + y2
2 − r2 = 0,

(x3 − b)2 + (y3 − c)2 − s2 = 0.

(35)
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Subtracting the second and third equations from the first gives two linear equations
for x, y in terms of θ:

− 1− 2 xd cos(θ) + 2 xa+ 2 d cos(θ) a− a2 − 2 y d sin(θ) − d2 + r2 = 0,

− 1− 2 cos(θ)u x+ 2 cos(θ)u b− v2 + 2 sin(θ) v x− 2 sin(θ) v b+ 2 x b− b2 − u2

− 2 sin(θ)u y + 2 sin(θ)u c− 2 cos(θ) v y + 2 cos(θ) v c+ 2 y c− c2 + s2 = 0.

(36)

Solving these two equations for x, y gives:

x =− 1
2

(−d sin(θ)− cos(θ) v r2 + cos(θ) v d2 + cos(θ) v a2 − c− v2 d sin(θ)

+ sin(θ)u+ cos(θ) v − sin(θ)u r2 + sin(θ)u d2 + sin(θ)u a2 + s2 d sin(θ)

− c2 d sin(θ)− u2 d sin(θ) − b2 d sin(θ) + 2 c d cos(θ) a− c a2 − c d2 + c r2

− 2 v d a+ 2 cos(θ) v c d sin(θ) − 2 sin(θ)u d cos(θ) a+ 2 v d a sin2(θ)

− 2 sin2(θ) v b d+ 2 sin2(θ)u c d+ 2 cos(θ)u b d sin(θ))/

(c a+ b d sin(θ)− sin(θ)u a− cos(θ) v a− c d cos(θ) + v d),

(37)

y =
1
2

(−d cos(θ) + a− b+ cos(θ)u − sin(θ) v − v d2 sin(θ) + v r2 sin(θ) − v a2 sin(θ)

− cos(θ)u r2 + d2 cos(θ)u+ cos(θ)u a2 − d cos(θ) c2 − d cos(θ) b2−d cos(θ)u2

+ d cos(θ) s2 − d cos(θ) v2 − 2 a sin(θ)u c− 2 u b d sin2(θ)− 2 v c d sin2(θ)

+ 2 sin2(θ)u d a− 2 d cos(θ) sin(θ) v b− 2 a cos(θ)u b− d2 b+ a v2 + a u2

+ a c2 − a s2 − a2 b+ r2 b+ a b2 − 2 u d a+ 2 u b d+ 2 v c d

+ 2 d cos(θ) sin(θ)u c+ 2 d cos(θ) v a sin(θ) + 2 a sin(θ) v b− 2 a cos(θ) v c

+ 2 d cos(θ) a b)/(c a+ b d sin(θ)− sin(θ)u a− cos(θ) v a− c d cos(θ) + v d).

(38)

Substituting these expressions back into the equation x2 + y2− 1 now gives a large
rational function of sin(θ), cos(θ). Setting the numerator of this expression to 0
now gives an equation of the form

z00 + z01 sin(θ) + z10 cos(θ) + z11 cos(θ) sin(θ) + z20 cos2(θ) + z21 cos2(θ) sin(θ)

+ z30 cos3(θ) = 0,

(39)

where all of the zij are polynomials in a, b, c, d, u, v, r, and s.
The exceptional case of Lemma B corresponds to a motion of p1, p2, p3 where θ

remains constant. Assuming we are not in this case, there will be infinitely many
values of θ satisfying equation (39). Thus, the function of equation (39) is identically
0. Since the trigonometric polynomials of equation (39) are linearly independent,
this implies that all of the zij are 0.
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In fact, just the last two equations z21 = 0, z30 = 0 suffice to finish the proof.
These two expressions are:

z21 = 8 v a2 d2 b− 16 v a2 u b d+ 16 a u c d2 b− 8 v2 d c a2 + 8 u2 d c a2

− 8 b2 d2 v a− 16 c u2 d a b− 8 u a2 c d2 + 8 c2 d2 v a− 16 d u c2 a v

+ 16 d v b2 a u+ 16 v2 d b a c,

z30 = −32 v a u c b d+ 16 c a v d2 b+ 8 d c2 a u2 − 8 v a2 c d2 − 8 d v2 a2 b

+ 16 u a2 v c d+ 8 d v2 a b2 − 8 d c2 a v2 − 8 u a2 d2 b+ 8 a2 u2 d b

− 8 c2 d2 u a− 8 d u2 a b2 + 8 d2 b2 u a.

(40)

Computing a list of reduced Gröbner bases for this pair of equations yields the
following (this means that the variety determined by the system z21 = z30 = 0 is
the union of the subvarieties determined by the polynomials in each basis listed):

[d], [a], [c u d a− a d v b− 2 c u b d+ 2 d v b2 − u2 a c+ 2 u a v b+ v2 a c+ 2 c u2 b

− 4 v b2 u− 2 v2 b c, a u b d+ c a v d− 2 u b2 d− 2 b v c d− b a u2 − 2 v a u c+ b a v2

+ 2 u2 b2 + 4 v u c b− 2 v2 b2, c2 + b2], [v, c, b], [d− 2 u, c, b],

[u d a− v c d+ 2 a v2 + 2 u v c, v d a+ d u c− 2 u v a+ 2 v2 c, u2 + v2, b],

[d− u, v, b], [u d a− a u2 + u v c, v d a− u v a+ v2 c, −u c− a v + c d, c2 + a2, b],

[c u d a− c u b d− c2 d v + 2 v2 a c+ 2 u c2 v − 2 v2 b c,

a u b d− u b2 d− b v c d+ 2 b a v2 + 2 v u c b− 2 v2 b2,

v d a+ d u c− d v b− 2 u v a+ 2 v u b+ 2 v2 c, u2 + v2], [u, v, c], [a− b, v, c],
[d− u, v, c], [d− u, v], [a u b d− u b2 d− b a u2 + v u c b+ u2 b2, v d a

− d v b+ v u b− u v a+ v2 c,−u c+ v b− a v + c d, b2 − 2 a b+ c2 + a2].

(41)

Recalling that u2 + v2 = e2, inspecting the bases in this list shows that they imply,
in succession: d = 0, a = 0, b = c = 0, b = c = 0, b = c = 0, e = 0, e = 0, b = c = 0,
e = 0, e = 0, b = a and c = 0, e = 0, e = 0, b = a and c = 0. We have used here the
fact that the equations d = u and v = 0 imply that p3 = p2, and hence e = 0. Since
the centers c1, c2, c3 are distinct, all of these cases are forbidden. This completes
the algebraic proof of Lemma B.

4.2. A geometric proof. Let C1 be the circle with center c1 and radius r1, and
C2 the circle with center c2 and radius r2. Let p1, p2 be distinct points with p1 ∈ C1

and p2 ∈ C2. Let f = ρ(p1, p2). By a “motion” of (p1, p2) we mean continuous
functions p1(t), p2(t) for 0 ≤ t ≤ 1 such that p1(0) = p1, p2(0) = p2, and for all t
from 0 to 1 we have p1(t) ∈ C1, p2(t) ∈ C2, and ρ(p1(t), p2(t)) = f . We say (q1, q2)
is in the motion of (p1, p2) if there is a motion from (p1, p2) to (q1, q2). We will also
say q1 is in the motion of p1 (and likewise for p2, q2) if there is a motion from p1,
p2 to some pair (q1, q2). For a given motion, let θ1(t) (and likewise for θ2(t)) be
the continuous function such that θ1(0) ∈ [0, 2π), and θ1(t) mod 2π is the angle θ
such that p1(t) = c1 + (r1 cos(θ), r1 sin(θ)).

We say a motion (p1(t), p2(t)) is analytic if the coordinate functions p1(t) =
(x1(t), y1(t)), p2(t) = (x2(t), y2(t)) are analytic functions of t.
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c1 c2

q1

q2

Figure 1.

Definition 4.2. We say (q1, q2) is an extreme point in the motion of (p1, p2) for
q1 (and likewise for q2) if it is in the motion of (p1, p2), and any motion of (q1, q2)
has, for sufficiently small t, q1 moving in at most one of the two possible tangential
directions on C1 (we refer to this side as the allowable side of q1). We will also
refer to q1 as being an extreme point in the motion of p1. We say an extreme point
(q1, q2) is non-trivial if there is a non-constant motion from (q1, q2).

If (q1, q2) is an extreme point in the motion of (p1, p2) for q1, then q1q2 must pass
through c2. In fact, the non-trivial extreme points can be characterized as those
points (q1, q2) such that q1q2 passes through one of the centers c1, c2, but not the
other.

Figure 1 illustrates a possible extreme configuration (it is also possible that q2
lies on the other side of c2 from q1).

The following lemma is not required for the proof of Lemma B, but it helps to
put the above definition in perspective.

Lemma 4.3. Suppose c2 lies outside of the circle C1, or c1 lies outside C2. Then
except for the exceptional case where r1 = r2 and ρ(p1, p2) = ρ(c1, c2), there must
be an extreme point in the motion of (p1, p2).

Proof. Without loss of generality we may assume c1 = (0, 0), and c2 = (c, 0) is on
the x-axis and to the right of C1 (c > r1). First assume r1 > r2. We show there is
an extreme point in the motion of p1. If not, then there is a motion of p1 to the
point (−r1, 0), and also a motion to the point (r1, 0). Note that C2 lies entirely
to the right of the line x = 0. The fact that p1 can be moved to (−r1, 0) shows
that f ≥ c + r1 − r2. The fact that p1 can be moved to (r1, 0), however, shows
that f ≤ c + r2 − r1, a contradiction. Assume next that r1 < r2, and we show
there is an extreme point in the motion of p2. Suppose not, so p2 can be moved to
both (c + r2, 0) and (c− r2, 0). From the first fact it follows that f ≥ c + r2 − r1.
If c − r2 ≤ 0, then the second fact implies f ≤ r1 + r2 − c. Hence c ≤ r1, a
contradiction. If c− r2 > 0, the second fact implies f ≤ c− r2 + r1. Hence r2 ≤ r1,
also a contradiction. Finally, if r1 = r2, then the argument of the first case also gives
a contradiction unless f = c, that is, ρ(c1, c2) = ρ(p1, p2). This is the exceptional
case of Lemma B.
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Definition 4.4. We say a point (q1, q2) in the motion of (p1, p2) is a double point
for q1 if for all q′1 in a one-sided neighborhood of q1 on C1 (which we call an allowable
side; this may include both sides) except perhaps for q1 itself, there are two distinct
points q′2, q′′2 on C2 such that ρ(q′1, q

′
2) = f , ρ(q′1, q

′′
2 ) = f and there is an analytic

motion from (q′1, q′2) to (q′1, q′′2 ).

If (q1, q2) is a non-trivial extreme point for q1 in the motion of (p1, p2), then
it is a double point for q1. For if q′1 6= q1 is sufficiently close to q1 and on the
allowable side of q1, then there will be two distinct q′2, q′′2 such that ρ(q′1, q

′
2) = f ,

ρ(q′1, q
′′
2 ) = f , with q′2, q′′2 close to q2 and lying on opposite sides of q2. If q2(t) is an

analytic function moving from q′2 to q′′2 along C2, then the corresponding motion of
q1 is also described by an analytic function q1(t). [In general, if q2(t) is an analytic
motion along C2 and q1(t) is a motion along C1 such that ρ(q1(t), q2(t)) = f for all
t, then q1(t) is necessarily analytic provided q1(t)q2(t) does not pass through c1 for
all t.]

Note that in the definition of a double point, we do not require that in the analytic
motion from (q′1, q

′
2) to (q′1, q

′′
2 ) the function q1(t) stay in a small neighborhood of

q′1. This is the case, however, if (q1, q2) is an extreme point in the motion of q1, as
the above argument shows.

We turn now to the proof of Lemma B. Fix circles C1, C2 with centers at c1,
c2 and radii r1, r2, and assume c1 6= c2. Fix p1 ∈ C1, p2 ∈ C2, and let f =
ρ(p1, p2) (we assume f > 0). Fix a triangle abc with f = ρ(a, b). We henceforth
assume we are not in the exceptional case of Lemma B, so either r1 6= r2 or f 6=
ρ(c1, c2). It suffices to show that for any analytic motion p1(t), p2(t) of (p1, p2), the
corresponding motion p3(t) does not lie entirely on a circle C3. Here p3(t) is the
point such that the triangle p1(t)p2(t)p3(t) is congruent to abc. To see this, suppose
(pn1 , pn2 , pn3 ) were infinitely many triples with pi ∈ Ci and pn1pn2pn3 congruent to abc.
Let p1 ∈ C1, p2 ∈ C2, p3 ∈ C3 be such that (p1, p2, p3) is a limit of a subsequence
of the (pn1 , p

n
2 , p

n
3 ). Consider an analytic motion p1(t) on C1 nearby p1. If p1p2

does not pass through c2, then the corresponding motions p2(t), p3(t) are uniquely
determined and also analytic. Since ρ(p3(t), c3)2 is analytic and has infinitely many
zeros in a neighborhood of t = 0 (we assume p1(0) = p1); this function must then
be identically zero, and thus p3(t) lies entirely on C3. Suppose p1p2 passes through
c2. Let p1(t) be an analytic motion on C1 nearby p1 moving in a direction from p1

such that there are infinitely many pn1 in any interval [p1(0), p1(t)) for any t > 0.
There at two analytic functions p2(t), p′2(t) such that p2(0) = p2 and p2(t) ∈ C2,
ρ(p1(t), p2(t)) = f for all t. Furthermore, all (q1, q2) close enough to (p1, p2) with
q1 on the appropriate side of p1 and such that q1 ∈ C1, q2 ∈ C2, and ρ(q1, q2) = f
must be of the form (p1(t), p2(t)) or (p1(t), p′2(t)) for some t. Without loss of
generality, assume for infinitely many n that (pn1 , p

n
2 ) = (p1(tn), p2(tn)). Let p3(t)

be the analytic function corresponding to p1(t), p2(t). Considering the function
ρ(p3(t), c3)2 as before now shows that p3(t) lies entirely on C3.

We will consider several cases in the proof of Lemma B.
Case I. There is a double point (q1, q2) in the motion of (p1, p2).
If z1 ∈ C1 is sufficiently close to q1 and on an allowable side of q1, then there are

two points z2, z′2 which lie on C2 and satisfy ρ(z1, z2) = ρ(z1, z
′
2) = f . Furthermore,

there is an analytic motion from (q1, q2) to either (z1, z2) or (z1, z
′
2). Note that z2,

z′2 are symmetrical with respect to the line from z1 to c2. See Figure 2. Let z3,
z′3 denote the corresponding values of z3. Since z3, z′3 both lie on C3, clearly the
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c1 c2

z1

z′2

z2

z′3

z3

q1

l(z1)

Figure 2.

line through z1 which bisects the segment z3z
′
3 passes through c3. In other words,

if l(z1) denotes the line through z1 such that the angle between l(z1) and z1c2 is
α
.= the angle cab, then l(z1) must pass through c3. To express this analytically, we

coordinatize the circles by letting (without loss of generality) c1 = (0, 0), c2 = (a, 0),
and r1 = 1. Let c3 = (c, d) and γ = tan(α). Let β be the angle between the
segment z1c2 and the horizontal line from z1. Let z1 = (cos(θ), sin(θ)). Thus,
tan(β) = sin(θ)

a−cos(θ) . Note that α − β is the angle between the horizontal and the
segment z1c3. If m(θ) denotes the slope of the line through z1 and c3, then we have

m(θ) = tan(α − β) =
tan(α)− sin(θ)

a−cos(θ)

1 + tan(α)
(

sin(θ)
a−cos(θ)

) =
γ(a− cos(θ))− sin(θ)
(a− cos(θ)) + γ sin(θ)

.

Thus, the equation of the line l(z1) is

y =
γ(a− cos(θ))− sin(θ)
(a− cos(θ)) + γ sin(θ)

x+
[
sin(θ)− (cos(θ))

γ(a− cos(θ))− sin(θ)
(a − cos(θ)) + γ sin(θ)

]
.

Since all of these lines pass through (c, d), it follows that

γ(a− cos(θ)) − sin(θ)
(a− cos(θ)) + γ sin(θ)

(c− cos(θ)) + sin(θ)− d

is identically 0 for θ in some interval. This simplifies to

(γ + γac− ad) + (a− c− γd) sin(θ) + (−γa− γc+ d) cos(θ) = 0.

Since 1, sin(θ), cos(θ) are linearly independent, we have
cγa− ad+ γ = 0,
−c+ a− γd = 0,
−cγ + d− γa = 0.

(42)

From the first and third equations it follows that either γ = 0 or a = 1. If γ = 0,
then from the second equation we have c = a. Since α = 0 or π in this case, we
must therefore have d = 0. That is, c3 = c2, a contradiction.

Assume now that a = 1. Solving the second and third equations for c and d

gives c = 1−γ2

1+γ2 , d = 2γ
1+γ2 . Thus, c3 = (c, d) lies on the circle C1 of radius 1.
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Since a = 1, c2 also lies on C1. Recall f = ρ(p1, p2), and let e = ρ(p1, p3). Let
r = r2 be the radius of the second circle, and s = r3 the radius of the third. Using
the same coordinatization and notation as above, except β now denotes the angle
∠z2z1c2 = ∠z3z1c3, the law of cosines gives

r2 = f2 + sin2(θ) + (cos(θ)− a)2 − 2f
√

sin2(θ) + (cos(θ)− a)2 cos(β),

s2 = e2 + sin(θ − d)2 + cos(θ − c)2 − 2e
√

(sin(θ)− d)2 + (cos(θ − c)2) cos(β).

(43)

This becomes
u+ a cos(θ)

f
√

sin2(θ) + (cos(θ) − a)2

=
v + d sin(θ) + c cos(θ)

e
√

(sin(θ)− d)2 + (cos(θ)− c)2
,(44)

where 2u = r2 − f2 − a2 − 1 and 2v = s2 − e2 − c2 − d2 − 1. Substituting a = 1,
cross-multiplying and squaring, this becomes

h1 + h2 cos(θ) + h3 cos2(θ) + h4 cos3(θ) + h5 sin(θ)

+ h6 sin(θ) cos(θ) + h7 sin(θ) cos2(θ) = 0,

where
h1 = e2 u2 d2 + e2 u2 c2 − 2 f2 v2 − 2 f2 d2 + e2 u2,

h2 = 2 f2 v2 + 2 e2 u+ 2 e2 u c2 + 2 e2 u d2 + 2 f2 d2 − 4 f2 v c− 2 e2 u2 c,

h3 = 2 f2 d2 − 4 e2 u c− 2 f2 c2 + e2 c2 + d2 e2 + 4 f2 v c+ e2,

h4 = −2 f2 d2 − 2 e2 c+ 2 f2 c2,

h5 = −4 f2 v d− 2 e2 u2 d,

h6 = −4 e2 u d− 4 f2 d c+ 4 f2 v d,

h7 = −2 e2 d+ 4 f2 d c.

(45)

By linear independence, h1 = · · · = h7 = 0. From h7 = 0 we have either d = 0, a
contradiction as then c3 = c2, or e2 = 2f2c. Substituting into the fourth equation
we have f2(c2 + d2) = 0, hence f = 0, a contradiction.

This completes the proof of Lemma B in Case I.
Case II. There is no point (q1, q2) in the motion of (p1, p2) such that q1q2 passes

through both c1 and c2.
We may assume by Case I that there is no double point, and hence no extreme

point in the motion of (p1, p2). Let p′1, p
′
2 denote the reflections of p1, p2 about the

x-axis, where we again assume c1 = (0, 0) and c2 = (a, 0). Let α denote the acute
angle between p1p2 and the ray c1p2. See Figure 3.

Consider an analytic p2(t) where p2(t) moves from p2 to p′2. Note that in any
motion of (p1, p2) to a point (q1, q2), q1q2 cannot pass through either c1 or c2. For
if it passed through exactly one of these, (q1, q2) would be a (non-trivial) extreme
point in the motion of (p1, p2). Also, by the assumption of the case, q1q2 cannot
pass through both centers. This implies that there is a uniquely determined analytic
function p1(t) describing the corresponding motion of p1. Let α(t) denote the angle
between p2(t)p1(t) and c1p2(t) (so α(0) = α). Thus, α(t) 6= 0 for all t ∈ [0, 1]. It
follows that the terminal value of p1, namely p1(1), is not the reflected point p′1,
but rather the point p′′1 which is the reflection of p′1 about the line c1p′2. Thus, p′′1
is obtained from p1 by two reflections, first about the x-axis, and then about the
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c1 c2

p2
p1

p′1

p′′1

p′2

Figure 3.

line c1p′2. Let p3(t) be the analytic function corresponding to p1(t), p2(t). Since
the composition of two reflections is orientation preserving, it follows that p3(1)
is obtained from p3(0) by the same two reflections. In particular, this shows that
p3(0), p3(1) are equidistant from c1. Let l = l(p1, p2) be the perpendicular bisector
of p3(0)p3(1). Thus, l passes through c1 = (0, 0) as well as through c3.

Consider now another point (q1, q2) in the motion of (p1, p2), and let l(q1, q2)
be the corresponding line. If l(q1, q2) 6= l(p1, p2), then c3 = c1, a contradiction.
Thus, l(q1, q2) = l is independent of (q1, q2). This can be seen to be impossible.
For example, we may argue as follows. By taking a motion of (p1, p2), we may
assume p2 is on the x-axis. It follows that l is the line through the origin and
p3. Since the composition of the two reflections described above is just a rotation
about the origin, it follows that if we move (p1, p2) to any (q1, q2), then the angle
that c1q3 makes with l is the same as q2c1 makes with the x-axis. Thus, if we
rotate triangle q1q2q3 about the origin by this angle, the resulting triangle q′1q′2q′3
will be such that q′2 is on the x-axis, q′1 is on C1, and q′3 is on l. This implies (for
sufficiently small non-zero motions) that (q′1, q

′
2, q
′
3) = (p1, p2, p3). In other words,

(q1, q2, q3) is obtained from (p1, p2, p3) by a rotation about the origin. This shows
that c2 = c1 = (0, 0), a contradiction.

Case III. There is a point (q1, q2) in the motion of (p1, p2) such that q1q2 passes
through both c1 and c2.

Again, we may assume that in any analytic motion of (p1, p2), there is no extreme
point. Thus, as we take an analytic motion of p1 to the point q1 = (1, 0), p2

moves in an analytic manner to a point of intersection q2 of C2 with the x-axis.
It suffices to show that no analytic motion (q1(t), q2(t)) of (q1, q2) can have the
corresponding q3(t) lying entirely on a circle C3. In fact, it clearly suffices to show
that if (q1(t), q2(t)) is an analytic motion in which q1(t) moves at a uniform rate
(say, q1(t) = (cos(πt), sin(πt))) to the opposite point (−1, 0), then q3(t) cannot lie
entirely on C3. The reader can also check that the only case where there is not
an obvious extreme point in the motion of (q1, q2) occurs when q2 = a − r2 and
a− r2 < 0.

The analytic motion (q1(t), q2(t)) can be extended to t<0 so that (q1(−t), q2(−t))
is the reflection of (q1(t), q2(t)) about the x-axis for 0 ≤ t ≤ 1. Thus, for 0 ≤ t ≤ 1,
q1(t) moves counter-clockwise from (1, 0) to (−1, 0), and for t from 0 to −1, q1(t)
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moves clockwise from (1, 0) to (−1, 0). The two terminal positions of q2(t), namely,
q2(1) and q2(−1), lie on C2 and are reflections of each other about the x-axis. By
continuity, for each q′1 near (−1, 0), there are points q′2, q′′2 on C2 with ρ(q′1, q

′
2) =

ρ(q′1, q
′′
2 ) = f , and such that there is an analytic motion from (q′1, q

′
2) to (q′1, q

′′
2 )

(note that this motion involves moving q′1 a full revolution around C1). This shows
that (q1(1), q2(1)) is a double point for q1(1), contrary to hypothesis.

5. Concluding remarks and questions

An immediate consequence of the existence of a Steinhaus set is the existence of
an “n-point” Steinhaus set.

Theorem 5.1. For each integer n ≥ 1 there is a set Sn ⊆ R2 such that for every
isometric copy L of Z2 we have |Sn ∩ L| = n.

Proof. Let S1 = S be the Steinhaus set from Theorem 1.1. Let z1, . . . , zn be n
distinct points in Z2. Let Sn =

⋃n
i=1 S + zi. Since S is a Steinhaus set, the sets

S+ zi are pairwise disjoint. Each lattice L clearly meets each S+ zi in exactly one
point, and the result follows.

There are many problems about Steinhaus sets that remain open. As we men-
tioned in the introduction, a Steinhaus set S ⊆ R2 cannot be both bounded and
measurable.

Question 1. Can a Steinhaus set S ⊆ R2 be bounded? Can it be measurable?

It is still unknown whether the analog of a Steinhaus set can exist in dimensions
3 or higher. That is,

Question 2. Does there exist a set S ⊆ Rn such that |S∩L| = 1 for every isometric
copy L of Zn? More generally, does there exist an S ⊆ Rn such that |S ∩ L| = 1
for every copy L of Zm, where m ≤ n?

One can also ask for which lattices L0 (in R2 or Rn) there is a corresponding
Steinhaus set.

Question 3. For which lattices L0 ⊆ Rn does there exist a set S ⊆ Rn such that
|S ∩ L| = 1 for every isometric copy L of L0?

This question seems to be open even for the sublattice L0 of Z2 with basis vectors
(2, 0), (0, 1).
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[14] W. Sierpiński, Sur un problème de H. Steinhaus concernant les ensembles de points sur le
plan, Fund. Math. 46 (1958), 191-194. MR 21:851

Department of Mathematics, University of North Texas, Denton, Texas 76203

E-mail address: jackson@unt.edu

Department of Mathematics, University of North Texas, Denton, Texas 76203

E-mail address: mauldin@unt.edu

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

http://www.ams.org/mathscinet-getitem?mr=98b:03066
http://www.ams.org/mathscinet-getitem?mr=88a:14037
http://www.ams.org/mathscinet-getitem?mr=91e:70005
http://www.ams.org/mathscinet-getitem?mr=97h:11114
http://www.ams.org/mathscinet-getitem?mr=2002c:52024
http://www.ams.org/mathscinet-getitem?mr=93c:04003
http://www.ams.org/mathscinet-getitem?mr=21:851

	1. Introduction
	2. The main theorem
	3. Proof of Lemma A'
	3.1. A special case
	3.2. The general case

	4. Proof of Lemma B
	4.1. An algebraic proof
	4.2. A geometric proof

	5. Concluding remarks and questions
	References

