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In this paper we introduce and study a new model for three-dimensional turbulence,
the Leray-α model. This model is inspired by the Lagrangian averaged Navier–Stokes-
α model of turbulence (also known Navier–Stokes-α model or the viscous Camassa–
Holm equations). As in the case of the Lagrangian averaged Navier–Stokes-α model,
the Leray-α model compares successfully with empirical data from turbulent channel
and pipe flows, for a wide range of Reynolds numbers. We establish here an upper
bound for the dimension of the global attractor (the number of degrees of freedom)
of the Leray-α model of the order of (L/ld)12/7, where L is the size of the domain
and ld is the dissipation length-scale. This upper bound is much smaller than what
one would expect for three-dimensional models, i.e. (L/ld)3. This remarkable result
suggests that the Leray-α model has a great potential to become a good sub-grid-
scale large-eddy simulation model of turbulence. We support this observation by
studying, analytically and computationally, the energy spectrum and show that in
addition to the usual k−5/3 Kolmogorov power law the inertial range has a steeper
power-law spectrum for wavenumbers larger than 1/α. Finally, we propose a Prandtl-
like boundary-layer model, induced by the Leray-α model, and show a very good
agreement of this model with empirical data for turbulent boundary layers.

Keywords: subgrid scale models; turbulence models; Leray-α model

1. Introduction

The Navier–Stokes equations (NSEs) of viscous incompressible fluids subject to peri-
odic boundary conditions, with a basic periodic box Ω = [0, 2πL]3, are given by the
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set of equations

∂

∂t
v − ν∆v + (v · ∇)v + ∇p = f,

∇ · v = 0,

v periodic, with periodic box Ω = [0, 2πL]3,

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(1.1)

where v, the velocity, and p, the pressure, are the unknowns, f is a given body-forcing
term and ν > 0 is the viscosity. To prove the existence of solutions to the NSEs in R

n,
n = 2, 3, Leray (1934) considered the following regularization of the system (1.1):

∂

∂t
vα − ν∆vα + (uα · ∇)vα + ∇pα = f,

∇ · vα = 0,

uα = φα ∗ vα,

⎫⎪⎪⎬
⎪⎪⎭ (1.2)

where φα is a smoothing kernel such that uα → vα, in some sense, as α ↘ 0+. In
particular, the system (1.2) converges to the NSEs (1.1) as α ↘ 0+.

In this paper we consider a special smoothing kernel, the one associated with the
Green function of the Helmholtz operator:

uα − α2∆uα = vα,

where α > 0 is a given length-scale. Dropping the α-dependence in the superscript
we arrive at the following modification of the NSEs, which we will call the Leray-α
model:

∂

∂t
v − ν∆v + (u · ∇)v + ∇p = f,

∇ · v = 0,

v = u − α2∆u,

v periodic, with periodic box Ω = [0, 2πL]3.

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(1.3)

The above model is very similar to the Lagrangian averaged Navier–Stokes-
alpha (LANS-α) model (also known as the Navier–Stokes-alpha (NS-α) or viscous
Camassa–Holm equations)

∂

∂t
v − ν∆v + (u · ∇)v +

3∑
j=1

vj∇uj + ∇p = f,

∇ · v = 0,

v = u − α2∆u,

v periodic, with periodic box Ω = [0, 2πL]3,

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

(1.4)

which was introduced in Chen et al. (1998, 1999a,b) and Foias et al. (2002) as a clo-
sure model for the Reynolds averaged equations of the NSEs. The inviscid LANS-α
model, i.e. the Lagrangian averaged Euler equations, may be derived using variational
principles from a Lagrangian that has been averaged along fluid particle trajectories
(see, for example, Chen et al. 1999a; Holm 2002a; Holm et al. 1998; Marsden &
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Shkoller 2003). The LANS-α model is then obtained from the Lagrangian averaged
Euler equations by adding a suitable viscous term. A general LANS-α model for
anisotropic turbulence was derived in Holm (1999) and Marsden & Shkoller (2003).
It is an open question whether the Leray-α model has a similar derivation to that of
an averaged equation. In Constantin (2001), however, another approach connecting
Lagrangian and Eulerian formulations for the Navier–Stokes equations was intro-
duced. This exact connection between Lagrangian and Eulerian formulations gives
another perspective for looking at the relation between the Navier–Stokes equations
and the LANS-α and the Leray-α models.

The successful comparison with empirical data for time-averaged quantities in
Chen et al. (1998, 1999a,b), for a wide range of Reynolds numbers in turbulent chan-
nel and pipe flows, led to further study of the LANS-α in the context of turbulence
modelling (see, for example, Cheskidov 2002, 2004; Holm et al. 2003; Mohseni et
al. 2003; Putkaradze & Weidman 2003). Analytical studies of the global existence,
uniqueness and regularity of solutions to (1.4) and their connection to the NSEs
are performed in Foias et al. (2002). Similar results are also established in Marsden
& Shkoller (2001) for the same model subject to ad hoc Dirichlet-type boundary
conditions. The energy spectrum of (1.4) was studied in Foias et al. (2001a), and
semi-rigorous arguments, similar to those introduced in Foias (1997) (see also Foias
et al. 2001b), suggest that the inertial range of (1.4) has two parts. The first part
is the usual Kolmogorov κ−5/3 power law of energy spectra up to a wavenumber of
the order 1/α, then a faster drop in the energy spectrum with the power law κ−3

is shown. In addition, the Kármán–Howarth theorem for fluid turbulence obeyed by
the LANS-α model was proved in Holm (2002b). This theorem rigorously proves the
k−5/3 → k−3 spectral scaling transition in wavenumber as kα < 1 passes to kα > 1.
This property of the energy spectrum (which also has been observed computationally
(Chen et al. 1999c)) indicates that the LANS-α model is more reliably ‘computable’
in direct numerical simulations than the NSEs, and can be used as a sub-grid scale
model in large-eddy simulations (LESs). The effectiveness of both the LANS-α and
the Leray-α models as LES models will be discussed further below.

Inspired by the work done in association with the system (1.4), LANS-α, we will
compare here the analogous results associated with (1.3), Leray-α. In particular,
using the steady-state equations of (1.3), Leray-α, as a closure model for the averaged
Reynolds equations in the turbulent channels and pipes, we reach exactly the same
conclusions as those reported in Chen et al. (1998, 1999a,b) for (1.4), LANS-α. This
is because, in channels and pipes under the corresponding special symmetries, the
term

3∑
j=1

vj∇uj

in the LANS-α will be a complete gradient. That is, the difference between (1.4) and
(1.3) in the channels and pipes, subject to certain special symmetries, will be in the
modified pressure and possibly in some of the associated Reynolds stresses. Therefore,
the successful story of the LANS-α as a closure model in turbulent channels and pipes
applies word for word to the Leray-α model (1.3). Whether this is a mere coincidence
or there is something much deeper to understand is a subject of current and future
investigation. It is worth mentioning that there is already a preliminary computa-
tional comparison study which indicates that the Leray-α model is a valid competitor
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to the LANS-α and other sub-grid scale models of turbulence. Indeed, the LES appli-
cations tests for turbulent mixing layers in Geurts & Holm (2002a), Geurts & Holm
(2002b) and Geurts & Holm (2003) found that the Leray-α model predicted the
resolved energy evolution properly, exhibiting both forward and backward transfer
of energy. Further analysis showed accurate momentum-thicknesses and reliable lev-
els of turbulence intensities. The computational overhead associated with the Leray
model was lower than that of dynamic (mixed) models and no introduction of ad hoc
parameters was required. The regularized dynamics showed an appealing robustness
at high Reynolds numbers. In a geophysical application (Holm & Nadiga 2003) the
LANS-α and Leray-α models both gave realistic simulations of mean motion in the
double-gyre problem for simulating Gulf Stream eddies. Thus the main purpose of
this paper is to show that certain simple models (see, for instance, Cao et al. (2005),
based on Clark et al. (1979) and Leonard (1974)) compare favourably with empirical
data for time-averaged fluid quantities as well as the NS-α model does. These models
may be more phenomenological than the NS-α model, but their comparisons with
empirical data are just as valid. These models are meant to approximate Eulerian
average fluid quantities. And Eulerian averaging in general is not known to have
either a variational principle or a circulation theorem.

In § 2 we introduce the functional setting of the Leray-α model and establish some a
priori bounds which are useful for later sections. The global existence and regularity
of the Leray-α model is a classical result and can be found in many textbooks on
the mathematical theory of the NSEs. Therefore, we will omit it. In § 3 we provide
explicit upper bounds for the dimension of the global attractor of the Leray-α model
in terms of the relevant physical parameters. Specifically, we show that the number
of degrees of freedom in the Leray-α model is of the order of(

L

ld

)12/7(
1 +

L

α

)9/14

,

where ld is the small dissipation length-scale associated with this model. Note that
the number of degrees of freedom here does not grow cubically with the size of the
domain as would be expected for three-dimensional (3D) systems. This is a strong
indication that the Leray-α model has a great potential as a sub-grid scale large-eddy
simulation model. In § 4 we follow the work in Foias (1997) and Foias et al. (2001a)
(see also Foias et al. 2001b) and derive, using physical arguments, power laws for
the energy spectra of the Leray-α model. Specifically, we show that for very high
Reynolds numbers the inertial range consists of two parts. In the first part when
κα � 1 we find the usual Kolmogorov κ−5/3 power law, and for κα � 1 we have a
different, much steeper, power law. We derive different power laws depending on what
one might use for a typical eddy turnover time. Since we have several options in this
model, the power laws may vary. Computational studies, reported in § 5 indicate that
around the wavenumber κ = 1/α the energy spectrum becomes steeper than κ−5/3.
Limited by the available computer power, we are unable to produce a wide enough
inertial range to separate the two different parts of the energy spectra. It is worth
adding that we have similar behaviour in the LANS-α, and intensive computational
studies are being carried out by various groups to investigate this potential anomaly
in the behaviour of the energy spectra of the LANS-α and Leray-α models. In § 6
we follow Cheskidov (2002, 2004) to develop a Leray-α Prandtl-like boundary-layer
model. We study this model analytically as well as computationally. We noticed that
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it is much easier to study this model analytically than the corresponding LANS-α
model studies in Cheskidov (2002, 2004). We tested this model successfully against
the boundary layer empirical data. It is worth adding that other studies of boundary
layer α-models have been reported in Holm et al. (2003) and Putkaradze & Weidman
(2003).

2. A priori estimates

(a) Functional setting

First, let us introduce some notation and the functional setting. Recall the periodic
box Ω = [0, 2πL]3 and fix a constant length-scale α > 0. We denote by (·, ·) and | · |
the L2-inner product and the corresponding L2-norm, respectively. We define

H =
{

u : u ∈ L2(Ω)3, ∇ · u = 0, u is periodic in periodic box Ω,

∫
Ω

u dx = 0
}

,

and V = H∩H ′(Ω)3. Let Pσ : L2(Ω)3 → H be the L2-orthogonal projection, referred
to as the Leray–Helmholtz projector. Denote by A = −Pσ∆ the Stokes operator
with the domain D(A) = (H2(Ω))3 ∩ V . In the periodic case A = −∆. The Stokes
operator is a self-adjoint positive operator with compact inverse. The eigenvalues of
A are denoted by λj , so that

1
L2 = λ1 � λ2 � · · · � λj � · · · , λj → ∞ as j → ∞.

The inner product in V will be denoted by

((u, v)) := (A1/2u, A1/2v) = (∇u, ∇v), ‖u‖ := |A1/2u|, for u, v ∈ V.

Note that by the Poincaré inequality we have

|u|2 � 1
λ1

‖u‖2 (2.1)

for every u ∈ V . In order to have dimensionally homogeneous norms in H1(Ω)3 and
H2(Ω)3, we will use the following inner products in these spaces, respectively:

((u, v))H1 := λ1[(u, v) + α2((u, v))],

((u, v))H2 := λ2
1[(u, v) + 2α2((u, v)) + α4(Au, Av)].

}
(2.2)

Due to (2.2) we have

λ1|v| � ‖u‖H2 � 2λ1|v|, where v = u − α2∆u, (2.3)

i.e. the norm ‖u‖H2 is equivalent to λ1|v|, where v = u − α2∆u.
Following a well-accepted notation and well-established properties of the NSEs

(see, for example, Constantin & Foias 1988; Foias et al. 2001b; Temam 1984, 1988
and references therein), we denote B(u, v) := Pσ[(u·∇)v] ∈ V ′ for all u, v ∈ V , where
V ′ denotes the dual space of V . We denote by 〈φ, v〉V ′ the dual action of φ ∈ V ′ on
v ∈ V . The bilinear form B has the following property:

〈B(u, v), w〉V ′ = −〈B(u, w), v〉V ′ , for all u, v, w ∈ V.
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634 A. Cheskidov, D. D. Holm, E. Olson and E. S. Titi

In particular,
〈B(u, v), v〉V ′ = 0, for all u, v ∈ V. (2.4)

By analogy with the NSEs (see, for example, Constantin & Foias 1988; Foias et
al. 2001b; Temam 1988 and references therein) the Leray-α model, system (1.3), in
Ω is equivalent to the functional differential equation

d
dt

v + νAv + B(u, v) = f,

u + α2Au = u − α2∆u = v,

u, v are periodic, with periodic box Ω

v|t=0 = v0.

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(2.5)

For simplicity, we assume that the forcing term f does not depend on time.
As we have indicated in the introduction, Leray (1934) established the existence

of solutions to the Navier–Stokes equations in R
n, n = 2, 3. To accomplish this he

introduced a modified system similar to (1.3), for which it was easier to establish the
existence and uniqueness, and then by passing with the parameter α ↘ 0+ he could
achieve existence of solutions to the Navier–Stokes equations. Indeed, the global
existence of solutions to (1.3) in R

n, n = 2, 3 follows from Leray’s 1934 analysis.
For the periodic case, similar arguments to those established for the 3D LANS-α
model (see Foias et al. 2002) lead to the global existence and uniqueness of weak
and strong solutions to the system (1.3) (equivalently (2.5)). Here, we will only state
the theorem without a proof. However, we will formally establish a priori estimates
on the solutions, which we will need later when we discuss global attractors for the
system (2.5). Let us stress that all these estimates can be proved rigorously using,
for instance, the Galerkin approximation procedure following, for instance, Foias et
al. (2002).

Theorem 2.1 (Leray 1934). Let T > 0, ν > 0, α > 0 be given.

(i) If f ∈ V ′ and v0 ∈ H, then the system (2.5) has a unique weak solution on
[0, T ]. That is, there is a unique function v such that

v ∈ L∞((0, T ); H) ∩ L2((0, T ); V ) ∩ C([0, T ];H-weak)

with (d/dt)v ∈ L2((0, T ); V ′) such that

d
dt

〈v, φ〉V ′ + ν(A1/2u, A1/2φ) + 〈B(u, v), φ〉V ′ = 〈f, φ〉V ′

in D′((0, T )), for every φ ∈ V , where u = (I + α2A)−1v and v(0) = v0.

(ii) If f ∈ H, v0 ∈ V , then the unique weak solution v(t) mentioned in (i) is
a strong solution on (0, T ). That is, v ∈ C([0, T ];V ) ∩ L2((0, T ); D(A)) with
(d/dt)v ∈ L2((0, T ); H) such that

d
dt

(v, φ) + ν(A1/2u, A1/2φ) + (B(u, v), φ) = (f, φ)

in D′((0, T )), for every φ ∈ V , where u = (I + α2A)−1v and v(0) = v0.

Next, we will present formal a priori estimates for the solutions established in
the above theorem. As we have mentioned before, these estimates can be obtained
rigorously using the Galerkin procedure.
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(b) L2-estimates

Taking the inner product of (2.5) with v and using (2.4), we obtain

1
2

d
dt

|v|2 + ν‖v‖2 = (f, v).

By the Cauchy–Schwarz inequality and the Poincaré inequality (2.1), we reach

(f, v) � |f ||v| � |f |2
2νλ1

+
νλ1

2
|v|2

� |f |2
2νλ1

+ 1
2ν‖v‖2.

Thus
d
dt

|v|2 + ν‖v‖2 � |f |2
νλ1

. (2.6)

Using (2.1) one more time we reach

d
dt

|v|2 + νλ1|v|2 � |f |2
νλ1

.

Using Grönwall’s inequality we conclude that

|v(t)|2 � e−νλ1t|v(0)|2 +
(1 − e−νλ1t)|f |2

ν2λ2
1

=: R(t), (2.7)

and as result we have

lim sup
t→∞

|v(t)| � R0 :=
|f |
νλ1

.

Hence B1 = {w ∈ H : |w| � R0} is an absorbing ball for the solution v(t). Moreover,
(2.3) implies

lim sup
t→∞

‖u(t)‖H2 � 2λ1R0.

Therefore, B2 = {w ∈ H : ‖w‖H2 � 2λ1R0} is an absorbing ball for the solution
u(t).

Furthermore, for every T > 0 we have, from (2.6),

|v(T )|2 + ν

∫ T

0
‖v(τ)‖2 dτ � |v(0)|2 + T

|f |2
νλ1

. (2.8)

Thus v ∈ L2((0, T ); V ) for all T > 0.

(c) H1-estimates

Taking the inner product of (2.5) with Av we obtain

1
2

d
dt

‖v‖2 + ν|Av|2 = (f, Av) − (B(u, v), Av).
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Thus, by Cauchy–Schwartz, Young and Hölder inequalities we reach

|(f, Av)| + |(B(u, v), Av)| � |f |2
ν

+ 1
4ν|Av|2 + |Av|‖v‖‖u‖L∞

� |f |2
ν

+ 1
4ν|Av|2 + 1

4ν|Av|2 +
1
ν

‖v‖2‖u‖2
L∞

� |f |2
ν

+ 1
2ν|Av|2 +

1
ν

‖v‖2‖u‖2
L∞ .

Note that by the Sobolev inequality in three dimensions we have

‖u‖L∞ � c

λ
1/4
1

‖u‖H2 ,

for some dimensionless universal constant c. Therefore,

|(f, Av)| + |(B(u, v), Av)| � |f |2
ν

+ 1
2ν|Av|2 +

c2

νλ
1/2
1

‖v‖2‖u‖2
H2 .

Thus
1
2

d
dt

‖v‖2 + 1
2ν|Av|2 � |f |2

ν
+

c2

νλ
1/2
1

‖v‖2‖u‖2
H2 .

We use (2.7) and (2.3) to obtain
d
dt

(1 + ‖v‖2) � K(t)(1 + ‖v‖2),

where

K(t) = max
{

2|f |2
ν

,
4c2λ

3/2
1 R2(t)
ν

}
.

Now Grönwall’s inequality implies that

1 + ‖v(t)‖2 � (1 + ‖v(s)‖2) exp
{ ∫ t

s

K(τ) dτ

}
, t � s � 0.

Since for any T > 0 K(τ) is integrable on (0, T ) (by (2.7)) and because of (2.8)
we have that v ∈ L∞([0, T ];V ), whenever v0 ∈ V , and v ∈ L∞

loc((0, T ];V ), whenever
v0 ∈ H.

Denote by S(t) the semi-group of the solution operators to the equation (2.5) cor-
responding to the unknown function v(t), i.e. we have that v(t) = S(t)v0. Following
similar arguments as those well established for the two-dimensional (2D) NSEs (see,
for example, Babin & Vishik 1992; Constantin & Foias 1985, 1988; Temam 1988),
one can easily prove the following theorem.

Theorem 2.2. Let v0, f ∈ H. Then for any T > 0 the semi-group S(t) is compact
and differentiable with respect to the initial data v0 on the interval (0, T ].

Since S(t) is a compact semi-group and B1 is an absorbing ball in H, the equa-
tion (2.5) has a unique global attractor

A =
⋂
s>0

⋃
t�s

S(t)B1

(see, for example, Babin & Vishik 1992; Constantin & Foias 1985, 1988; Temam
1988).

Proc. R. Soc. A (2005)



On a Leray-α model of turbulence 637

3. Dimension of the attractor

Note that |v|2 and ν‖v‖2 represent, in the Leray-α system (1.3), the kinetic energy
and the rate of dissipation of energy, respectively. Therefore, by analogy with the
conventional theory of turbulence à la Kolmogorov, the mean rate of dissipation of
energy for the system (1.3) should be given by

ε̃Leray =
ν

(2πL)3
〈‖v‖2〉,

where 〈·〉 denotes an ensemble average. Influenced by the ergodic theorem of Birkhoff,
people usually replace the ensemble average by the time average. In our case we will
consider the worst scenario and define

εLeray =
ν

(2πL)3
sup

v(0)∈A
lim sup

t→∞

1
t

∫ t

0
‖v(τ)‖2 dτ (3.1)

to be the mean rate of dissipation of energy for the system (1.3), which is finite
because of (2.8) and the fact that we have a compact global attractor. Also by
analogy with conventional theory of turbulence we set for the viscous dissipation
length-scale

ld =
(

ν3

εLeray

)1/4

,

which is supposed to represent the smallest scale that one needs to resolve in order
to get a complete resolution for turbulent flows associated with the Leray-α model.

Theorem 3.1. The Hausdorff and fractal dimensions of the global attractor of
the Leray-α model satisfy

dH(A) � dF(A) � c

(
L

ld

)12/7(
1 +

L

α

)9/14

,

for some universal constant c, which one can estimate explicitly.

Proof . We follow Constantin & Foias (1985) (see also Constantin & Foias 1988;
Temam 1988, and references therein) and linearize the Leray-α model about a tra-
jectory in the global attractor v(t) = u(t) + α2Au(t) to obtain

d
dt

ξ + νAξ + B(u, ξ) + B(η, v) = 0,

η + α2Aη = ξ,

ξ(0) = ξ0.

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(3.2)

That is, the deviation ξ(t), with initial deviation ξ(0) = ξ0, evolves according to

d
dt

ξ + Λ(t)ξ = 0,

where

Λ(t)ψ = Aψ + B(u(t), ψ) + B(φ, v(t)), φ + α2Aφ = ψ, u + α2Au = v.

Proc. R. Soc. A (2005)



638 A. Cheskidov, D. D. Holm, E. Olson and E. S. Titi

Let ξj(t) be solutions of the above system with ξj(0) = ξ0
j , j = 1, . . . , N . Assume

ξ0
1 , . . . , ξ0

N are linearly independent. Let QN (t) be the L2-orthogonal projection from
L2(Ω) onto span{ξ1(t), . . . , ξN (t)}. Then

‖(ξ1∧· · ·∧ξN )(t)‖2
L2 = ‖(ξ1∧· · ·∧ξN )(0)‖2

L2 exp
{

−
∫ t

0
Tr[QN (τ)◦Λ(τ)◦QN (τ)] dτ

}
,

where Tr[·] denotes the trace of a linear operator.
Now, let {ψ1(t), . . . , ψN (t)} be an L2-orthonormal basis of span{ξ1(t), . . . , ξN (t)},

i.e. (ψi, ψj) = δij , and let φj = (I − α2∆)−1ψj . It is clear that ψj ∈ H1(Ω), for
j = 1, 2, . . . , N . Recall that (B(u, w), w) = 0 (equation (2.4)) for all u, w ∈ V . Then
we have

Tr[QN (t) ◦ Λ(t) ◦ QN (t)] =
N∑

j=1

(Λ(t)ψj , ψj)

=
N∑

j=1

(ν‖ψj‖2 + (B(u, ψj), ψj) + (B(φj , v), ψj))

=
N∑

j=1

(ν‖ψj‖2 + (B(φj , v), ψj))

� ν

N∑
j=1

‖ψj‖2 −
∣∣∣∣

N∑
j=1

(B(φj , v), ψj)
∣∣∣∣. (3.3)

Note that ∣∣∣∣
N∑

j=1

(B(φj , v), ψj)
∣∣∣∣ =

∣∣∣∣
N∑

j=1

((φj · ∇)v, ψj)
∣∣∣∣

� ‖v‖‖ρN‖L∞

( N∑
j=1

∫
Ω

|ψj(x)|2 dx

)1/2

= ‖v‖‖ρN‖L∞N1/2, (3.4)

where

ρ2
N (x) =

N∑
j=1

|φj(x)|2.

To finish the estimate for the Tr[QN (t) ◦ Λ(t) ◦ QN (t)] we need the following two
propositions.

Proposition 3.2. Let γ = α/L. Then for every function φ ∈ H2(Ω)

‖φ‖L∞ � C(γ)(2πL)−3/2|(φ + α2Aφ)|,

where C(γ) is given in equation (3.5).
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Proof . We denote by

φ̂κ =
1

(2πL)3

∫
Ω

φ(x)e−i(x/L)κ dx,

the Fourier coefficients of a function φ(x). Thus we have

|φ| =
( ∑

κ∈Z3

|φ̂κ|2
)

(2πL)3,

and

|φ(x)| =
∣∣∣∣ ∑

κ∈Z3

φ̂κei(x/L)κ
∣∣∣∣ �

∑
κ∈Z3

|φ̂κ|

�
( ∑

κ∈Z3

|φ̂κ|2(1 + γ2κ2)2
)1/2( ∑

κ∈Z3

(1 + γ2κ2)−2
)1/2

.

It is obvious that there exists a universal constant c1 > 0 (see, for example, Con-
stantin & Foias (1988) or Temam (1988) for explicit bounds on c1) such that

∑
κ∈Z3

(1 + γ2κ2)−2 �
∞∑

p=0

(1 + c2
1γ

2p4/3)−2.

Therefore,

∑
κ∈Z3

(1 + γ2κ2)−2 �
[(c1γ)−3/2]∑

p=0

1 +
1
4

+
∫ ∞

(c1γ)−3/2

dy

c4
1γ

4y8/3

�
(

1
c2
1γ

2

)3/4

+
5
4

+
3
5

(
1

c2
1γ

2

)3/4

=
5
4

+
8
5

(
1

c2
1γ

2

)3/4

=: C2(γ). (3.5)

Putting the above together we get

‖φ‖L∞ � C(γ)
( ∑

κ∈Z3

|φ̂κ|2(1 + γ2κ2)2
)1/2

= C(γ)(2πL)−3/2|(φ + α2Aφ)|.

�

Proposition 3.3. Let {ψ1, . . . , ψN} ⊂ H2(Ω) be orthonormal in the L2-inner
product, i.e. (ψk, ψl) = δkl. Let φκ = (I + α2A)−1ψκ, κ = 1, 2, . . . , N . Let also

ρ2
N (x) =

N∑
j=1

|φj(x)|2.

There then exists a constant CF(γ), independent of N , such that

‖ρN‖L∞ � CF(γ)(2πL)−3/2. (3.6)

In fact, CF(γ) �
√

3C(γ), where C(γ) is given in (3.5).
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Proof . Let θ1, . . . , θN ∈ R to be chosen later, such that
∑N

κ=1 θ2
κ = 1. Then, by

proposition 3.2,

∣∣∣∣
N∑

κ=1

θκφκ(x)
∣∣∣∣ � C(γ)(2πL)−3/2

∣∣∣∣
N∑

κ=1

θκ(φκ + α2Aφκ)
∣∣∣∣

= C(γ)(2πL)−3/2
∣∣∣∣

N∑
κ=1

θκψκ

∣∣∣∣
= C(γ)(2πL)−3/2

( N∑
κ=1

|θκ|2
)1/2

= C(γ)(2πL)−3/2,

for all x ∈ Ω, where we have used the orthogonality of {ψκ}. From the above we
have( N∑

κ=1

θκφ1
κ(x)

)2

+
( N∑

κ=1

θκφ2
κ(x)

)2

+
( N∑

κ=1

θκφ3
κ(x)

)2

� C(γ)2(2πL)−3, x ∈ Ω.

Then we choose

θκ =
φ1

κ(x)

(
∑N

κ=1(φ1
κ(x))2)1/2

,

and alternatively

θκ =
φ2

κ(x)

(
∑N

κ=1(φ2
κ(x))2)1/2

or θκ =
φ3

κ(x)

(
∑N

κ=1(φ3
κ(x))2)1/2

to obtain
|ρN (x)|2 � 3C(γ)2(2πL)−3, x ∈ Ω.

Hence, our estimate. �

Now we go back to estimating Tr[QN (t)◦Λ(t)◦QN (t)]. From (3.3), (3.4) and (3.6)
we have

Tr[QN (t) ◦ Λ(t) ◦ QN (t)] � ν
N∑

j=1

‖ψj‖2 − ‖v(t)‖‖ρN‖L∞N1/2

� ν
N∑

j=1

λj − ‖v(t)‖CF(γ)(2πL)−3/2N1/2.

Note that in the 3D case we have λj � c1L
−2j2/3 for some positive universal constant

c1 (see, for example, Constantin & Foias 1988; Temam 1988). Therefore,

Tr[QN (t) ◦ Λ(t) ◦ QN (t)] � c2νL−2N5/3 − ‖v(t)‖CF(γ)(2πL)−3/2N1/2,
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for some positive constant c2. Hence,

lim inf
T→∞

1
T

∫ T

0
Tr[QN (t) ◦ Λ(t) ◦ QN (t)] dt

� c2νL−2N5/3 − CF(γ)(2πL)−3/2N1/2 lim sup
T→∞

(
1
T

∫ T

0
‖v(t)‖2 dt

)1/2

� c2νL−2N5/3 − CF(γ)(2πL)−3/2N1/2
(

L3

ν
εLeray

)1/2

.

For N � 1, such that

N �
(

L

ld

)12/7(
CF(γ)

c2

)6/7

,

we have

lim inf
T→∞

1
T

∫ T

0
Tr[QN (t) ◦ Λ(t) ◦ QN (t)] dt > 0.

Therefore, based on the trace formula (see Chepyzhov & Ilyin 2004; Constantin &
Foias 1985, 1988; Temam 1988), this N is an upper bound for the dimension of the
global attractor, i.e.

dH(A) � dF(A) �
(

L

ld

)12/7(
CF(γ)

c2

)6/7

.

Since CF(γ) � c3(γ−3/4 + 1) for some universal constant c3, we have the following
upper bound for the dimension of the global attractor:

dH(A) � dF(A) � c

(
L

ld

)12/7(
1 +

L

α

)9/14

,

for some universal constant c. This concludes the proof. �
Remark 3.4. A heuristic physical argument in classical theory of turbulence

suggests that the number of degrees of freedom for the 3D NSEs is proportional
to (L/ld)3. This formula is still far from being reached rigorously for the 3D NSEs
due to the lack of a proof for the global regularity of the 3D NSEs (see, however,
Constantin et al. 1985). However, a similar formula has been shown to be correct
for the LANS-α (NS-α or viscous Camassa–Holm) model (Foias et al. 2002). The
above estimate, on the other hand, suggests that the number of degrees of freedom
of the Leray-α model is much smaller than that of the NSEs or the LANS-α models.
This remarkable result indicates that the Leray-α model might be much easier to
compute with and that it lies, from the complexity point of view, between the 2D
and 3D cases.

We observe that for γ = α/L large enough one can easily show, using energy
estimates, that the dynamics of the Leray-α model is trivial and the attractor is a
single stable steady state. Hence, the dimension of the global attractor tends to zero.
While deriving the above estimate for the dimension of the attractor we assumed γ
to be a positive finite number. In fact, we implicitly kept in mind that γ is a small
number in order to stay ‘close’ to the 3D NSEs. See Ilyin & Titi (2003) for related
results concerning the dependence of the global attractor on α for the 2D LANS-α
or the NS-α model.
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4. Energy spectrum

Following the work of Foias (1997) and Foias et al. (2001a) (see also Foias et al.
2001b) we provide here physical arguments for studying the energy spectrum of the
Leray-α model, equations (1.3). Let

uκ =
∑

κ�|j|<2κ

ûjeij·x/L, vκ =
∑

κ�|j|<2κ

v̂jeij·x/L,

where again

φ̂j =
1

(2πL)3

∫
Ω

φ(x)e−ij·x/L dx

denote the Fourier coefficients of the function φ(x). The energy balance for vκ is
given by

1
2

d
dt

(vκ, vκ) + ν(−∆vκ, vκ) = Tκ − T2κ, (4.1)

where
Tκ = −((uκ

< · ∇)vκ, vκ) + (((uκ + uκ
>) · ∇)(vκ + vκ

>), vκ
<),

and
uκ

< =
∑
j<κ

uj , uκ
> =

∑
j�2κ

uj .

Taking an ensemble average of (4.1), e.g. the long time average, we obtain

ν〈(−∆vκ, vκ)〉 = 〈Tκ〉 − 〈T2κ〉.
In terms of the energy spectrum Ev

α(κ) of the variable v we have

νκ3Ev
α(κ) ≈ ν

∫ 2κ

κ

η2Ev
α(η) dη ≈ 〈Tκ〉 − 〈T2κ〉.

As long as
νκ3Ev

α(κ) � 〈Tκ〉,
i.e. 〈Tκ〉 ≈ 〈T2κ〉 (there is no leakage of energy due to dissipation), the wavenumber
κ belongs to the inertial range.

As before, let ε̃Leray represent the mean rate of dissipation of energy,

ε̃Leray :=
〈

ν

L3

∫
Ω

(−∆v) · v dx

〉
,

which in principle should be comparable with εLeray, which was introduced earlier,
in equation (3.1). The average velocity of an eddy of spatial size of the order of 1/κ
can be evaluated in three different ways:

U0
κ =

〈
1
L3

∫
Ω

vκ · vκ dx

〉
e1/2 =

(∫ 2κ

κ

Ev
α(η) dη

)1/2

∼ κ1/2Ev
α(κ)1/2,

U1
κ =

〈
1
L3

∫
Ω

uκ · vκ dx

〉
e1/2 =

(∫ 2κ

κ

Ev
α(η)

(1 + α2η2)
dη

)1/2

∼ κ1/2Ev
α(κ)1/2

(1 + α2κ2)1/2 ,

U2
κ =

〈
1
L3

∫
Ω

uκ · uκ dx

〉
e1/2 =

(∫ 2κ

κ

Ev
α(η)

(1 + α2η2)2
dη

)1/2

∼ κ1/2Ev
α(κ)1/2

(1 + α2κ2)
,
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i.e.

Un
κ ∼ κ1/2Eα(κ)1/2

(1 + α2κ2)n/2 , n = 0, 1, 2.

It is not clear, based on physical grounds, which one of these different expressions is
the right one. As we see below, each expression will lead to a different power law in
the energy spectrum. A careful study of the power laws in the energy spectra will
shed some light on which of the above expressions is the right one, a subject of future
and ongoing research. In the inertial range, according to the Kraichnan mechanism
of energy cascade (Kraichnan 1972) (see also Foias 1997; Foias et al. 2001a,b), the
turnover time of eddies of the spatial size 1/κ is the time it takes for the eddies of
spatial size 1/κ to transfer their energy to the eddies of smaller size 1/(2κ), which is
about

τn
κ :=

1
κUn

κ

, n = 0, 1, 2.

Then, for the different definitions of Un
κ , n = 0, 1, 2, we have

τn
κ ≈ (1 + α2κ2)n/2

κ3/2Ev
α(κ)1/2 .

Therefore,

ε̃Leray =
1
τn
κ

∫ 2κ

κ

Ev
α(η) dη ∼ κ5/2Ev

α(κ)3/2

(1 + α2κ2)n/2 ,

which implies the following spectral scaling law:

Ev
α(κ) ∼ (ε̃Leray)2/3κ−5/3(1 + α2κ2)n/3.

Consequently, the translational kinetic energy spectrum of the variable u is given by

Eu
α(κ) =

Ev
α(κ)

(1 + α2κ2)2
∼ (ε̃Leray)2/3κ−5/3(1 + α2κ2)(n−6)/3.

Note that for ακ � 1 the energy spectrum is the usual κ−5/3 power law as for
the Navier–Stokes equations. But for ακ � 1 we have a steeper decaying power
law κ(2n−17)/3, for n = 0, 1, 2. This indicates that the Leray-α model can serve as
a very good sub-grid scale model. Similar results concerning the LANS-α (NS-α or
viscous Camassa–Holm equations) have been reported in Foias et al. (2001a), based
on the eddy turnover time τ2

κ , i.e. n = 2. It has been shown there that the power
laws for the energy spectra in the initial range are κ−5/3, for κα � 1, and κ−3 for
κα � 1. Note that for the Leray-α model we also have κ−5/3 for κα � 1, while we
have κ−13/3 for κα � 1, when we take n = 2. Therefore, the Leray-α model decays
even faster than the LANS-α (NS-α) model for κα � 1. Preliminary computational
results which compare the energy spectra of the NSEs, LANS-α and the Leray-α
support this observation (see figure 1).

5. Numerical simulations

Numerical simulations of flows with high-symmetry were conducted to compare the
energy spectra of the Leray-α and LANS-α models to the incompressible Navier–
Stokes equations. Flows with high-symmetry were first studied by Kida (1985). All
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Figure 1. Comparison of the average energy spectra of the Navier–Stokes equations
to the LANS and Leray models of turbulence for ν = 0.001 and α = 0.05.

computations were carried out using a modified version of the FORTRAN code of
Nie & Tanveer (1999); see also Constantin et al. (1999). Changes were made to
implement the Leray-α and LANS-α models. The actual calculations were made at
the Department of Mathematics, University of California, Irvine, using Intel Xeon
dual 1.8 Ghz P4 Beowulf compute nodes.

Fourier transforms were performed on a 1283 grid using the 2/3 rule to avoid alias-
ing. Due to the high-symmetry of the flow, the spatial resolution of our calculation is
comparable with turbulence in a periodic box using Fourier transforms of size 5123.
Time was integrated using a second-order Adams–Bashforth method with a step size
of 0.0005. We took viscosity ν = 0.001 and α = 0.05. The forcing function f was
designed so that for |k| � 4 the Fourier modes ûk of the solution remained constant
in time. The initial value was taken to be

u0(x, y, z) = [U0(x, y, z), U0(y, z, x), U0(z, x, y)],

where

U0(x, y, z) = 0.400 312 33 sin x(cos 3y cos z − cos y cos 3z)
+ 0.222 724 69 sin 3x(cos 3y cos z − cos y cos 3z)
+ 0.070 431 73 sin 4x(cos 2y + cos 2z)
− 0.140 863 46 sin 2x(cos 4y + cos 4z).

We calculated the translational energy spectrum Eu
α(κ) for the 3D Leray-α, LANS-

α and incompressible Navier–Stokes equations by averaging in time from t = 33 to
100. It is evident from figure 1 that LANS-α has a more compact spectrum than the
Navier–Stokes equations. This is consistent with results reported earlier in Chen et al.
(1999c) and Mohseni et al. (2003). Note also that Leray-α has an even more compact
spectrum than LANS-α. This is consistent with our analysis, which estimates a faster
rate of decay for the energy spectrum of the Leray-α.
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Our analytical estimate on the dimension of the global attractor indicates that
the degrees of freedom of Leray-α is significantly less than would be expected for
extensive 3D turbulence. Therefore, the relative compactness of the energy spectrum
for Leray-α should increase at higher Reynolds numbers.

6. Boundary-layer approximation

Following Cheskidov (2002, 2004) we derive here a boundary-layer approximation of
the Leray-α model for a stationary two-dimensional flow near a surface, and then
reduce it to an extension of the Blasius equation in the case of a zero pressure gradient
flow near a flat plate. Let x be the coordinate along the surface, y the coordinate
normal to the surface, and u = (U, V ) the mean velocity of the flow.

Consider the stationary two dimensional Leray-α model,

(u · ∇)v = ν∆v − ∇p,

∇ · u = 0,

}
(6.1)

where v = (γ, τ) = u − ∇ · (α2(x)∇u). We supplement system (6.1) with non-slip
boundary conditions u|y=0 = 0, as well as

lim
y→∞

u(x, y) = (Ue, 0)

for all x > 0, where (Ue, 0) is the mean external velocity of the flow. In addition, we
assume here that α(·) is a function of the x variable.

Let us fix l on the x-axis and define ε(l) in the following way:

ε(l) :=
1√
Rl

=
√

ν

Uel
.

We change variables:

x1 =
x

l
, y1 =

y

εl
, U1 =

U

Ue
, V1 =

V

εUe
, p1 =

p

U2
e

, α1 =
α

εl
.

Note that the new variables are dimensionless. Recall that α1 is a function of x only.
Then we obtain

1
Ue

γ(x, y) = U1(x1, y1) − ε2α2
1

∂2

∂x2
1
U1 − α2

1
∂2

∂y2
1
U1 − ε2

∂

∂x1
α2

1
∂

∂x1
U1,

1
Ue

τ(x, y) = εV1(x1, y1) − ε3α2
1

∂2

∂x2
1
V1 − εα2

1
∂2

∂y2
1
V1 − ε3

∂

∂x1
α2

1
∂

∂x1
V1.

Neglecting the terms in equation (6.1) with high powers of ε, dropping subscripts
and denoting

W =
(

1 − α2 ∂2

∂y2

)
U,
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we arrive at the following Prandtl-like boundary-layer approximation of the Leray-α
model:

U
∂

∂x
W + V

∂

∂y
W =

∂2

∂y2 W − ∂

∂x
p,

∂

∂y
p = 0,

∂

∂x
U +

∂

∂y
V = 0.

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

(6.2)

For ε small enough we have

U(x, y) ≈ UeU∞

(
x

l
,

y√
l · le

)
, V (x, y) ≈ Ue√

Rl

V∞

(
x

l
,

y√
l · le

)
,

where le is a length associated with the external flow le = ν/Ue and (U∞, V∞) is a
solution of (6.2).

Next we simplify (6.2) using Blasius’s similarity variable in the case of a zero
pressure gradient, i.e. we assume that

∂

∂x
p = 0,

and the exterior velocity Ue is constant. We will study the flow near some fixed point
x0 on the plate. Let us choose the origin on the plate so that the point x0 has the
coordinates (l, 0), where l is a parameter of the boundary layer. Now, we assume
that α is proportional to

√
x, i.e.

α =
√

xβ,

where β is another parameter of the boundary layer. In addition, we will study the
solutions (U∞, V∞) of (6.2) that on some adequate interval l − ε < x < l + ε are of
the form

U∞ = f(ξ), V∞ =
1√
x

g(ξ), ξ =
y√
x

. (6.3)

Now we obtain the following equations for f and g:

−1
2ff ′ξ + β2f(1

2f ′′′ξ + f ′′) − β2ff ′′ + gf ′ − β2gf ′′′ = f ′′ − β2f iv,

g′ − 1
2ξf ′ = 0.

Let

h(ξ) =
∫ ξ

0
f(η) dη.

Then g = 1
2ξh′ − 1

2h and we have the following equation for h:

h′′′ + 1
2hh′′ − β2(hv + 1

2hiv) = 0. (6.4)

The boundary condition U |y=0 = 0 requires f(0) = 0 and thus h(0) = h′(0) = 0. In
addition, the physical interpretation of

ν
∂

∂y
U for y = 0
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Figure 2. Comparison with experimental data from the Rolls-Royce Applied Science
Laboratory, ERCOFTAC t3b test case for cf = 0.004 01, Rθ = 1436.

as the shear stress on the wall imposes the condition f ′(0) > 0, that is, h′′(0) > 0.
Moreover, U(x, y) → Ue as y → ∞ requires that h′(ξ) → 1 as ξ → ∞.

Note that if ĥ(ξ) is a solution of (6.4), then h(x) := βĥ(βx) is a solution of

−hv − 1
2hhiv + h′′′ + 1

2hh′′ = 0. (6.5)

This equation can be also written as

m′′′ + 1
2hm′′ = 0,

m = h − h′′.

}
(6.6)

Here again h(0) = h′(0) = 0, h′′(0) > 0. In addition, U(x, y) → Ue as y → ∞ requires
that h′(ξ) → β2 as ξ → ∞.

Note that equation (6.5) is the same as the corresponding equation for the LANS-α
(NS-α) model. In Cheskidov (2004) it was proved that the solutions of this equa-
tion satisfying the above physical boundary conditions form a two-parameter family.
These two parameters are the skin friction coefficient cf, and the Reynolds num-
ber based on momentum thickness Rθ, and they determine the velocity profile for
each horizontal coordinate. The family of velocity profiles {uRθ,cf} match experi-
mental data for a wide range of Reynolds numbers (see figure 2). Another version on
the boundary-layer approximation of the LANS-α (NS-α or viscous Camassa–Holm)
model and its applications to turbulent jets and wakes is presented in Holm et al.
(2003) and Putkaradze & Weidman (2003).
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