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On a linear Gromov–Wasserstein distance
Florian Beier, Robert Beinert, Gabriele Steidl

Abstract—Gromov–Wasserstein distances are generalization
of Wasserstein distances, which are invariant under distance
preserving transformations. Although a simplified version of
optimal transport in Wasserstein spaces, called linear optimal
transport (LOT), was successfully used in practice, there does
not exist a notion of linear Gromov–Wasserstein distances so
far. In this paper, we propose a definition of linear Gromov–
Wasserstein distances. We motivate our approach by a gener-
alized LOT model, which is based on barycentric projection
maps of transport plans. Numerical examples illustrate that
the linear Gromov–Wasserstein distances, similarly as LOT,
can replace the expensive computation of pairwise Gromov–
Wasserstein distances in applications like shape classification.

Index Terms—Optimal transport, linear Wasserstein distance,
Wasserstein spaces, Gromov–Wasserstein distance, shape spaces.

I. INTRODUCTION

RECENTLY, a simplified version of optimal transport
in Wasserstein spaces, called linear optimal transport

(LOT), was introduced by Wang et al. [1]. The theoretical
justifications of LOT can be found in the book of Ambrosio,
Gigli and Savaré [2]. From a geometric point of view, this ap-
proach just transfers measures from the geodesic Wasserstein
space by the inverse exponential map to the tangent space at
some fixed reference measure that is assumed to be absolutely
continuous (with respect to the Lebesgue measure). Then the
LOT distance can be characterized by the optimal transport
maps between the reference measure and the considered mea-
sures. This approach allows to work in the linear tangent space
rather than in the non-linear Wasserstein space; so subsequent
computations can utilize known methods from data science
as for instance classification techniques. This is especially
suited for the approximate computation of pairwise distances
for large databases of images and signals. Meanwhile LOT has
been successfully applied for several tasks in nuclear structure-
based pathology [3], parametric signal estimation [4], signal
and image classification [5], [6], modeling of turbulences [7],
cancer detection [8]–[10], Alzheimer disease detection [11],
vehicle-type recognition [12] as well as for de-multiplexing
vortex modes in optical communications [13]. On the real
line, LOT can further be written using the cumulative density
function of the random variables associated to the involved
measures. This was used in combination with the Radon
transform under the name Radon-CDT [6], [14]. We like to
mention that (inverse) exponential mappings were also used
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for the iterative computation of Fréchet means, also known
as barycenters, in Wasserstein spaces in [15]. Furthermore,
in [16], the determination of conditions that allow the trans-
formation of signals created by algebraic generative models
into convex sets by applying LOT has been addressed. In
[17], the authors characterized settings in which LOT embeds
families of distributions into a space in which they are linearly
separable and provided conditions such that the LOT distance
between two measures is nearly isometric to the Wasserstein
distance. Finally, note that a linear version of the Hellinger–
Kantorovich distance is also available [18].

However, when dealing with reference measures that are not
absolutely continuous, e.g., discrete measures, then optimal
transport maps are in general not available such that a gener-
alized setting of LOT is needed. In this paper, we propose a
generalized LOT which relies on barycentric averaging maps
of optimal transport plans instead of optimal transport maps.
For discrete measures, such an approach was also considered
in [1]. In this paper, we actually need this generalized LOT
concept to motivate our framework of (generalized) linear
Gromov–Wasserstein distances.

Gromov–Wasserstein distances were first considered by
Mémoli in [19] as a modification of Gromov–Hausdorff and
Wasserstein distances. A survey of the geometry of Gromov–
Wasserstein spaces was given by Sturm in [20]. Due to its
invariance on isomorphism classes of so-called metric measure
spaces, the Gromov–Wasserstein distance is more suited for
certain practical computations like shape comparison and
matching while retaining several desirable theoretical proper-
ties of its predecessors. A combination with inverse problems
has been considered in [21]. Further, a sliced version of the
Gromov–Wasserstein distance has been discussed in [22], [23].
Recently, Gromov–Wasserstein distances were examined for
Gaussian measures in [24].

In this paper, we introduce a linear variant of the Gromov–
Wasserstein distance that has the same advantages as LOT,
namely the efficient computation of pairwise distances in
larger datasets, which can be subsequently coupled with
standard methods from image and signal processing. Since
the Brenier theorem that relates optimal transport maps with
transport plans in Wasserstein spaces is not available for the
Gromov–Wasserstein setting, we rely on optimal transport
plans with respect to Gromov–Wasserstein distances which
always exist. Numerical examples illustrate the excellent per-
formance of the linear variant in shape classification tasks
and show that the distinctiveness remains comparable to the
original Gromov–Wasserstein distance.

Outline of the paper: In Section II, we deal with lin-
ear optimal transport and its generalization via barycentric
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projection maps of transport plans. In Section III, we con-
sider Gromov–Wasserstein distances. We introduce the basic
notation and properties that are quite technical, but we try
to keep things as simple as possible. Then, following the
definition of generalized LOT, we propose generalized lin-
ear Gromov–Wasserstein distances. Section IV demonstrates
how linear Gromov–Wasserstein distances perform in several
applications. Finally, conclusions are drawn in Section V.

II. LINEAR OPTIMAL TRANSPORT

In this section, we introduce a general version of LOT. We
will use the same underlying idea for the linear Gromov–
Wasserstein distance.

A. Optimal Transport

By L2
µ(Rd,Rd) we denote the space of (equivalence classes

of) measurable functions T : Rd → Rd fulfilling

‖T‖L2
µ

:=
(∫

Rd
‖T (x)‖2 dµ(x)

) 1
2

<∞.

Let P(Rd) be the space of probability measures on the Borel
σ-algebra B(Rd), and P2(Rd) be the space of measures with
finite second moments. The push-forward measure T#µ of
µ ∈ P(Rd) by a measurable map T : Rd → Rd is defined by
T#µ(B) := µ(T−1(B)) for all B ∈ B(Rd). By ‖·‖ we denote
the Euclidean norm on Rd. Together with the Wasserstein
distance

W (µ, ν) := min
π∈Π(µ,ν)

(∫
Rd×Rd

‖x− y‖2 dπ(x, y)

) 1
2

, (1)

where Π(µ, ν) denotes the set of transport plans π ∈ P(Rd×
Rd) with marginals µ and ν, the space P2(Rd) becomes a
metric space, known as (2-)Wasserstein space. We denote the
set of optimal transport plans, i.e. solutions to the minimization
problem in (1), by Πo(µ, ν). For the more general definition
of p-Wasserstein spaces, p ∈ [1,∞), see for instance [25]. The
Wasserstein space is a geodesic space meaning that, for every
µ, ν ∈ P2(Rd), there exists a continuous curve γ : [0, 1] →
P2(Rd) with γ(0) = µ, γ(1) = ν and

W (γ(t), γ(s)) = |t− s|W (γ(0), γ(1)) (2)

for all t, s ∈ [0, 1]. A continuous curve with property (2) is
called (constant speed) geodesic.

If the measure µ is absolutely continuous, then, by the
following theorem of Brenier [26], optimal transport plans in
(1) are unique and can be characterized by transport maps.

Theorem II.1 (Brenier’s Theorem). Let µ, ν ∈ P2(Rd), where
µ is absolutely continuous. Then the minimization problem
in (1) admits a unique solution πνµ. Moreover, there exists a
unique optimal transport map T νµ ∈ L2

µ(Rd,Rd) which solves

min
T

∫
Rd
‖x− T (x)‖2 dµ(x) subject to T#µ = ν.

This optimal map is related to the optimal transport plan by

πνµ = (id, T νµ )#µ.

The situation changes if µ is not absolutely continuous.
Then there still exists an optimal transport plan, but it may not
be unique. In contrast, the existence of an optimal transport
map is not guaranteed. However, if there exists T such that
ν = T#µ and π := (id, T )#µ is an optimal plan, then T
is an optimal map. Conversely, if T is an optimal map, then
π := (id, T )#µ fulfills the marginal conditions, but must not
be an optimal plan, as the example µ := 1

4δ0 + 3
4δ1 and

ν := 3
4δ0 + 1

4δ1 shows.

B. Linear Optimal Transport

For discrete measures with a maximum of n support points,
the optimal transport amounts to solving a linear program that
has worst-case complexity of n3 log(n). Computing the pair-
wise Wasserstein distances of N such measures results in

(
N
2

)
optimal transport computations, which becomes numerically
intractable for large N . To speed up the numerical comparison,
Wang et al. [1] proposed LOT, which exploits the geometric
structure of the Wasserstein space. Following [2, Eq (8.5.1)],
the reduced tangent space (cone) Tanr

σ P2(Rd) ⊂ L2
µ(Rd,Rd)

with base σ ∈ P2(Rd) is given by

Tanr
σ P2(Rd)

:=
{
r(T − id) : (id ,T )#σ ∈ Πo(σ, T#σ), r > 0

}L2
σ
. (3)

Note that the mapping T in (3) is always an optimal transport
map between σ and T#σ. If σ is absolutely continuous, then
the mapping

Fσ : P2(Rd)→ Tanr
σ P2(Rd), µ 7→ Tµσ − id

is the inverse exponential map. The key idea of LOT is to
approximate W (µ, ν) by the distance of the liftings to the
tangent space, i.e.

LOTσ(µ, ν) := ‖Fσ(µ)− Fσ(ν)‖L2
σ

= ‖Tµσ − T νσ ‖L2
σ
. (4)

Then LOT is length preserving, i.e. W (µ, σ) = LOTσ(µ, σ)
and gives an upper bound of the Wasserstein distance

W (µ, ν) ≤ LOTσ(µ, ν).

For a fixed σ ∈ P2(R), the computation of all pairwise
LOTσ distances by (4) between N measures requires only
N transport map computations.

One shortcoming of LOTσ in (4) is that the base measure
σ has to be absolutely continuous to ensure that the inverse
exponential map to the reduced tangential space is well-
defined for all measures in P2(Rd). As a remedy, we replace
the reduced tangent space by the geometric tangent space.
Given πµσ ∈ Πo(σ, µ), the mapping

t 7→ πσ→µt := ((1− t)P 1 + tP 2)#π
µ
σ , t ∈ [0, 1],

with the projections P 1(s, x) := s and P 2(s, x) := x
defines a geodesic between σ and µ. Moreover, every geodesic
corresponds one-to-one to an optimal plan [2, Thm 7.2.2].
Henceforth, we identify each geodesic by its plan. Let Gσ
denote the set of equivalence classes of all geodesics starting
in σ, where two geodesics πσ→µt and πσ→νt are equivalent if
there exists an ε > 0 such that πσ→µt = πσ→νt for t ∈ [0, ε].
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The geometric tangent space Tang
σ P2(Rd) is the closure of

Gσ with respect to the metric

W 2
σ (πµσ , π

ν
σ) := min

π∈Γσ(πµσ ,πνσ)

∫
R3d

|x− y|2 dπ(s, x, y), (5)

where Γσ(πµσ , π
ν
σ) consists of all 3-plans π ∈ P(Rd×Rd×Rd)

with P 12
# π = πµσ and P 13

# π = πνσ , and where P 12(s, x, y) :=
(s, x) and P 13(s, x, y) := (s, y), cf. [2, § 12.4]. Note that the
plans π ∈ Γσ(πµσ , π

ν
σ) also give rise to so-called generalized

geodesics between µ and ν, c.f. [2, § 9.2].
If σ is not absolutely continuous, there may exist more

than one geodesic between σ and µ, ν, i.e. Πo(σ, µ) and
Πo(σ, ν) are no singletons; so a proper extension of LOT to
not absolutely continuous bases is

LOTσ(µ, ν) := inf
πµσ∈Πo(σ,µ)
πνσ∈Πo(σ,ν)

Wσ(πµσ , π
ν
σ). (6)

It can be verified that LOT in (4) and (6) coincides for
absolutely continuous σ. In general LOTσ is only a semi-
metric, i.e., the triangular inequality is not fulfilled. Taking
the supremum instead of the infimum in (6) would fix this
issue. Moreover, we have again W (µ, ν) ≤ LOTσ(µ, ν).

Remark II.2. Besides the geometric interpretation, we may
interpret LOTσ as a constrained optimization of (1). More
precisely, if we are given two plans πµσ ∈ Πo(σ, µ) and
πνσ ∈ Πo(σ, ν) in (6), then the gluing lemma of Dudley [27,
Lem. 8.4] ensures the existence of πg ∈ P(Rd × Rd × Rd)
such that P 12

# πg = πµσ and P 13
# πg = πνσ . The two plans πµσ

and πνσ are glued together along the first axis. If the two
marginal plans are related to maps, i.e. πµσ = (id, Tµσ )#σ
and πνσ = (id, T νσ )#σ, then the gluing is unique and given by
πg := (id, Tµσ , T

ν
σ )#σ. Against this background, the marginal

P 23
# πg ∈ Π(µ, ν) may be interpreted as transport from µ

to ν via σ, and the optimization in (6) is the constrained
optimization of the Wasserstein distance (1) restricted to the
plans via σ.

C. Generalized Linear Optimal Transport

Although LOTσ in (6) is also well defined for point
reference measures, the numerical implementation requires
the computation of an optimal 3-plan, which completely
counteracts the intention behind LOT. Instead we remain in
the setting of transport maps by using barycentric projection
maps, which are based on the disintegration of transport plans
[2, Thm 5.3.1]. More precisely, given π ∈ P(Rd × Rd) with
P 1

#π = σ, there exists a σ-almost everywhere uniquely defined
family of measures (πs)s∈Rd ⊂ P(Rd) such that∫

R2d

f(s, x) dπ(s, x) =

∫
Rd

∫
Rd
f(s, x) dπs(x) dσ(s).

for all measurable functions f : R2d → [0,∞). The barycen-
tric projection map Tπ : Rd → Rd of π ∈ P(Rd × Rd) with
first marginal σ is defined for σ-almost every s ∈ Rd by

Tπ(s) :=

∫
Rd
xdπs(x) = argmin

x′∈Rd

∫
Rd
‖x− x′‖2 dπs(x) (7)

provided that πs has finite second moments σ-a.e., see [2, p.
126].

Example II.3. Let δx ∈ P(Rd) and δ(s,x) ∈ P(Rd × Rd)
denote the Dirac measure at x ∈ Rd and (s, x) ∈ Rd × Rd
respectively. For the discrete probability measures

σ =

n∑
i=1

σiδsi ∈ P(Rd) and µ =

m∑
j=1

µjδxj ∈ P(Rd)

and the transport plan

π =

n∑
i=1

m∑
j=1

πi,jδ(si,xj) ∈ Π(σ, µ)

with
∑m
j=1 πi,j = σi and

∑n
i=1 πi,j = µj , the barycentric

projection reads as

Tπ(si) =
1

σi

m∑
j=1

πi,jxj , i = 1, . . . , n.

Such maps are also used in [1].

By the following proposition, the barycentric projection map
(7) of an optimal transport plan πµσ is always an optimal
transport map T µ̃σ between σ and µ̃ = (Tπµσ )#σ.

Proposition II.4. For each πµσ ∈ Πo(σ, µ), the barycentric
projection map Tπµσ : Rd → Rd in (7) defines an optimal
transport map from σ to the measure µ̃ := (Tπµσ )#σ, i.e.,

Tπµσ = T µ̃σ .

Although the statement may be implicitly derived from [2,
§ 12.4], we give a direct proof in the appendix. On the basis
of the barycentric projection, we propose to extend the LOT
formulation in (4) by considering generalized LOT (gLOT)

gLOTσ(µ, ν) := inf
πµσ∈Πo(σ,µ)
πνσ∈Πo(σ,µ)

‖Tπµσ − Tπνσ‖L2
σ
. (8)

If πµσ = (id, Tµσ )#σ, then Tπµσ = Tµσ , so that gLOT coincides
with LOT in particular for absolutely continuous bases. In
the numerical implementation of gLOT, the minimization over
Πo(σ, µ) and Πo(σ, ν) in (8) can be omitted, i.e. we use fixed
transport plans πµσ and πνσ instead.

Remark II.5. gLOT has actually a geometric interpretation.
The barycentric projection π → Tπ defines a map from the
geometric tangent space to the reduced tangent space by

πµσ ∈ Tang
σ P2(Rd) 7→ (Tπµσ − id) ∈ Tanr

σ P2(Rd),

see Proposition II.4. From this point of view, gLOT takes
two geodesics corresponding to the optimal plans πµσ and πνσ
from the geometric tangent space, maps them to the reduced
tangent space, and computes the distance there. In this way,
we overcome the issue that the inverse exponential map may
not be defined for the whole P2(Rd), which prevents the
application of (4) in the discrete setting, and the issue of the
costly computation of (6).
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III. LINEAR GROMOV–WASSERSTEIN DISTANCE

In certain applications like shape matching, the Wasserstein
distance is unfavourable since it varies under isometric trans-
formations such as translations and rotations of the considered
measures. For this reason, Mémoli [19] introduced an optimal-
transport-like distance, where the aim was to match measures
according to pairwise distance perturbations. To this end, we
need the definition of a metric measure space (mm-space),
which is a triple X = (X, dX , µ), where

i) (X, dX) is a compact metric space,
ii) µ is a Borel probability measure on X with full support.

A. Gromov–Wasserstein Distance

For two mm-spaces X = (X, dX , µ) and Y = (Y, dY , ν),
the Gromov–Wasserstein (GW) distance is defined by

GW(X,Y) := inf
π∈Π(µ,ν)

(∫
(X×Y )2
|dX(x, x′)− dY (y, y′)|2

× dπ(x, y) dπ(x′, y′)

) 1
2
. (9)

Here π ∈ Π(µ, ν) means that π ∈ P(X ×Y ) has marginals µ
and ν. Further, we denote by Πo(X,Y) the set of optimal GW
plans in (9). In the literature, the above quantity is also called
2-Gromov–Wasserstein distance, and analogous definitions for
p ∈ [1,∞) as well as further generalizations are possible. For
an overview, we refer also to [28]. Due to the Weierstraß
theorem, a minimizer in (9) always exists [19, Cor 10.1].
Two mm-spaces X = (X, dX , µ) and Y = (Y, dY , ν) are
called isomorphic if and only if there exists a (bijective)
isometry ψ : X → Y such that ψ#µ = ν. We denote the
corresponding equivalence classes by J·K. The GW distance
defines a metric on these equivalence classes [19, Thm 5.1].
The resulting (incomplete) metric space is called the Gromov–
Wasserstein space. In particular, the GW distance is invariant
under translation and rotation of the mm-space.

Up to now, there does not exist a general GW analogue
to Brenier’s Theorem, which would ensure the existence of
optimal plans that are realized by transport maps under certain
regularity assumptions. A comprehensive overview on this
specific subject is given in [21, Rem 3.3]. In [20], Sturm has
shown that in the Euclidean setting optimal GW plans between
rotationally invariant probability spaces are realized by optimal
transport maps.

Due to its invariance properties and independence of the am-
bient spaces, the GW metric provides a valuable tool for data
science, shape analysis, and object classification. However,
its exact computation is NP-hard. Even its approximation is
computationally challenging and requires, if a gradient descent
algorithm is used, O(n3 log(n)) arithmetic operations, where
n is the cardinality of the underlying mm-spaces [29]. For
improvements in the setting of sparse graphs, see [30]. Hence
its use for comparing a larger number of mm-spaces is limited,
which motivates the following considerations.

B. Linear Gromov–Wasserstein Distance

We consider the (equivalence classes of) mm-spaces S =
JS, dS , σK, X = JX, dX , µK, and Y = JY, dY , νK. In contrast

to the above definition from Mémoli [19], we allow that the
measures σ, µ, and ν may not have full support. Similarly
to the Wasserstein setting, the Gromov–Wasserstein space is
geodesic. The construction of the tangent space is, however,
more technical. We follow the lines of Sturm in [20]. Each
geodesic from S to X has the form

t 7→ πS→X
t := JS×X, (1− t)dS + tdX , πK, t ∈ [0, 1], (10)

where π ∈ Πo(S,X), and where dS acts on the S components
and dX on the X components of (S × X)2, respectively.
Conversely, every optimal plan defines a geodesic. Note that
πS→X

0 and πS→X
1 are isomorphic to S and X by P 1(s, x) := s

and P 2(s, x) := x, respectively.
In order to introduce tangent spaces and to derive their ex-

plicit representations, the GW space is embedded into the more
regular space of gauged measure spaces. A gauged measure
space (gm-space) is as before a triple S := (S, kS , σ), where
the distance is replaced by a so-called gauge function kS in
L2

sym(S × S, σ⊗ σ), which consists of all symmetric, square-
integrable functions with respect to σ ⊗ σ. Here, S can be a
Polish space. Note that gm-spaces are more general than mm-
spaces as gauge functions include, for instance, pseudometrics
(which are not definite) and semimetrics (which do not admit
the triangle inequality) on compact spaces. Clearly, every mm-
space is a gm-space. The extension of the GW distance to
the gm-spaces X = (X, kX , µ) and Y = (Y, kY , ν) is given
by

GW(X,Y) = inf
π∈Π(µ,ν)

( ∫
(X×Y )2

|kX(x, x′)− kY (y, y′)|2

× dπ(x, y) dπ(x′, y′)

) 1
2

. (11)

A minimizing coupling always exists [20, Thm 5.8]. The set of
all plans minimizing the integral in (11) with respect to X and
Y is henceforth denoted by Πo(X,Y). Two gauged measure
spaces X and Y are called homomorphic if GW(X,Y) =
0. The space G of homomorphic equivalent classes—again
denoted by J·K—equipped with the GW distance (11) is
complete and geodesic. To simplify notation, we denote such
equivalence classes again by X. The geodesics from S to X
have the form

t 7→ πS→X
t := JS×X, (1−t)kS+tkX , πK, t ∈ [0, 1], (12)

where π ∈ Πo(S,X). Conversely, each π ∈ Πo(S,X) defines
a geodesic.

Formally, the tangent space TanS G with base S ∈ G is
defined as

TanS G :=
( ⋃

JS,kS ,σK=S

L2
sym(S × S, σ ⊗ σ)

)/
∼,

where the union is taken over all gm-spaces (S, kS , σ) in the
equivalence class S and two functions g ∈ L2

sym(S×S, σ⊗σ)
and g′ ∈ L2

sym(S′×S′, σ′⊗σ′) defined on the representatives
(S, kS , σ) and (S′, k′S , σ

′) of S are equivalent, if there exists
π ∈ Πo ((S, kS , σ), (S′, kS′ , σ

′)) such that

g(s1, s2) = g′(s′1, s
′
2)
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almost everywhere with respect to π(s1, s
′
1)⊗π(s2, s

′
2). Note

that each tangent g ∈ TanS G is implicitly associated with its
representative (S, kS , σ). A (cone) metric on TanS G is given
by

GWS(g, h)

:= inf
{
‖g − h‖L2((S×S′)2,π⊗π) : π ∈ Πo(Tg,Th)

}
, (13)

where Tg and Th denote the representatives associated with
g and h. Given g ∈ TanS G defined on the representative
(S, kS , σ) of the equivalence class S, the exponential map
ES : TanS G→ G is defined by

ES(g) = JS, kS + g, σK.

As a consequence, every geodesic in (12) may be written as

πS→X
t = ES(th) with h := kX − kS ,

where h is defined on the representative (S ×X, kS , π) with
π ∈ Πo(S,X). Note that two geodesics which coincide for all
t ∈ [0, ε] for some ε > 0 correspond to the same tangent; so the
tangent space embrace all geodesics starting in S. Associating
any geodesic πS→X

t with its optimal plan πX
S ∈ Πo(S,X), we

define FS : G→ TanS G by

FS(πX
S) = kX − kS (acting on (S ×X, kS , πX

S)).

For the geodesics (10) between mm-spaces, we especially have

FS(πX
S ) = dX − dS (acting on (S ×X, dS , πX

S )).

Against this background, we define the distance between two
geodesics πX

S and πY
S as

GWS(πX
S , π

Y
S ) := GWS(FS(πX

S ), FS(πY
S )). (14)

Then we have the following relation whose proof is given in
the appendix.

Proposition III.1. Consider the mm-spaces S = JS, dS , σK,
X = JX, dX , µK, Y = JY, dY , νK. The distance (14) between
the geodesics related to πX

S ∈ Πo(S,X) and πY
S ∈ Πo(S,Y) is

given by

GW2
S(πX

S , π
Y
S ) = inf

π∈ΓS(πX
S ,π

Y
S )

∫
(S×X×Y )2
|dX(x, x′)− dY (y, y′)|2

× dπ(s, x, y) dπ(s′, x′, y′), (15)

where ΓS(πX
S , π

Y
S ) consists of all 3-plans π ∈ P(S ×X × Y )

with P 12
# π = πX

S and P 13
# π = πY

S .

The minimization over the 3-plans in (15) is analogous to
the minimzation over the 3-plans in the definition of Wσ in
(5). In the spirit of LOT, we now propose to approximate the
GW distance GW(X,Y) by lifting X and Y to TanS G via
geodesics and using the metric on the tangent space. More
precisely, we define the linear Gromov–Wasserstein distance
by

LGWS(X,Y) := inf
πX
S∈Πo(S,X)

πY
S∈Πo(S,Y)

GWS(πX
S , π

Y
S ). (16)

In comparison with (6), we can consider LGW as an analogue
to LOT in the GW space. Further, we have the following
lower and upper bound, whose proof is given in the appendix.

Lemma III.2. Let S,X,Y be mm-spaces. Then LGW is
bounded above and below by

GW(X,Y) ≤ LGWS(X,Y) ≤ GW(S,X)+GW(S,Y). (17)

Remark III.3. The quality of the approximation of GW by
LGW crucially depends on the chosen reference space S.
In the sense of Lemma III.2, a suitable reference S should
ensure a small right-hand side in (17). For the approxi-
mation of the pairwise GW distances of several mm-spaces
X1, . . . ,XN , an appropriate reference S should thus be equally
close to all Xk. Since the minimization of

∑N
k=1 GW(S,Xk)

over all mm-spaces S is intractable, a possible alterna-
tive would be a Gromov–Wasserstein barycenter minimizing∑N
k=1 GW2(S,Xk), which is discussed in more detail during

the numerical experiments in Section IV.

C. Generalized Linear Gromov–Wasserstein Distance

Assume for the moment that πX
S ∈ Πo(S,X) and πY

S ∈
Πo(S,Y) are unique and induced by optimal maps TX

S and
TY
S . In this situation, ΓS(πX

S , π
Y
S ) becomes the singleton

(id, TX
S , T

Y
S )#σ, and we obtain

GWS(X,Y)

=
∥∥dX(TX

S (·1), TX
S (·2))− dY (TY

S (·1), TY
S (·2))

∥∥
L2
σ⊗σ
, (18)

where ·1 and ·2 are the first and second argument with respect
to S × S.

Similarly to LOT, LGW does not alleviate the computational
costs of calculating pairwise GW distances. For this reason,
we recommend to use the barycentric projection mapping
to transform πX

S and πY
S into maps TπX

S
and TπY

S
. Since

the metric spaces may be more general than the measure
spaces considered in Section II, we introduce the generalized
barycentric projection

TπX
S
(s) := argmin

x′∈X

∫
X

d2
X(x′, x) dπX

S,s(x), (19)

where πX
S,s is the disintegration of the chosen πX

S . Based on the
Weierstraß theorem, the minimum is attained. In the special
case that X ⊂ Rd is convex and dX(x1, x2) = ‖x1−x2‖, the
generalized barycentric projection coincides with (7).

Analogously to gLOT in (8) and based on GWS in (18),
we define generalized LGW (gLGW) by

gLGWS(X,Y) (20)
:= inf

πX
S∈Πo(S,X)

πY
S∈Πo(S,Y)

∥∥dX(TπX
S
(·1), TπX

S
(·2))

− dY (TπY
S
(·1), TπY

S
(·2))

∥∥
L2
σ⊗σ

.

For numerical computations, we again propose to use fixed op-
timal plans instead of minimizing over Πo(S,X) and Πo(S,Y).

Remark III.4. As mentioned in the introduction, under the
conditions of the Brenier theorem, the OT and LOT distances
coincide in the one-dimensional setting. The linear GW dis-
tance differs in general from the GW distance also in one
dimension. We verified this by computing the corresponding
GW and LGW distances for

S = {0, 1, 2, 3, 6}, X = {0, 1, 2, 5, 7}, Y = {0, 2, 3, 6, 7}
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Fig. 1. Elliptical disks used for the first numerical experiment. The opposing
images with respect to the diagonal form isometrical pairs resulting from
rotations and shifts.

the absolute value distances and the corresponding discrete
measures with weights 1

5 . For this specific instance, we obtain
GW(X,Y) ≈ 0.69 and gLGW(X,Y) ≈ 1.13.

IV. NUMERICAL EXAMPLES

All numerical experiments1 in this section have been per-
formed on an off-the-shelf MacBook Pro (Apple M1 chip,
8GB RAM) and have been implemented in Python 3, where
we mainly rely on the packages Python Optimal Transport
(POT) [31], scikit-learn [32], and NetworkX [33]. POT con-
tains a Gromov–Wasserstein module allowing the numerical
computation of the GW distance (9), a corresponding optimal
plan, and GW barycenters for discrete mm-spaces, where the
measure space consists of finitely many points, and where the
measure thus becomes a point measure. A GW barycenter
S between the discrete mm-spaces Xk for k = 1, . . . ,K is
defined via

S∈ argmin
S̃

K∑
k=1

GW2(S̃,Xk). (21)

The minimization here goes over the set of all discrete mm-
spaces with a certain number of points. The corresponding
POT method additionally presets the weights in S and only
minimizes over the metric dS. To visualize the computed
GW barycenters and the computed pairwise gLGW distances,
we use the scikit-learn implementation of multi-dimensional
scaling (MDS) from [32], which allows to embed a series of
points with given distances into R2 such that the distances are
approximately preserved.

A. Gromov–Wasserstein of elliptical disks

For our first example, we apply gLGW to a toy problem,
where we want to compute the GW distance between a series
of elliptical disks, see Figure 1. Each image here consists
of 50 × 50 equispaced pixels in [0, 50]2. For the numerical
simulations, we interpret these images as discrete mm-spaces
X1, . . . ,X100. For this we set Xk := ([0, 50]2, dE, µk), where
dE is the Euclidean distance and µk corresponds the uniform
distribution on the position of the white pixels. Notice that,
except for the diagonal, all elliptical disks in Figure 1 occur

1The source code is publicly available at https://github.com/Gorgotha/LGW.

in isometrical pairs (up to discretization errors). Since the GW
distance is invariant under isometries, this should be reflected
in the computed GW and gLGW distances.

For comparison, we first compute all pairwise GW dis-
tances, where we use the optimal Wasserstein coupling as
starting value for the corresponding POT algorithm in the
GW distance computation. We visualize them by embedding
the images as points in the plane using MDS. The results is
shown in Figure 2 (top left). Here the GW distance behaves
as expected meaning that the isometrical pairs are found
and located close to each other—the small visible distances
between them result from the chosen discretizations. Up to
this expected doubling, we essentially obtain a triangle, whose
corners correspond to the smallest as well as the largest
(isotopic) elliptical disk and the most anisotropic elliptical
disk. The 4950 pairwise GW distances of this toy example
have been computed in 159.38 minutes.

As mentioned in Remark III.3, the quality of the approxima-
tion of GW by LGW and thus gLGW strongly depends on the
chosen reference space S. The choice of S is especially crucial
since the minimization over Πo(S,X) and Πo(S,Y) in (20) is
numerical intractable, and fixed optimal plans πX

S and πY
S are

used instead. In the sense of Lemma III.2, natural choices for
S are circular or elliptical disks, but we also study uniform
distributions on squares, triangles, lines as well as composed
and non-uniform references. The employed references are
shown in Table I.

To visually compare the approximation quality of gLGWSi
for the considered references Si, the computed distances are
again embedded using MDS, see Figure 2. For more quanti-
tative comparisons, we use the Mean Relative Error (MRE)
and the Pearson Correlation Coefficient (PCC), which has
been suggested in [34] to compare distances. The computed
values are recorded in Table I. The impact of the different
references is clearly visible raising again the question about a
good reference.

The poorest performances correspond to the circular disk
S1 and the square S2, which have a more regular shape than
the others. Notice that, for any measure-preserving isometry
I : Si → Si and any optimal plan πXk

Si ∈ Πo(Si,Xk), we have

(I, id)#π
Xk
Si ∈ Πo(Si,Xk);

so the larger the number of measure-preserving isometries of
Si, the larger the cardinality of Πo(Si,Xk). Since the square S2

is invariant under 3 rotations and 4 reflections and the circular
disk S1 nearly under arbitrary rotations and reflections, the
minimization over all optimal plans in (20) cannot be neglected
any more. This issue can also be observed numerically by
examining the computed plans between the references S1, S2

and the given mm-spaces Xk in Figure 3. Considering the first
two columns, we notice that the mass that is transported to the
semi-minor axes of the first target is transported to the semi-
major axes of the second target. Heuristically. gLGWSi is the
evaluation of the GW objective in (9) with respect to the plan

π :=
(
T
π
Xk
Si
, T
π
X`
Si

)
#
σk,

where T• is the generalized barycentric projection in (19).
(Notice that π may not satisfy the marginal constraints.) In
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TABLE I
QUANTITATIVE COMPARISON BETWEEN THE COMPUTED GLGW DISTANCES. THE FIRST ROW SHOWS THE EMPLOYED REFERENCE SPACES S1, . . . , S9 ,

WHICH INCLUDE UNIFORM DISTRIBUTIONS ON DIFFERENT SHAPES AS WELL AS NON-UNIFORM DISTRIBUTIONS ON THE SQUARE S3 AND THE TWO
CIRCLES S8 . THE DISTRIBUTION IS INDICATED BY THE COLOR OF THE PIXELS. FOR EACH REFERENCE, THE COMPUTATION TIME TO COMPUTE ALL
PAIRWISE DISTANCES, THE MEAN RELATIVE ERROR (MRE), AND THE PEARSON CORRELATION COEFFICIENT (PCC) AS WELL AS THE NUMBER OF

NON-ZERO POINTS IN THE REFERENCE ARE RECORDED.

reference GW S1 S2 S3 S4 S5 S6 S7 S8 S9

time 159.38 min 2.78 min 15.92 min 11.77 min 0.13 min 1.54 min 5.45 min 7.68 min 8.28 min 2.06 min
MRE — 0.336 0.325 0.312 0.158 0.038 0.030 0.017 0.016 0.019
PCC — 0.891 0.876 0.887 0.986 0.999 0.999 0.999 0.999 0.999
points — 441 676 625 52 289 545 882 882 317

Fig. 2. MDS embdding of the computed pairwise GW distances (top left) and the gLGW distances based on the references in Table I.

this specific instance, the resulting plan π essentially couples
the semi-minor axis of the first target with the semi-major
axis of the second target, which is clearly not optimal in the
GW sense. The consequence of this matching issue is that
gLGWS1 and gLGWS2 cannot recognize the isometric pairs,
which is well reflected by the MDS embedding in Figure 2.
Although the results of S3 are slightly better, the non-uniform
distribution on the square is not able to resolve this issue
numerically. For the remaining references, this problem does
not occur since there exist no isomorphic self-couplings or the
self-couplings corresponds to the self-couplings of the target
Xk—rotation by 180° and reflections along the semi-major
and semi-minor axes.

The computation of the 4950 pairwise gLGW distances
only requires 100 GW transport plans; therefore we obtain
significant speed-ups in term of computation time. Considering
the qualitative and quantitative results in Figure 2 and Table I,
we notice that the specific computation time and the MRE
strongly depend on the number support points in the reference
space. The effect on the computation time is clear since
optimal transport plans between spaces with less points can
be calculated faster. The effect on the MRE is less obvious

Fig. 3. Examples of optimal GW plans between the reference mm-spaces (top)
and two elliptical disks (middle, bottom) from Figure 1. The color indicates
the mass transport from Si to Xk that is used for the barycentric projection.

and seems to depend on the approximation of Xk by(
T
π
Xk
Si

)
#
σk.

Heuristically, the approximation becomes better and the MRE
smaller, if the number of non-zero points in the reference is
increased. Although the MRE with respect to the measure on
the line S4 is large, gLGWS4 is well correlated to GW.

On the basis of the numerical experiments, a good reference
measure is characterized by
• the number of isomorphic GW self-couplings (the less,

the better) and
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Fig. 4. One example of each class (bone, goblet, star, horseshoe) of the
employed 2D shape dataset.

• the number of non-zero points (comparable to the number
in the target spaces).

Finally, the elliptical disk reference S9, which is close in the
GW distance to all given Xk, and which should be a good
reference in the sense of Remark III.3, behaves as expected
and give excellent results.

B. Gromov–Wasserstein in 2D shape analysis

Next, we apply the GW distance and its linear form to
distinguish different 2D shapes from each other. In this nu-
merical experiment, we use the publicly available database
[35] embracing over 1 200 shapes in 70 shape classes. For our
example, we select 20 shapes of the classes bone, goblet, star,
and horseshoe, respectively, so that we obtain 80 shapes in
total. The shapes are stored as black and white images of dif-
ferent sizes, where the white pixels corresponds to the objects.
To speed-up the computations, each images is approximated
by a point measure µk consisting of 50 points and uniform
weights. For this preprocessing step, we use the dithering
technique in [36], see also [37]. All measures are randomly
rotated yielding 80 mm-spaces Xk = ([−1, 1]2, ‖ · ‖, µk). A
preprocessed example of each class is shown in Figure 4.

The performance of the generalized linear GW distance
again depends on the selection of an appropriate reference
space S. As discussed in Remark III.3, a barycenter of
X1, . . . ,X80 would be a natural choice. However, minimizing
(21) with respect to 80 inputs is numerically challenging.
Considering the current state-of-the-art algorithm in [29],
which is based on a blockwise coordinate descent, we have to
compute an optimal GW plan for every input Xk per iteration;
so the barycenter computation completely counteracts the
computational speed-up by gLGW. To overcome this issue,
we may either approximate the barycenter by performing only
a few iterations or exploit that the mm-spaces within the
different classes are already close to each other. Following the
second approach, we choose a representative for each of the
four classes to ensure that all main features are covered and
compute a barycenter with 35 points and uniform weights.
The employed barycenter is shown in Figure 5. Using the
POT package, the computation takes 1.60 seconds. Since the
reference S has less points than the spaces Xk, the barycentric
projection (7) is indeed a mapping to weighted means.

On the basis of the chosen reference S, we now compute
the pairwise GW distances (11.34 seconds) and the pairwise
gLGW distances (0.72 seconds). Even with barycenter com-
putation, gLGW gives a significant speed-up against GW.
The results are shown in Figure 6. Notice that the shapes
in the horseshoe class significantly differ between each other
explaining the greater distances than in other classes. In this

Fig. 5. Embedding of the computed barycenter S into R2 using MDS.
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Fig. 6. Pairwise GW distances (left) and generalized linear GW distances for
a barycenter reference S. All images share the same color coding.

example, the computed GW and gLGW distances are visually
comparable. A more quantitative comparison is given below.

Considering the results, it seems reasonable to use a nearest
neighbor classification to distinguish the different classes with
respect to some representatives. Numerically, this concept may
be verified by computing a confusion matrix consisting of the
probabilities to classify an instance of a class as another class.
For this, we rely on [19, § 8.2], where the confusion matrix
is estimated by randomly choosing a representative for each
class and then classifying all other shapes Xk, k = 1, . . . , 80,
with respect to the nearest representative. This classification
task is then repeated 10 000 times. The confusion matrix of
GW and gLGW are shown in Figure 7. Interestingly, gLGW
performs slightly better than GW.

The nearest neighbor classification already shows that the
distinctiveness of gLGW is comparable to GW. To provide a
more quantitative study, we combine gLGW with a support
vector machine (SVM), see for instance [38] and references
therein. Following the approach in [39], we employ the kernels
exp(−αGW) and exp(−α gLGWS) with α > 0 although
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Fig. 7. Confusion matrix for the GW distances (left) and the generalized
linear GW distances with barycenter reference (right).
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TABLE II
QUANTITATIVE COMPARISONS OF THE 10-FOLD CROSS-VALIDATION. THE
RECORDED VALUES CORRESPOND TO THE MEAN OVER ALL 10 TRAINING
AND CLASSIFICATION TASKS. THE SVM HAS BEEN TRAINED BASED ON
GLGW, WHERE BARYCENTERS OF DIFFERENT SIZES HAVE BEEN USED.

points in barycenter 15 25 35 45 55

mean accuracy 0.9750 0.9625 0.9875 0.975 0.9875
mean MRE 0.2449 0.3040 0.1623 0.1826 0.1709
mean PCC 0.8042 0.7875 0.8936 0.8836 0.8904

these might not be positive definite. We obtain the best
performance for α := 10. Moreover, we apply a 10-fold cross-
validation. For this, we divide the given dataset X1, . . . ,X80

with respect to the classes into 10 disjoint subsets. In each
iteration of the cross-validation, we train the SVM based on
9/10 of the data and use the remaining 1/10 data as test set.
Further, the employed barycenter S is computed anew from
random representatives of the four classes with respect to the
current training set. After each training, we compute the em-
pirical success rate (accuracy) of the classification according
to the current test set as well as the MRE and PCC between
GW and gLGW. The means over all 10 cross-validation steps
for different sizes of the barycenter are recorded in Table II.
Note that the SVM with respect to the GW distance achieves a
perfect accuracy score of one. Using gLGW, we encounter up
to three misclassifications over all 10 cross-validation steps in
total. Considering the mean classification accuracy, we may re-
duce the size of the barycenter to 15 points, which additionally
speeds up the barycenter and gLGW computations. The MRE
and PCC are improved for higher numbers. Both reach their
optimum at around 35 points, which corresponds to the former
given qualitative results. The appropriate number of points in
the barycenter thus mainly depends on the application. If we
are interested in classification, we may choose less points; if
we are interested in pairwise GW approximations, we require
more points.

C. Gromov–Wasserstein in 3D shape analysis

The GW distance traces back to the comparison and match-
ing of 3D shapes, which we take up in our final numerical
example. Analytically, a 3D shape is a two-dimensional sub-
manifold of R3 that may have a boundary. 3D shapes can
be interpreted as mm-spaces X = (X, dX , µ), where X is a
surface of the shape, where dX corresponds to the length of the
geodesics between two points, and where µ is some measure.

In practice, 3D shapes are usually triangulated and thus
realized by a net of triangles. To handle them numerically, we
approximate them by a discrete mm-space X = (X, dX , µ).
The vertices of the net become the discrete points in X . To
approximate the geodesic distance on X , a weighted graph
G = (X,E) consisting of all vertices X and all edges
E of the triangulation may be used, where the edges are
weighted by the Euclidean distance between the corresponding
vertices. The geodesic distance between two vertices may now
be approximated by the length of the shortest path between
these vertices. This distance can be computed by the Dijkstra
algorithm from the NetworkX package [33]. The probability

Fig. 8. One example of each class (camel, cat, elephant, face, head, horse,
lion) of the employed 3D shape dataset.

measure µ may be used to incorporate additional information
of the shapes.

In this example, we consider 3D shapes of the publicly
available database [40], which has already been used by
Mémoli [19, § 8.2] in the context of GW distances. We use
a similar setting to make the results comparable. As dataset
for the experiment, we choose 3D shapes corresponding to
the animals camel, cat, elephant, horse, and lion as well as
to a human face and head. Each object is shown in 10 to
11 different poses totaling to 73 shapes. Figure 8 shows one
example pose of each object. Every object is provided by a
triangulation consisting of up to 43.000 vertices and up to
130.000 triangles.

Since the discrete mm-spaces of the full triangulations
consist of too many points for our purpose, the 3D shapes
are preprocessed by a two-step approximation similar to [19].

1) Starting from a given triangulation with vertices X , we
first reduce X to a set X̃ consisting of 4 000 vertices. The
first vertex is hereby chosen randomly and is sequentially
followed by the points with the largest Euclidean distance
to the already chosen points. This selection rule is also
known as the furthest point procedure.

2) The set X̃ is reduced further and an appropriate measure
µ is constructed. For this, we again apply the furthest
point procedure to reduce X̃ to a subset X̂ consisting
of 50 points, but this time with respect to the discrete
geodesic distance dX calculated using a weighted graph
as explained above. Then we endow X̂ with a discrete
probability measure, where the mass at x ∈ X̂ is
proportional to the amount of closest neighbors within
X̃ with respect to the original geodesic distance dX . In
other words, we compute the Voronoi diagram of X̃ to
the points X̂ with respect to dX and count the members
of each Voronoi cell. Repeating this procedure for every
given 3D shape, we end up with 73 discrete mm-spaces
Xk = (X̂k, dXk , µk), k = 1, . . . , 73.

Since the distance dX of the constructed mm-spaces Xk are
discrete geodesic distances, which are restricted to the points
in X̂k, the barycentric projection (19) has the form

T
π
Xk
S

(s) := argmin
x0∈X̂k

∑
x∈X̂k

πXk
S ({(s, x)}) d2

Xk
(x0, x),

where πXk
S is the chosen optimal GW transport plan.

The pairwise GW distances (14.29 seconds) and the gener-
alized linear GW distances (0.82 seconds) for the 3D shape
dataset with respect to two different reference measures are
shown in Figure 9. Similarly to the 2D shape example in
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Fig. 9. Pairwise GW distances (left), generalized linear GW distances for a barycenter reference S (middle), and generalized linear GW distances with
reference S = X10 (camel) (right). All images share the same color coding.
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Fig. 10. Confusion matrices for the GW distances (left), the generalized linear GW distance with barycenter reference (middle), and the generalized linear
GW distance with reference S = X10 (right).

Section IV-B, one of the considered references is a GW
barycenter. To speed-up the computations, we again choose
one representative of each class. To compute the barycenter
with 50 points corresponding to a uniform distribution, the
POT package needs around 4.67 seconds. Considering the
middle image of Figure 9, we notice that gLGW is again
comparable to GW, i.e. the different classes are clearly iden-
tifiable. Analogously to the previous numerical examples, and
as indicated by Remark III.3, the barycenter gives excellent
results. Since the computation of the barycenter is, however,
numerically costly, we secondly use the given reduced 3D
shape S := X10 (camel) as reference. Here, the quality of the
GW approximation illustrated in the right-hand side image of
Figure 9 is more diverse. On the one side, the approximation
of the GW distances inside the camel class is nearly perfect; on
the other side, the approximation outside the camel class loses
in quality. Especially, the head and face classes are affected.

To evaluate the classification quality of the GW and gLGW
distances, we compute the confusion matrix C for both dis-
tances as in Section IV-B. The confusion matrix C consists
of the probabilities to classify a 3D shape within one class
(camel, cat, elephant, face, head, horse, lion) to another class.
Following again [19, § 8.2], for this purpose, we first randomly
chose a representative for each class and then classify all
3D shapes Xk, k = 1, . . . , 73, with respect to the nearest
representative. This classification task is repeated 10 000 times.
The result is shown in Figure 10. Considering the first two
confusion matrices, we notice that the results for GW (left)
and gLGW with barycenter reference (middle) nearly coincide.
The classification based on gLGW with reference X10 (right)

TABLE III
MEAN MRE ACHIEVED DURING A 10-FOLD CROSS-VALIDATION. FOR

EACH DATA SPLITTING A NEW BARYCENTER IS COMPUTED. THE
EXPERIMENT IS REPEATED FOR DIFFERENT NUMBERS OF SUPPORT POINTS

IN THE REDUCED GRAPH AND IN THE BARYCENTER. THE LAST ROW
RECORDS THE MEAN MRE FOR THE CAMEL REFERENCE X10 .

points in graph

points in barycenter 25 50 75 100

25 0.2339 0.1659 0.1687 0.1745
50 0.1975 0.1598 0.1486 0.1425
75 0.2408 0.1884 0.1798 0.1586

100 0.2417 0.2083 0.1799 0.1641

camel X10 0.2204 0.2124 0.2179 0.2618

performs slightly worse. Camel X10 allow the classification of
all four-legged animals. The serious misclassifications occur
for the head and, especially, the face class, which is not
astonishing since the geometry of X10 is quite differently from
these two classes.

Similarly to the previous experiment, we train a SVM with
respect to exp(−αGW) and exp(−α gLGWS) with α := 10.
The parameter choice α = 10 has again performed best.
During the applied 10-fold cross-validation, a new barycenter
is computed for every data splitting from one random repre-
sentative of each class in the training set. Moreover, we repeat
the cross-validation for different sizes of the reduced graphs,
i.e. numbers of support points in X̂k, and different sizes of
the barycenter. The resulting MRE and PCC are recorded in
Table III and IV. The best performance is obtained for the
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TABLE IV
MEAN PCC ACHIEVED DURING A 10-FOLD CROSS-VALIDATION. FOR

EACH DATA SPLITTING A NEW BARYCENTER IS COMPUTED. THE
EXPERIMENT IS REPEATED FOR DIFFERENT NUMBERS OF SUPPORT POINTS

IN THE REDUCED GRAPH AND IN THE BARYCENTER. THE LAST ROW
RECORDS THE MEAN PCC FOR THE CAMEL REFERENCE X10 .

points in graph

points in barycenter 25 50 75 100

25 0.7577 0.8225 0.8452 0.8282
50 0.8686 0.9251 0.9268 0.9318
75 0.8537 0.9055 0.9156 0.9302
100 0.8769 0.9080 0.9212 0.9370

camel X10 0.7300 0.8428 0.8511 0.8496

TABLE V
MEAN ACCURACY ACHIEVED DURING A 10-FOLD CROSS-VALIDATION.
FOR EACH DATA SPLITTING A NEW BARYCENTER IS COMPUTED. THE

EXPERIMENT IS REPEATED FOR DIFFERENT NUMBERS OF SUPPORT POINTS
IN THE REDUCED GRAPH AND IN THE BARYCENTER. THE LAST ROW
RECORDS THE MEAN ACCURACY FOR THE CAMEL REFERENCE X10 .

points in graph

points in barycenter 25 50 75 100

25 0.9482 1.0000 0.9875 0.9714
50 0.9875 0.9857 1.0000 0.9857
75 0.9607 1.0000 1.0000 0.9857
100 1.0000 1.0000 0.9857 0.9750

camel X10 0.8535 0.9250 0.8964 0.9107

constellations of 50 points in the barycenter and 50 or more
points in the reduced graph. Comparing both tables, we notice
that the gLGW procedure performs best if the number of
support points in the barycenter is less or equal the number of
support points in the target spaces. As comparison, the last
row in each table records the performance of gLGW with
S = X10, where the number of points in the reference and the
reduced graph coincide, and where the datum X10 has been
removed from the training and testing subsets. Moreover, the
SVM based on GW archives perfect accuracy scores of one.
The accuracy with respect to gLGW is recorded in Table V.
Although there are some misclassifications with respect to
the head and face classes, the accuracy score for the camel
reference S = X10 is high. The numerical experiments show
that the classification by the SVM with gLGW is powerful
even for non-optimal references.

V. CONCLUSIONS

We proposed a linear version of the GW distance that was
inspired by a generalized version of the linear Wasserstein
distance. As the latter one, the approach appears to be efficient
in applications, where pairwise distances of a larger amount
of measures are of interest. We gave three examples indicating
that our linear version of the GW distance gives reasonable
approximations and circumvents the heavy computation of all
pairwise distances. In contrast to Wasserstein distances, the
mathematics behind GW distances is not well-examined so
far and there are plenty of open problems which could be
tackled in the future. For example, in generalized version of
LOT, it would also be possible to use the concept of weak

optimal transport [41]. This approach was neither considered
for gLOT nor for gLGW so far. Further, multimarginals may
be addressed, see [42]. Finally, we are interested in further
applications in the context of shape and graph analysis. More
precisely, we would like to incorporate our generalized linear
Gromov–Wasserstein distance into existing shape and graph
classification approaches exploiting feature spaces, annota-
tions, and deep learning.
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APPENDIX A
PROOFS

A. Proof of Proposition II.4

We have that µ̃ ∈ P2(Rd) since by Jensen’s inequality∫
Rd
‖x‖2 dµ̃(x)

=

∫
Rd
‖Tπµσ (s)‖2 dσ(s) =

∫
Rd

∥∥∥∥∫
Rd
x dπs(x)

∥∥∥∥2

dσ(s)

≤
∫
Rd

∫
Rd
‖x‖2 dπs(x) dσ(s) =

∫
Rd×Rd

‖x‖2 dπµσ(s, x)

=

∫
Rd
‖x‖2 dµ(x) <∞.

Let πµ̃σ be an optimal transport plan with respect to W (σ, µ̃).
By the dual formulation of the optimal transport problem, see
[27, Thm 4.2] and [25, Thm 5.10], we know that∫

Rd×Rd

1

2
‖s− x‖2 dπµ̃σ(s, x)

= sup
φ∈L1

σ(Rd)

{∫
Rd
φ(s) dσ(s) +

∫
Rd
φc(x) dµ̃(x)

}
,

where φc denotes the c-concave function given by

φc(x) = inf
y∈X
{ 1

2‖x− y‖
2 − φ(y)}.

To yield a contradiction, assume that Tπµσ is not an optimal
transport map. Then

π̃ := (id, Tπµσ )#σ

is not an optimal transport plan with respect to W (σ, µ̃) and∫
Rd

1

2
‖s− Tπµσ (s)‖2 dσ(s)

=

∫
Rd×Rd

1

2
‖s− x‖2 dπ̃(s, x)

> sup
φ∈L1

σ(Rd)

{∫
Rd
φ(s) dσ(s) +

∫
Rd
φc(x) dµ̃(x)

}
. (22)
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Now we obtain for the optimal transport plan πµσ of W (σ, µ)
that ∫

Rd×Rd
‖s− x‖2 dπµσ(s, x)

=

∫
Rd
‖s‖2 dσ(s)− 2

∫ d

R

∫ d

R
〈s, x〉dπs(x) dσ(s)

+

∫
Rd
‖x‖2 dµ(x)

=

∫
Rd
‖s‖2 dσ(s)− 2

∫ d

R
〈s, Tπµσ (s)〉dσ(s)

+

∫
Rd
‖x‖2 dµ(x)

=

∫
Rd
‖s− Tπµσ (s)‖2 dσ(s) +

∫
Rd
‖x‖2 dµ(x)

−
∫
Rd
‖x‖2 dµ̃(x)

and by (22) further∫
Rd×Rd

1

2
‖s− x‖2 dπµσ(s, x)

>

∫
Rd

1

2
‖x‖2 dµ(x)−

∫
Rd

1

2
‖x‖2 dµ̃(x)

+ sup
φ∈L1

σ(Rd)

{∫
Rd
φ(s) dσ(s) +

∫
Rd
φc(x) dµ̃(x)

}
= sup
φ∈L1

σ(Rd)

{∫
Rd

1

2
‖x‖2 dµ(x)−

∫
Rd

1

2
‖x‖2 dµ̃(x)

+

∫
Rd
φ(s) dσ(s) +

∫
Rd
φc(x) dµ̃(x)

}
= sup
φ∈L1

σ(Rd)

{∫
Rd

1

2
‖x‖2 dµ(x) +

∫
Rd
φ(s) dσ(s)

+

∫
Rd
φc(x)− 1

2
‖x‖2 dµ̃(x)

}
, (23)

where L1
σ(Rd) is the space of functions which absolute values

are integrable with respect to σ. Since φc is c-concave, we
know that h := φc − 1

2‖ · ‖
2 is concave, see [27, Lect 4.4].

Thus, Jensen’s inequality implies∫
Rd
φc(x)− 1

2
‖x‖2 dµ̃(x)

=

∫
Rd
φc(Tπµσ (s))− 1

2
‖Tπµσ (s)‖2 dσ(s)

=

∫
Rd
h
(
Tπµσ (s)

)
dσ(x)

=

∫
Rd
h

(∫
Rd
xdπs(x)

)
dσ(s)

≥
∫
Rd

∫
Rd
h(x) dπs(x) dσ(s)

=

∫
Rd

∫
Rd
φc(x)− 1

2
‖x‖2 dπs(x) dσ(s)

=

∫
Rd
φc(x) dµ(x)−

∫
Rd

1

2
‖x‖2 dµ(x). (24)

Inserting (24) into (23), we obtain∫
Rd×Rd

1

2
‖s− x‖2 dπµσ(s, x)

> sup
φ∈L1

σ(Rd)

{∫
Rd
φ(s) dσ(s) +

∫
Rd
φc(x) dµ(x)

}
,

which contradicts the optimality of πµσ . �

B. Proof of Proposition III.1

To compute the distance (14), recall that the geodesics
related to πX

S ∈ Πo(S,X) and πY
S ∈ Πo(S,Y) are mapped

to the tangents

g := FS(πX
S ) = dX − dS (acting on Tg := (S ×X, dS , πX

S )),

h := FS(πY
S ) = dY − dS (acting on Th := (S × Y, dS , πY

S )),

where S ∼ Tg ∼ Th. We next characterize the plans π ∈
Πo(Tg,Th) occurring in the definition of GWS in (13). Since
Tg and Th are equivalent, each plan π ∈ Πo(Tg,Th) satisfies

0 = GW(Tg,Th)

=

∫
(S×X×S×Y )2
|dS(s1, s2)− dS(s′1, s

′
2)|2

× dπ(s1, x, s2, y) dπ(s′1, x
′, s′2, y

′),

=

∫
(S×S)2
|dS(s1, s2)− dS(s′1, s

′
2)|2 dγ(s1, s2) dγ(s′1, s

′
2),

where γ := P 13
# π. Thus, γ is an optimal self-coupling of

S in the GW sense. As stated in [19, Lem 10.4], each self-
coupling has the form γ = (id, ψ)#σ for some measure-
preserving isometry ψ : S → S. This, however, implies
that the mapping P 124(s1, x, s2, y) = (s1, x, y) is π-almost
everywhere invertible by (P 124)−1(s, x, y) = (s, x, ψ(s), y).
More precisely, (P 124)−1 ◦ P 124 is the identity on supp(π).
Therefore, we have

π = (P 124)−1
# π̃ with π̃ = P 124

# π.

Considering the marginals of π̃, we conclude that every 4-
plan π ∈ Πo(Tg,Th) can be uniquely identified by the 3-plan
π̃ ∈ ΓS(πX

S , π
Y
S ), and vice versa. This identification finally

allows us to rewrite the metric (13) on the tangent space using
the substitution π = (P 124)−1

# π̃ to obtain

GWS(πX
S , π

Y
S )

= inf
π∈Πo(Tg,Th)

∫
(S×X×S×Y )2

∣∣dX(x, x′)− dS(s1, s
′
1)

− dY (y, y′) + dS(s2, s
′
2)
∣∣2

× dπ(s1, x, s2, y) dπ(s′1, x
′, s′2, y

′),

= inf
π̃∈ΓS(πX

S ,π
Y
S )

∫
(S×X×Y )2

∣∣dX(x, x′)− dY (y, y′)

+ dS(ψ(s), ψ(s′))− dS(s, s′)
∣∣2

× dπ̃(s, x, y) dπ̃(s′, x′, y′),

= inf
π̃∈ΓS(πX

S ,π
Y
S )

∫
(S×X×Y )2
|dX(x, x′)− dY (y, y′)|2

× dπ̃(s, x, y) dπ̃(s′, x′, y′),

which establishes the assertion. �



JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. X, XXX 13

C. Proof of Lemma III.2

For every πX
S ∈ Πo(S,X) and πY

S ∈ Πo(S,Y) in (16), a
three-plan π ∈ ΓS(πX

S , π
Y
S ) in (15) satisfies P 23

# π ∈ Π(µ, ν).
Hence GW(X,Y) ≤ LGWS(X,Y). For the upper bound, we
consider fixed πX

S ∈ Πo(S,X) and πY
S ∈ Πo(S,Y) in the

definition of LGWS in (16). Exploiting the definition of GWS
in (14) and the metric (13), we have

GWS(πX
S , π

Y
S ) = GWS(dX − dS , dY − dS)

≤ GWS(dX − dS , 0) + GWS(dY − dS , 0),

where 0 denotes the zero function on S × X . Using the
representatives TdX−dS := (S ×X, dX − dS , πX

S ) and T0 :=
(S ×X, 0, πX

S ), we further obtain

GWS(dX − dS , 0)

= inf
{
‖dX − dS‖L2((S×X)4,π⊗π) : π ∈ Πo(TdX−dS ,T0)

}
= inf
π∈Πo(TdS−dX ,T0)

∫
(S×X×S×X)2
|dX(x1, x

′
1)− dS(s1, s

′
1)|

× dπ(s1, x1, s2, x2) dπ(s′1, x
′
1, s
′
2, x
′
2)

=

∫
(S×X)2
|dX(s1, x1)− dS(s′1, x

′
1)|dπX

S (x1, s1) dπX
S (x′1, s

′
1)

= GW(S,X)

since P 12
# π = πX

S for all π ∈ Πo(TdX−dS ,T0). A similar
computation shows GWS(dY − dS , 0) = GW(S,Y). Thus
LGWS(X,Y) ≤ GW(S,X) + GW(S,Y) as desired. �
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