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On a Lehmer problem concerning Euler’s totient function

By Aleksander Grytczuk∗) and Marek Wójtowicz∗∗)

(Communicated by Heisuke Hironaka, m. j. a., Oct. 14, 2003)

Abstract: Let M be a positive integer with M > 4, and let ϕ denote Euler’s totient
function. If a positive integer n satisfies the Diophantine equation (∗) Mϕ(n) = n − 1, then the
number of prime factors of n is much bigger than M . Moreover, the set of all squarefree integers
which do not fulfil (∗) contains “nice” subsets.
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Let ϕ denote Euler’s totient function, and let
M,n denote positive integers with M ≥ 2. The
present paper concerns the equation

(∗) Mϕ(n) = n− 1

considered in 1932 by Lehmer [5]. Throughout this
paper, for fixed M the symbol LM stands for the
(possibly empty) set of all composite solutions of (∗),
and we put L =

⋃
M≥2LM . The letter n will always

denote an element of L. By Q = {Q1, Q2, . . .} we
denote the set of all primes with Qi < Qi+1, where
i = 1, 2, . . . .

Lehmer asked whether the set L is nonempty,
and he proved that if L �= ∅ then every n ∈ L must
be odd, squarefree, i.e.,

(1) n = p1p2 · . . . · pr,

with 3 ≤ p1 < p2 < · · · < pr, p1, . . . , pr primes, and
the number ω(n) := r is at least 7.

In this paper we assume that L �= ∅, and then
we show that ω(n), for n ∈ LM , is much bigger than
M , and that the set L′ = SF \ L, where SF denotes
the set of all squarefree odd integers, contains “very
regular” subsets (Theorems 1 and 2 below, respec-
tively).

Since 1970, lower bounds for ω(n) have been im-
proved by a number of authors. In 1970 Lieuwens [6]
obtained ω(n) ≥ 11, what was extended in 1977 by
Kishore [4] to

(2) ω(n) ≥ 13,

and in 1980 (by the use of a computer) by Cohen
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and Hagis [1] to ω(n) ≥ 14. The most amasing case
is 3|n: in 1988 Hagis [3] presented a computer-aided
proof that then n must be huge, i.e.

(3) ω(n) ≥ 298 848 and n > 101 937 042,

strengthening earlier results of Lieuwens [6] and Wall
[12] that

(3′) ω(n) ≥ 213 and n > 5.5× 10570,

and Subbarao and Prasad [11]:

(3′′)

ω(n) ≥ 1850 (partially by the use of a computer).

In the same paper Hagis showed that n must be large
enough, in general:

ω(n) ≥ 1991 and n > 108171(4)

for n ∈ LM with M ≥ 3.

One should mension here that in 1985 Prasad and
Rangamma proved in elementary way that for 3|n
with n ∈ LM and M > 4 one has ω(n) ≥ 5334 ([8],
Theorem 3).

As far as general results on bounds for n are
concerned, in 1977 Pomerance [7] showed that

(5) n < r2
r

, where r = ω(n),

what was improved in 1985 by Subbarao and Prasad
[11] to n < (r−1)2

(r−1)
, and in 1980 Cohen and Hagis

[1] obtained

(6) n > 1020

(by (4), this result may be essential only for M = 2).
All the above-presented results concerning lower

bounds for ω(n) does not depend explicitly on M .
We show below that such a dependence does exist
and that for large M ’s the value of ω(n), with n ∈
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LM , rapidly tends to infinity as M → ∞ exceeding
(even for small M ’s) the gigantic bounds (3) and (4)
obtained by Hagis.

Theorem 1. Let M ≥ 4, and let n ∈ LM be
of the form (1).
(a) If p1 = 3 then ω(n) ≥ 3049M/4 − 1509.
(b) If p1 > 3 then ω(n) ≥ 143M/4 − 1.

Thus, if p1 = 3 andM ≥ 7, we have that ω(n) ≥
106 and, by (7) below, n > 106·106

(compare with the
bounds in (3)). If p1 > 3 and M ≥ 7, then ω(n) ≥
5912 and, by (7) below, n > 102·105

(compare with
the bounds in (4)).

The corollary below is an immediate conse-
quence of Theorem 1 and Robin’s inequality (see [9],
Théorème 6) that for every positive integer n we have

(7) n >

(
r log r

3

)r

,

where r = ω(n). Note that for M ≥ 4 we have
the following (rough, but more informative) bounds:
3049M/4 − 1509 > 6M , and 143M/4 − 1 > 3M .

Corollary. Let M ≥ 4, and let n ∈ LM be of
the form (1).
(a) If p1 = 3 then n > (cM6M)6

M

, where c =
0.597 · · ·= log6/3.

(b) If p1 > 3 then n > (dM3M)3
M

, where d =
0.366 . . .= log3/3.
The next theorem deals with the structure of the

set L′ defined above and it complements the result
of Pomerance [7] that the number L(x) of all n ∈ L
not exceeding x is O(x1/2(logx)3/4).

Let P = {P1, P2, . . .}, where Pi < Pi+1 for all
i ≥ 1, denote the set of all odd primes.

Theorem 2. For every integer k ≥ 2 there ex-
ists an infinite subset P(k) of P such that :
(i) for every distinct primes p1, p2, . . . , pk ∈ P(k)

the squarefree number n = p1p2 · · · pk does not
fulfil equation (∗) (i.e., n ∈ L′);

(ii) P(k) is maximal with respect to inclusion.
(Of course, since ω(n) ≥ 14 in general, we have

that P(k) = P for k ≤ 13.)
The proof of Theorem 1. From (∗) we obtain

that if n = p1p2 · · ·pr ∈ LM , then

(8) logM <
r∑

i=1

log
(

1 +
1

pi − 1

)
,

where r = ω(n). We shall apply below inequality (8)
to obtain the bounds for ω(n).

Part (a). From (∗) it follows that pi ≡ 5
(mod 6), for i ≥ 2. We define the set A := {3} ∪
{p ∈ P : p ≡ 5 (mod 6)} = {a1, a2, . . .}, where aj <

aj+1 for j = 1, 2, . . . . Put

α(k) =
k∑

i=1

log
(

1 +
1

ai − 1

)
,

where k ≥ 14. From (8) we obtain

(9) logM < α(r).

Let k0 be the least integer k with log 4 ≤ α(k)
(i.e., α(k0) ≥ log 4 and α(k0 − 1) < log 4). Since
α(1539) = 1.38625 · · · < log 4 = 1.3862943 · · · <
1.3862948 · · · = α(1540), we obtain that k0 = 1540.
Now from (9) it follows that for n ∈ LM with M ≥ 4
we have ω(n) = r ≥ 1540.

Since a1540 = Q3050, ai ≥ Q1510+i for i ≥ 1540,
from (9) we obtain

logM < α(1539) +
r∑

i=1540

log
(

1 +
1

ai − 1

)

< log 4 +
r∑

i=1540

1
Q1510+i− 1

< log 4 +
∫ r

1539

dx
(1510 + x) log(1510 + x)

,

as

(10) Qm > m logm+ 1, for m > 20;

(this follows from Rosser’s inequality Qm ≥
m(logm+log(logm)−1.0072629) form ≥ 2; see [10],
cf. [9], p. 368). Hence logM < log 4 + log(log(r +
1510)) − log(log(3049)), which follows that ω(n) =
r ≥ (3049)M/4 − 1509 indeed.

Part (b). We have in (8) that p1 ≥ 5 = Q3.
Put

β(k) =
k∑

i=1

log
(

1 +
1

Qi+2 − 1

)
,

where k ≥ 14. Now from (8) we obtain

(9′) logM < β(r).

Since β(141) = 1.3851 · · · < log 4 < 1.3863 · · · =
β(142), from (9′) it follows that for n ∈ LM with
M ≥ 4 we have ω(n) = r ≥ 142, and hence (by (10)
again)
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logM < β(141) +
r∑

142

log
(

1 +
1

Qi+2 − 1

)

< log 4 +
r∑

142

1
Qi+2 − 1

< log 4 + log(log(r + 2))− log(log(143)),

i.e., ω(n) = r ≥ (143)M/4 − 1, as claimed.
The proof of Theorem 2. For X a nonempty

subset of the set N of all positive integers and k ∈
N the symbol [X]k denotes the set of all k-element
subsets of N.

Fix an integer k ≥ 2, and consider the function
f : [N]k → {0, 1} of the form: f({i1 , . . . , ik}) =
0 iff the number n := Pi1Pi2 · · ·Pik fulfils equation
(∗). By the Ramsey theorem (see [2]), there exists
an infinite subset N(k) of N such that f([N(k)]k) =
{0} or f([N(k)]k) = {1}; equivalently, there exists
an infinite subset P(k) of P such that the following
alternative holds:

(∗)1 Pi1Pi2 · · ·Pik ∈ L, or

(∗)2 Pi1Pi2 · · ·Pik �∈ L,
for all pairwise distinct Pi1, . . . , Pik ∈ P(k). From
(5) it follows that for every k the number #{n ∈ P :
ω(n) ≤ k} is finite, and thus the case (∗)1 is impossi-
ble. Hence case (∗)2 takes place, which implies that
the set P(k) fulfils condition (i) of Theorem 2. The
existence of a maximal (with respect to inclusion) set
P(k) follows easily from Zorn’s Lemma (applied in
the proof of the Ramsey theorem).
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