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On a Lehmer problem concerning Euler’s totient function

By Aleksander GRYTCzUK® and Marek WoJTOWICZ**)
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Abstract: Let M be a positive integer with M > 4, and let ¢ denote Euler’s totient
function. If a positive integer n satisfies the Diophantine equation (x) Mp(n) = n — 1, then the
number of prime factors of n is much bigger than M. Moreover, the set of all squarefree integers

which do not fulfil (%) contains “nice” subsets.
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Let ¢ denote Euler’s totient function, and let
M,n denote positive integers with M > 2. The

present paper concerns the equation

(%)

considered in 1932 by Lehmer [5]. Throughout this
paper, for fixed M the symbol L), stands for the
(possibly empty) set of all composite solutions of (x),
and we put £ = J,;55 Lam. The letter n will always
denote an element of £. By Q = {Q1,Q,...} we
denote the set of all primes with @Q; < Q;+1, where
i=1,2,....

Lehmer asked whether the set £ is nonempty,
and he proved that if £ # () then every n € £ must
be odd, squarefree, i.e.,

(1)

with 3 <p; <pa <--- <P, P1,---
the number w(n) :=r is at least 7.
In this paper we assume that £ # (), and then
we show that w(n), for n € L)y, is much bigger than
M, and that the set £ = SF \ L, where SF denotes
the set of all squarefree odd integers, contains “very

Mo(n)=n-1

n=pip2-...-Pr,

, pr primes, and

regular” subsets (Theorems 1 and 2 below, respec-
tively).

Since 1970, lower bounds for w(n) have been im-
proved by a number of authors. In 1970 Lieuwens [6)
obtained w(n) > 11, what was extended in 1977 by
Kishore [4] to

(2)
and in 1980 (by the use of a computer) by Cohen

w(n) > 13,
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and Hagis [1] to w(n) > 14. The most amasing case
is 3|n: in 1988 Hagis [3] presented a computer-aided
proof that then n must be huge, i.e.

3)

strengthening earlier results of Lieuwens [6] and Wall
[12] that

(3)
and Subbarao and Prasad [11]:
3"

w(n) > 1850 (partially by the use of a computer).

w(n) > 298 848 and n > 10! 937 042

w(n) > 213 and n > 5.5 x 10579,

In the same paper Hagis showed that n must be large
enough, in general:

(4)

w(n) > 1991 and n > 10817
for ne Ly with M > 3.

One should mension here that in 1985 Prasad and
Rangamma proved in elementary way that for 3|n
with n € L3 and M > 4 one has w(n) > 5334 ([8],
Theorem 3).

As far as general results on bounds for n are
concerned, in 1977 Pomerance [7] showed that

()

what was improved in 1985 by Subbarao and Prasad

[11]ton < (7“—1)2(“1), and in 1980 Cohen and Hagis

[1] obtained

(6)

(by (4), this result may be essential only for M = 2).
All the above-presented results concerning lower

bounds for w(n) does not depend explicitly on M.

We show below that such a dependence does exist
and that for large M’s the value of w(n), with n €

n<r?, where r= w(n),

n > 102
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L, rapidly tends to infinity as M — oo exceeding
(even for small M’s) the gigantic bounds (3) and (4)
obtained by Hagis.
Theorem 1.
of the form (1).
(a) If p1 =3 then w(n) > 3049M/4 _
(b) If p1 > 3 then w(n) > 143M/4 1
Thus, if p; = 3and M > 7, we have that w(n) >
0¢ and, by (7) below, n > 106-10° (compare with the
bounds in (3)). If p; > 3 and M > 7, then w(n) >
5912 and, by (7) below, n > 102°10° (compare with
the bounds in (4)).
The corollary below is an immediate conse-
quence of Theorem 1 and Robin’s inequality (see [9],

Let M > 4, and let n € Ly be

1509.

Théoreme 6) that for every positive integer n we have

(7) n > (H(;gry,

Note that for M > 4 we have
the following (rough, but more informative) bounds:
3049M/* — 1509 > 6M | and 143M/4 — 1 > 3M,

Corollary. Let M > 4, and let n € Ly be of
the form (1).

where r = w(n).

(a) If pp = 3 then n > (CMGM)GM, where ¢ =
0.597---=1log6/3.

(b) If p1 > 3 then n > (dM3M)3" where d =
0.366...=1log3/3.

The next theorem deals with the structure of the
set £’ defined above and it complements the result
of Pomerance [7] that the number £(z) of all n € £
not exceeding x is O(x'/2(logx)3/4).

Let P = {Py, P,...}, where P; < P;;; for all
i > 1, denote the set of all odd primes.

Theorem 2. For every integer k > 2 there ex-
ists an infinite subset P(k) of P such that:

,Pr € P(kj)
-pr. does not

(i) for every distinct primes p1,pa,. ..
the squarefree number n = pyps - -
fulfil equation (x) (i.e., n € L');

(it) P(k) is maximal with respect to inclusion.

(Of course, since w(n) > 14 in general, we have
that P(k) =P for k <13.)

The proof of Theorem 1. From (x) we obtain
that if n = p1po - - - pr € Ly, then

a 1
8 log M < 10g<1+ >,
0 > L

where = w(n). We shall apply below inequality (8)
to obtain the bounds for w(n).
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Part (a). From (k) it follows that p; = 5
(mod 6), for ¢« > 2. We define the set A := {3} U
{peP:p=5 (mod6)} ={ai,as,...}, where a; <
aj4q for j=1,2,.... Put

— 1> ’

k
= Z log (
i=1

where k > 14. From (8) we obtain

(9) log M < a(r).

Let ko be the least integer k with logd < «(k)
(i.e., a(ko) > log4 and a(ko — 1) < log4). Since
a(1539) = 1.38625--- < logd = 1.3862943--- <
1.3862948 - - - = a(1540), we obtain that ky = 1540.
Now from (9) it follows that for n € Ly, with M > 4
we have w(n) = r > 1540.

Since a1540 = @3050, @i > Q151044 for i > 1540,
from (9) we obtain

T
1
log M < «(1539) + E log ( 1>
a; —

i=1540
<log4 + Z v
o @is104i— 1
" dx
< log4 ,
it /1539 (1510 4+ x) log(1510 + z)
as
(10) Qm >mlogm+1, for m > 20;

(this follows from Rosser’s inequality Q.
m(log m+log(logm)—1.0072629) for m > 2; see [10
cf. [9], p.368). Hence log M < log4 + log(log(r
1510)) — log(log(3049)), which follows that w(n)
r > (3049)M/4 — 1509 indeed.

Part (b). We have in (8) that p; > 5 = Qs.

Put
1
Z 10g ( Qz+2 - 1>

where k > 14. Now from (8) we obtain
(9

Since $(141) = 1.3851--- < log4 < 1.3863.-- =
£3(142), from (9') it follows that for n € Ly with
M > 4 we have w(n) = r > 142, and hence (by (10)
again)

Y

I+ =

log M < B(r).
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log M < (141)

1
log ( >
; QH—Q -1
<logd+ Z

142 QH—Q -1

< log4 + log(log(r + 2)) — log(log(143)),

i.e., w(n) =r> (143)M/* — 1, as claimed. |

The proof of Theorem 2. For X a nonempty
subset of the set N of all positive integers and k €
N the symbol [X]* denotes the set of all k-element
subsets of N.

Fix an integer k > 2, and consider the function
f : [N]F — {0,1} of the form: f({i1,...,ix}) =
0 iff the number n := P;, P;, - - - P;, fulfils equation
(). By the Ramsey theorem (see [2]), there exists
an infinite subset N (k) of N such that f([N(k)]*) =
{0} or f(IN(k)]¥) = {1}; equivalently, there exists
an infinite subset P(k) of P such that the following
alternative holds:

Pilpiz"'Pk e L, or

Pilpig"'P’Lk gﬁa

for all pairwise distinct P;,,..., P;, € P(k). From
(5) it follows that for every k the number #{n € P :
w(n) < k} is finite, and thus the case (); is impossi-
ble. Hence case (x)s takes place, which implies that
the set P(k) fulfils condition (i) of Theorem 2. The
existence of a maximal (with respect to inclusion) set
P(k) follows easily from Zorn’s Lemma (applied in

the proof of the Ramsey theorem). O
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