On a Lehmer problem concerning Euler's totient function

By Aleksander Grytczuk*) and Marek Wójtowicz**) (Communicated by Heisuke Hironaka, M. J. A., Oct. 14, 2003)

Abstract: Let M be a positive integer with M > 4, and let φ denote Euler's totient function. If a positive integer n satisfies the Diophantine equation (*) $M\varphi(n) = n - 1$, then the number of prime factors of n is much bigger than M. Moreover, the set of all squarefree integers which do not fulfil (*) contains "nice" subsets.

Key words: Lehmer problem; Euler totient function.

Let φ denote Euler's totient function, and let M, n denote positive integers with $M \geq 2$. The present paper concerns the equation

$$(*) M\varphi(n) = n - 1$$

considered in 1932 by Lehmer [5]. Throughout this paper, for fixed M the symbol \mathcal{L}_M stands for the (possibly empty) set of all *composite* solutions of (*), and we put $\mathcal{L} = \bigcup_{M \geq 2} \mathcal{L}_M$. The letter n will always denote an element of \mathcal{L} . By $\mathcal{Q} = \{Q_1, Q_2, \ldots\}$ we denote the set of all primes with $Q_i < Q_{i+1}$, where $i = 1, 2, \ldots$

Lehmer asked whether the set \mathcal{L} is nonempty, and he proved that if $\mathcal{L} \neq \emptyset$ then every $n \in \mathcal{L}$ must be odd, squarefree, i.e.,

$$(1) n = p_1 p_2 \cdot \ldots \cdot p_r,$$

with $3 \le p_1 < p_2 < \cdots < p_r, p_1, \ldots, p_r$ primes, and the number $\omega(n) := r$ is at least 7.

In this paper we assume that $\mathcal{L} \neq \emptyset$, and then we show that $\omega(n)$, for $n \in \mathcal{L}_M$, is much bigger than M, and that the set $\mathcal{L}' = \mathbf{SF} \setminus \mathcal{L}$, where \mathbf{SF} denotes the set of all squarefree odd integers, contains "very regular" subsets (Theorems 1 and 2 below, respectively).

Since 1970, lower bounds for $\omega(n)$ have been improved by a number of authors. In 1970 Lieuwens [6] obtained $\omega(n) \geq 11$, what was extended in 1977 by Kishore [4] to

(2)
$$\omega(n) \ge 13,$$

and in 1980 (by the use of a computer) by Cohen

and Hagis [1] to $\omega(n) \ge 14$. The most amasing case is 3|n: in 1988 Hagis [3] presented a computer-aided proof that then n must be huge, i.e.

(3)
$$\omega(n) \ge 298\,848$$
 and $n > 10^{1.937\,042}$,

strengthening earlier results of Lieuwens [6] and Wall [12] that

(3')
$$\omega(n) \ge 213$$
 and $n > 5.5 \times 10^{570}$,

and Subbarao and Prasad [11]:

(3'')

 $\omega(n) \ge 1850$ (partially by the use of a computer).

In the same paper Hagis showed that n must be large enough, in general:

(4)
$$\omega(n) \ge 1991$$
 and $n > 10^{8171}$
for $n \in \mathcal{L}_M$ with $M \ge 3$.

One should mension here that in 1985 Prasad and Rangamma proved in elementary way that for 3|n with $n \in \mathcal{L}_M$ and M > 4 one has $\omega(n) \geq 5334$ ([8], Theorem 3).

As far as general results on bounds for n are concerned, in 1977 Pomerance [7] showed that

(5)
$$n < r^{2^r}$$
, where $r = \omega(n)$,

what was improved in 1985 by Subbarao and Prasad [11] to $n < (r-1)^{2^{(r-1)}}$, and in 1980 Cohen and Hagis [1] obtained

(6)
$$n > 10^{20}$$

(by (4), this result may be essential only for M=2).

All the above-presented results concerning lower bounds for $\omega(n)$ does not depend explicitly on M. We show below that such a dependence does exist and that for large M's the value of $\omega(n)$, with $n \in$

²⁰⁰⁰ Mathematics Subject Classification. 11A25.

^{*)} Institute of Mathematics, University of Zielona Góra, Podgórna 50, 65-246 Zielona Góra, Poland.

^{**)} Instytut Matematyki, Akademia Bydgoska, Pl. Weyssenhoffa 11, 85-072 Bydgoszcz, Poland.

 \mathcal{L}_M , rapidly tends to infinity as $M \to \infty$ exceeding (even for small M's) the gigantic bounds (3) and (4) obtained by Hagis.

Theorem 1. Let $M \geq 4$, and let $n \in \mathcal{L}_M$ be of the form (1).

- (a) If $p_1 = 3$ then $\omega(n) \ge 3049^{M/4} 1509$.
- (b) If $p_1 > 3$ then $\omega(n) \ge 143^{M/4} 1$.

Thus, if $p_1 = 3$ and $M \ge 7$, we have that $\omega(n) \ge 10^6$ and, by (7) below, $n > 10^{6 \cdot 10^6}$ (compare with the bounds in (3)). If $p_1 > 3$ and $M \ge 7$, then $\omega(n) \ge 5912$ and, by (7) below, $n > 10^{2 \cdot 10^5}$ (compare with the bounds in (4)).

The corollary below is an immediate consequence of Theorem 1 and Robin's inequality (see [9], Théorème 6) that for every positive integer n we have

(7)
$$n > \left(\frac{r\log r}{3}\right)^r,$$

where $r = \omega(n)$. Note that for $M \ge 4$ we have the following (rough, but more informative) bounds: $3049^{M/4} - 1509 > 6^M$, and $143^{M/4} - 1 > 3^M$.

Corollary. Let $M \geq 4$, and let $n \in \mathcal{L}_M$ be of the form (1).

- (a) If $p_1 = 3$ then $n > (cM6^M)^{6^M}$, where $c = 0.597 \cdots = \log 6/3$.
- (b) If $p_1 > 3$ then $n > (dM3^M)^{3^M}$, where $d = 0.366... = \log 3/3$.

The next theorem deals with the structure of the set \mathcal{L}' defined above and it complements the result of Pomerance [7] that the number $\mathcal{L}(x)$ of all $n \in \mathcal{L}$ not exceeding x is $O(x^{1/2}(\log x)^{3/4})$.

Let $\mathcal{P} = \{P_1, P_2, \ldots\}$, where $P_i < P_{i+1}$ for all $i \geq 1$, denote the set of all odd primes.

Theorem 2. For every integer $k \geq 2$ there exists an infinite subset $\mathcal{P}(k)$ of \mathcal{P} such that:

- (i) for every distinct primes $p_1, p_2, ..., p_k \in \mathcal{P}(k)$ the squarefree number $n = p_1 p_2 \cdots p_k$ does not fulfil equation (*) (i.e., $n \in \mathcal{L}'$);
- (ii) $\mathcal{P}(k)$ is maximal with respect to inclusion.

(Of course, since $\omega(n) \ge 14$ in general, we have that $\mathcal{P}(k) = \mathcal{P}$ for $k \le 13$.)

The proof of Theorem 1. From (*) we obtain that if $n = p_1 p_2 \cdots p_r \in \mathcal{L}_M$, then

(8)
$$\log M < \sum_{i=1}^{r} \log \left(1 + \frac{1}{p_i - 1} \right),$$

where $r = \omega(n)$. We shall apply below inequality (8) to obtain the bounds for $\omega(n)$.

Part (a). From (*) it follows that $p_i \equiv 5 \pmod{6}$, for $i \geq 2$. We define the set $\mathcal{A} := \{3\} \cup \{p \in \mathcal{P} : p \equiv 5 \pmod{6}\} = \{a_1, a_2, \ldots\}$, where $a_j < a_{j+1}$ for $j = 1, 2, \ldots$ Put

$$\alpha(k) = \sum_{i=1}^{k} \log\left(1 + \frac{1}{a_i - 1}\right),\,$$

where $k \geq 14$. From (8) we obtain

(9)
$$\log M < \alpha(r).$$

Let k_0 be the least integer k with $\log 4 \leq \alpha(k)$ (i.e., $\alpha(k_0) \geq \log 4$ and $\alpha(k_0 - 1) < \log 4$). Since $\alpha(1539) = 1.38625 \cdots < \log 4 = 1.3862943 \cdots < 1.3862948 \cdots = \alpha(1540)$, we obtain that $k_0 = 1540$. Now from (9) it follows that for $n \in \mathcal{L}_M$ with $M \geq 4$ we have $\omega(n) = r \geq 1540$.

Since $a_{1540} = Q_{3050}$, $a_i \ge Q_{1510+i}$ for $i \ge 1540$, from (9) we obtain

$$\log M < \alpha(1539) + \sum_{i=1540}^{r} \log \left(1 + \frac{1}{a_i - 1} \right)$$

$$< \log 4 + \sum_{i=1540}^{r} \frac{1}{Q_{1510+i} - 1}$$

$$< \log 4 + \int_{1539}^{r} \frac{\mathrm{d}x}{(1510 + x) \log(1510 + x)},$$

as

(10)
$$Q_m > m \log m + 1$$
, for $m > 20$;

(this follows from Rosser's inequality $Q_m \ge m(\log m + \log(\log m) - 1.0072629)$ for $m \ge 2$; see [10], cf. [9], p. 368). Hence $\log M < \log 4 + \log(\log(r + 1510)) - \log(\log(3049))$, which follows that $\omega(n) = r \ge (3049)^{M/4} - 1509$ indeed.

Part (b). We have in (8) that $p_1 \geq 5 = Q_3$. Put

$$\beta(k) = \sum_{i=1}^{k} \log \left(1 + \frac{1}{Q_{i+2} - 1} \right),$$

where $k \geq 14$. Now from (8) we obtain

(9')
$$\log M < \beta(r).$$

Since $\beta(141) = 1.3851 \cdots < \log 4 < 1.3863 \cdots = \beta(142)$, from (9') it follows that for $n \in \mathcal{L}_M$ with $M \ge 4$ we have $\omega(n) = r \ge 142$, and hence (by (10) again)

$$\log M < \beta(141) + \sum_{142}^{r} \log \left(1 + \frac{1}{Q_{i+2} - 1} \right)$$

$$< \log 4 + \sum_{142}^{r} \frac{1}{Q_{i+2} - 1}$$

$$< \log 4 + \log(\log(r+2)) - \log(\log(143)),$$

i.e.,
$$\omega(n) = r \ge (143)^{M/4} - 1$$
, as claimed.

The proof of Theorem 2. For X a nonempty subset of the set \mathbf{N} of all positive integers and $k \in \mathbf{N}$ the symbol $[X]^k$ denotes the set of all k-element subsets of \mathbf{N} .

Fix an integer $k \geq 2$, and consider the function $f: [\mathbf{N}]^k \to \{0,1\}$ of the form: $f(\{i_1,\ldots,i_k\}) = 0$ iff the number $n:=P_{i_1}P_{i_2}\cdots P_{i_k}$ fulfils equation (*). By the Ramsey theorem (see [2]), there exists an infinite subset $\mathbf{N}(k)$ of \mathbf{N} such that $f([\mathbf{N}(k)]^k) = \{0\}$ or $f([\mathbf{N}(k)]^k) = \{1\}$; equivalently, there exists an infinite subset $\mathcal{P}(k)$ of \mathcal{P} such that the following alternative holds:

$$(*)_1 \qquad P_{i_1}P_{i_2}\cdots P_{i_k} \in \mathcal{L}, \text{ or }$$

$$(*)_2$$
 $P_{i_1}P_{i_2}\cdots P_{i_k} \not\in \mathcal{L},$

for all pairwise distinct $P_{i_1}, \ldots, P_{i_k} \in \mathcal{P}(k)$. From (5) it follows that for every k the number $\#\{n \in \mathcal{P} : \omega(n) \leq k\}$ is finite, and thus the case $(*)_1$ is impossible. Hence case $(*)_2$ takes place, which implies that the set $\mathcal{P}(k)$ fulfils condition (i) of Theorem 2. The existence of a maximal (with respect to inclusion) set $\mathcal{P}(k)$ follows easily from Zorn's Lemma (applied in the proof of the Ramsey theorem).

References

[1] Cohen, G. L., and Hagis, P. Jr.: On the number of prime factors of n if $\varphi(n) \mid n-1$. Nieuw Arch. Wisk. (3), **28**, 177–185 (1980).

- [2] Graham, R. L., Rothschild, B. L., and Spencer, J. H.: Ramsey Theory. John Wiley & Sons, Inc., New York (1980).
- [3] Hagis, P. Jr.: On the equation $M \cdot \varphi(n) = n 1$. Nieuw Arch. Wisk. (4), **6**, 225–261 (1988).
- [4] Kishore, M.: On the number of distinct prime factors of n for which $\varphi(n) \mid n-1$. Nieuw Arch. Wisk. (3), **25**, 48–53 (1997).
- [5] Lehmer, D. H.: On Euler's totient function. Bull. Amer. Math. Soc., 38, 745-751 (1932).
- [6] Lieuwens, E.: Do there exist composite M for which $k\varphi(M)=M-1$ holds? Nieuw Arch. Wisk. (3), **18**, 165–169 (1970).
- [7] Pomerance, C.: On composite n for which $\varphi(n)|n-1$. II. Pacific J. Math., **69**, 177–186 (1977).
- [8] Siva Rama Prasad, V., and Rangamma, M.: On composite n satisfying a problem of Lehmer. Indian J. Pure Appl. Math., 16, 1244–1248 (1985).
- [9] Robin, G.: Estimation de la fonction de Tchebychef θ sur le k-ième nombre premier et grandes valeurs de la fonction $\omega(n)$ nombre de diviseurs premiers de n. Acta Arith., **42**, 367–389 (1983).
- [10] Rosser, J. B.: The *n*-th prime is greater than *n* log *n*. Proc. London Math. Soc., **45**, 21–44 (1938).
- [11] Subbarao, M. V., and Siva Rama Prasad, V.: Some analogues of a Lehmer problem on the totient function. Rocky Mountain J. Math., 15, 609–620 (1985).
- [12] Wall, D. W.: Conditions for $\varphi(N)$ to properly divide N-1. A Collection of Manuscripts Related to the Fibonacci Sequence (eds. Hoggatt, V. E., and Bicknell-Johnson, M.), 18th Anniv. Vol., Fibonacci Assoc., Santa Clara, pp. 205–208 (1980).