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ON A LINEARITY P R O B L E M FOR P R O P E R 
H O L O M O R P H I C M A P S B E T W E E N BALLS IN 

COMPLEX SPACES OF D I F F E R E N T DIMENSIONS 

XIAOJUN HUANG 

1. In troduct ion 

In an important development of several complex variables, Poincare 
[26] discovered that any biholomorphic map between two open pieces 
of the unit sphere in C 2 is the restriction of a certain automorphism 
of B2, the unit two-ball in C 2 . This phenomenon fails obviously in 
one complex variable and reveals a strong rigidity property of holo-
morphic mappings in several variables. Later, Tanaka, etc (see [8], 
[28]) extended this result to any dimensional case. Alexander, in his 
famous papers [1], [2], further proved that any proper holomorphic self-
mapping of the ball in C n (n > 1) is an automorphism, thus finishing 
off a line of research towards the understanding of proper holomorphic 
mappings between balls in the same complex space. In 1978, using the 
Cartan-Chern-Moser [8] theory, Webster [31] took up again the prob
lem of considering a proper holomorphic mapping f from the unit n-ball 
B n = fz G C n : \z\ < 1} into the unit (n + l ) - b a l l B n + 1 C C n + 1 and 
showed that f is a totally geodesic embedding when f is C3-smooth 
up to the boundary and when n > 2. Here, we recall that a proper 
holomorphic map from B n into B N is called a totally geodesic embed
ding ( or a linear embedding) if there exist automorphisms o G Au t (B n) 
and T G Aut (B N) such that T o f o a = (id, 0). In a subsequent paper, 
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Faran [14] classified mappings from B2 into B3, that are three times 
continuously differentiable up to the boundary. In another work [9], 
Cima-Suffridge studied certain reflection principle for CR mappings be
tween hypersurfaces with codimension one and established the results 
of Webster and Faran for mappings which are only twice continuously 
differentiable up to the boundary. In the same paper, they conjectured 
that any proper holomorphic mapping from B n into B N (n > 1), which 
is C2-smooth up to the boundary, must be a totally geodesic embed
ding when N < In — 1. Notice that there are many proper polynomial 
mappings from B n into B2n- i which are not totally geodesic (see [7], 
in particular, the book by D'Angelo [13], where many related classifica
tions are presented). Indeed, the well-known (non-linear) Whitney map 
[10] f = (zf,ziz2,--- ,ziz n,z2,--- ,z n) properly sends B n into B 2 n - i -
In [15], Faran verified this conjecture under the assumption that the 
map extends holomorphically up to the boundary. 

Later, it was shown in the deep work of Forstneric and Cima-Suffridge 
[17], [18], [10] (see in particular, the recent work in [18]), that any proper 
holomorphic mapping from B n into B N, that is C N~n+l-regular up to 
the boundary, extends holomorphically and rationally across the closure 
of the ball for any N > n > 2. This together with the work of Faran 
gives a solution to Cima-Suffridge's problem for mappings which are 
(N — n) + l ( (codimension)+ 1) smooth up to the boundary. Meanwhile, 
in a different direction, the discovery of inner functions over the ball 
reveals that there are many proper holomorphic mappings from B n into 
B n + i which are continuous up to B n but not linear (see [20], [22], [24], 
and [27]. In particular, see [19] for a survey on the related topics). This 
opens up a very interesting but also difficult subject to dig out the min
imal boundary regularity for mappings between balls with which the 
linearity and the reflection principle hold. In particular, it has been an 
open question for years to obtain results in which the required regularity 
is independent of the codimension ([9], [6], [19]). 

In this paper, we will focus on the linearity portion of the above 
mentioned problem. We will prove the following theorem, which was 
first conjectured to be true by Cima-Suffridge in 1983 [9] (see also the 
question asked in [6] and [18]): 

T h e o r e m A . Let Mi and M ^ be two connected open pieces of the 
boundaries of B n C C n and B N C C N, respectively. Let f be a non-
constant twice continuously differentiable CR mapping from Mi into 
M<2- Suppose that n > 1, N < 2n — 1. Then f is the restriction of a 
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certain totally geodesic embedding from B n into B N- More precisely, 
there exist an automorphism a G Aut(B n) and an automorphism r G 
AutÇB N) such that r o f o a(zi, • • • , z n) = (z\, • • • , z n, 0, • • • , 0). In 
particular, f is real analytic over M\. 

Corollary B . Let f be a proper holomorphic mapping from B n 
into B N, that is twice continuously differentiable up to the boundary. 
Suppose that n > 1, N < 2n — 1. Then there exist a G AutÇB n) and 
T G Aut(B N) such that r o f o a (z i , • • • ,z n) = (zi, • • • , z n, 0, • • • ,0) . 

Our approach to the proof of Theorem A is different from the existing 
ones for the study of mappings between real analytic hypersurfaces in 
different complex spaces ([31], [14]-[16], [9]-[10], [17]-[19], [21], [5], etc). 
Namely, we do not use the differential-geometric part of the Cartan-
Chern-Moser theory, and we do not take too many times differentiation 
by CR vector fields along the sphere, neither. This enables us to deal 
with maps with only C2-smooth regularity. Indeed, our consideration 
uses only the lower order Moser formal theory and the large automor
phism groups on the balls. This method seems also to be very useful 
for studying other related problems for mappings between balls (such 
as rationality and degree estimate problems, etc). 

Another implication of our theorem is the analyticity result of f. 
Regularity of CR mappings between hypersurfaces in the same complex 
space has at tracted considerable attentions in recent years and many 
results have been obtained (see [3] and the survey papers [6], [19]). 
However, the understanding of regularity of CR mappings between hy
persurfaces in different complex spaces is still rather poor (see [16], [11], 
[18], [21], [5]). We mention that in all previous work, it was always essen
tial to assume that the map under study is at least (codimension + 1)-
times continuously differentiable to boost-up higher regularity. It seems 
that the theorem of this paper also gives the first reflection principle for 
maps whose initial regularity is independent of the codimension. 

Finally, we would like to mention a different but closely related in
teresting problem ([12], [32]), which stems from problems establishing 
the Mostow super-rigidity theorem to complex hyperbolic space forms 
(see [12] for a solution in the small codimensional case and [32] for cer
tain related applications to the study of dynamics): Let f be a proper 
holomorphic embedding from B n into B N such that f ( B n) is stabilized 
by a certain discrete subgroup T of Aut(B N) (N > n > 1) with f ( B n ) / r 
compact. Is f then a totally geodesic embedding? 

A c k n o w l e d g e m e n t . The author thanks J. D'Angelo, Shanyu Ji, 
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S. Krantz, Song-Ying Li, Steve S. T. Yau and Chengbo Yue for their 
interest to the present work. He appreciates greatly S. Baouendi and L. 
Rothschild for their very careful reading of the paper and many helpful 
comments. Also, the author would like to thank S. Webster, from whom 
he first learnt the beauty of the Moser formal theory. 

2. Bas ic se t -ups , a normal izat ion property 
and a Pre l iminary L e m m a 

We let Mi C 9 B n and M 2 C 9 B N be two connected open pieces of 
the unit spheres in C n and C N, respectively. After a linear fractional 
transformation, we can assume that Mi , M 2 contain the origin and are 
defined, respectively, by the following equations: 

N-l 

w) G Mi ; Imw* = X jz j j> {z\w*) G M 2 . 
j = i 

for j = !,••• , n - 1. Then l a , - - - , L n - ig 

forms a global basis for the complex tangent bundle T f ' ^ M i of M i . 
Let 

F = fA-,g) = [fw- ,f n-i,(pi,--- ,<l>N-n,g) 

be a non-constant C2-smooth CR map from Mi into M 2 with F(0) = 

0. We recall that the CR assumption of F indicates that L j F = 0 
for each j . By the Lewy extension theorem, it is well-known that F 

extends holomorphically to a certain pseudoconvex side of Mi denoted 
by O. Here, we can also assume that O is filled in by holomorphic disks 
attached to M i . Now, applying the maximum principle and the Hopf 
lemma to the subharmonic function: — Img + P jZi jf j j2 + P j=i j ^ j j 
over O, we conclude that F(iï) C H N = (z*,w*) : Im(w*) > \z*j2g and 
ô(Img) j , . n Si dImg) j n f g j \ 

Next, we notice that the assumption F (Mi) C M 2 gives the following 
non-linear functional equation with respect to F: 

g n X N X n 

j = l j=1 

(2.1) Imw 

Write L j = 

n X 

Liz jdw ^ dz j 

Applying L l,L k L l and L k L l to (2.2), we have 

L l g 
2i X L l f j f j + X L ljfj, 

j 
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(2.2* 

li 

L k L lg 

li 

^ L kiL l f^f j + J2L k(L l4>j)4>j, 

j j 

^ (L k L l f j " f j + L l f j • L k f j) 
j 

+ ^ (L k L l(Pj • 4>j + L l4>j • L k4>j) • 

Letting (z, w) = (0, 0) in the above first two equations, we obtain 

dg d2g 

dz l dz kdz l 

On the other hand, write f = (f, (/>), 

0. 

E 

and 

E 

Ëe) dfi df n-i d(f>i d(f>N-n 

w - w 0 _ v ö w 

dz l dz l dz l dz l 

dfi df n-i d(f>i 04>N-n 

dw dw 

Notice that L L g j 0 = <l*Jw j 0 = «l kA with k 

o-dw 

o, ifk^l 
. Use of 

p , ifk = l 

(2.2*) leads to that EE = \ k . Extend fEi//X,--- ,E n_i/p\g to 
a certain orthonormal basis fEi/pX, • • • , E n _ i / p A , Ci , • • • , C N-n g of 
C N _ 1 . Denote by A the (N — 1) x (N — 1) (constant unitary) matrix 

/ Et/pX \ 

A: E n-i/p\ 
Ci 

C N-n 

Let 

(2.3) 
F* = (f*,g*) :=( f i* , - • • f n-i*Ai\-•• AN-n\g*) 

=pF (A t p 
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Then F*(Mi) C dH N and 

F*'(0) = fid(n-l)x(n-l) ( 0 ) ( n - l ) x ( N - n ) 0 \ 
^ ^ L 

Notice that g = Xg*. One can thus write 

n - l 

f j* = z j + a j w+ X e l z k z l + O{jwj) + o(j(z,w)j2), 
k,l=l 

n—l 

(2.3') 4j* = b j w+ X < j l z k zi + O(jw2j + jzwj) + o(j(z,w)j2), 
k,l=l 

g* =w + dw2 + O(jzwj) +o(j(zJw)j2)J 

where a j , b j , e j kl, q kl and d are certain constants with e j kl = e j k, q kl = q j k. 
Write 

1 d2g* 
(2.3") a = (at,--- ,a n_i,bi,--- ,b N-n), r = Ref—w j0g, 

and define G G Aut0(H N) ([29, 1.2.1, p.164]) by 

( z* - aw* 
,„ ,. l + 2i < z*,a>—(—r+ i < a,a>)w*, 

(2.4) * 
w 

1 + 2i < z*, a > —(—r + i < a, a >)wi| 

where we have used the standard notation < a,ß >= P j=\Otjßj for 
any vectors a, ß G C k. Thus by a direct computation, we see that 
F** = (f**,g**) •= Go F* still maps Mi into dH N. Moreover, F** 
satisfies the following normalization condition (compare (2.5) with [8, 
(2.9), p. 231]): 

F** d(f**-z) df** d4>** d4>** 

. . dz l dw dz l dw 
' dg** dig** - w) d2g** R d2g** . . n 

oz l ow az loz k owz 

Notice 

a l = T - w • E« , b = p = E w • C , 

<2-6> i e t p e C 
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We have the following, which will be used for our proof of Theorem A. 

L e m m a 2 .1 . Assume the notation which we have set up so far. 
Suppose that 

f** = z + O(jwj2 + jzwj) + o(j(z,w)j2) 

and 

<P** = O(jwj2 + jzwj) + o(j(z,w)j2). 

Namely, suppose that ^ f j = ^z j = 0 for any k,j. Then one has 

the following feedback for f e 

2 - l / r = - 2 - 1 
f e k z l(°) = — ^ — ( E w • E l)E k H ^—{E w • E k)E l. 

Proof of Lemma 2.1. Notice that 

<t>j - b j g* 

j 1 + 2i < f * , a > - ( - r + i < a, a >)g* 

Comparing the coefficients of terms of the form z l z k in the Taylor ex
pansion of the above expression and using the given hypothesis, we get 
easily that q j kl = 0, for any j,k,l. Since q j kl = p f e l z k(0) • C j , it 

follows that the (N — l)-tuple f" (0) stays in the space spanned by 

fEi, • • • , E n-ig, so that there exist constants fAj g such that 

n - l 

(2-7) f e ° ) = X X k l E j 
j = i 

Next, considering the Taylor expansion of f** in the following 

* * 
(2.7') 

1 + 1i < f*, a > - ( - r + i < a , a >)g* 

and using the hypothesis, we obtain P e j kl z k z l — 2i P ~cTiz j zi = 0. Hence, 

it follows that e j = p ^ ï ( j k'ïl + ^ j afc), so that , by (2.6), 

^ f z k z l {u)E j - ^ E w • E l H E w • E k. 
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Combing this with (2.7) and making use of the orthogonality: E l • E j 

Xl j gives 

A 
Returning to (2,7) completes the proof of Lemma 2.1. q.e.d. 

kl = ^T^(k E w • E l + j E w E k t) 

3. Chern-Moser Lie-derivate and a semi- l inear equat ion 

In this and the following sections, we will present the proof of Theo
rem A. After the discussion in x2, the C2-smooth CR map F = (f, (fi, g) 
sending Mi into Mi can, now and in what follows, be assumed to take 
the following form: 

f = z + f, g = w + g with f,g,4> = O{j{z,w)j2), 

(3-1) d2g d2g 
"ä—ä—0)Re——p o — 0. 

Our idea for the proof of Theorem A can be briefly described as 
follows: We first use the Moser formal theory to verify the hypothesis 
in Lemma 2.1. Then, we compose f with the automorphisms of the 
Heisenberg hypersurfaces to produce a continuous family of mappings, 
from which we will derive a differential equation (See (4.1') in x4). This 
equation will be good enough to tell that F = (z, 0, w). In this section, 
we will extend the lower order case of a fundamental lemma of Chern-
Moser to the case applicable in our setting. 

To proceed, we first recall some notation and definitions used in [8] 
and [25], and assign the weights 1 and 2toz and w, respectively. Then a 
(possibly real) polynomial h(z, w,z,w) is a weighted homogeneous poly
nomial of degree s if for each t > 0, h(tz,t2w,tz,t2w) = t s h(z, w,z,w). 
We say that a function h defined over M\ is in the class P + o wt(s) if 
there is a polynomial hi and a function hi such that h = hi + hi with 
lim t_>0+ z' w' z' —> 0 uniformly with respect to (z,w) « (0' ,0). 

When the above hi = 0, we say h G o wt(s). 
Now, substituting (3.1) into (2.2), we obtain 

n—l N—n 

(3.2) Im{w + g) = X jz j+f j j2+X j j W (z,w)eMi. 
j=1 j=1 

- 1 ~ (s) 

Suppose that we have the decompositions: f j = P s 1 2 f j +o wt(m—l), 

g = Em=2 g{s) + o wt(m), and fj = £m = l < s + o wt(m - l) (with l > 2). 
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Here, as in [25], we use the notation (•pa> to denote a certain weighted 
holomorphic homogeneous polynomial of weighted degree o. Then, after 
collecting terms in (3.2) of weighted degree k, we have the following k-th 
semi-linearization of (3.2): 

Im (Vk) (z, w)-2i< z, f - V (z, w) > 

(3 3) N~n k~l 

j=l p=l 

where m > k > l, and N ^k> is a weighted homogeneous polynomial of 
weighted degree k, contributed by f a ~ l > with a < k — 1. Moreover, 
N(k) = 0 if f ^ - 1 ) = 0 for a < k - 1. Therefore, when g(<Jl),f(<J1_1), 
(j)(a2) = g for <j\ < Ik and o<i < k (2k < m), the 2k-th linearization of 
(3.2) can be simplified as 

(3.3') 

Im gW (z, w)-2i< z, f ( 2 k- 1 } (z, w) > 

N-n 

Similarly, when ^ i ) , f ^ i " 1 ) , 0 M = Q for ox < 2k and CT2 < k (2k + l < 

m), the (2k + l ) - th linearization of (3.2) reduces to 

Im (g(2k+1Hz,w) - 2i < z , f ( 2 z , w ) > ) = 0, 

(z,w) G M i . 

Write C(f~l\g^) = ImfgM - 2i < zf^-1) >)j M l, which is 
n—1 
j = l 

(<r-l) 

the Lie derivative of p\ = Imw — P n=i j z j 2 along the vector field 

X = 2Re(gM^_ + P f a z ) restricted to M x . The operator £ is 

the basic tool for the construction of the local normal form of strongly 
pseudoconvex hyp ersurfaces, and for many other studies (see, for in
stance, the work [8], [29], etc). In particular, we mention the following 
lemma of Chern-Moser, which partially motivated our present study: 

L e m m a 3.0 ([8, Lemma 2.1, p.233]). Consider the linear equation 
£(f?g) = Im(g — 2i < ~z,f >) = 0 with f,g holomorphic near the 
origin. Then it has a unique solution (f,g) = (0,0) if the following 
normalization condition holds: 

df df dg dg d2g R / d
2 g 

f O i g O i TT~ 0) TT- 0) TT~ jo, TT" 0, T. j ' e V " H _ T / 0 — 0. 
ow oz l oz l aw oz l z ko uwz 
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For the proof of Theorem A, the following lemma involving L is of 
fundamental importance: 

Proposition 3.1. Consider the following semi-linear equation of 
weighted degree 4 with respect to the holomorphic polynomials P(\ 
Q(3) = (Q^ \... , Q ni 1 ) , and $ j ' (j = I,--- ,k) of weighted degree 
4, 3, and 2, respectively: 

k 

(3.4) L{Q^\P^) = X j^ j(^w)j\ (zw)eML 
j = i 

Assume the following normalization condition holds: 

(3.4') j = Re P = 0. 
Öw dw2 

Then P(4) = 0, Q(3) = a^\z)w with 

k 

li < a« ( z ) , z > jzj2 = X j $ j \ z ) 2 

where a^'(z) is a vector-valued holomorphic polynomial of degree one. 

Moreover, ifk < n — 2, then (3.4) has only trivial solution Q j = P^> = 

(2) 

We should mention that when all &j are assumed to be 0, then 
Proposition 3.1 reduces to 4th-order case of Lemma 3.0. Also, we point 
out that when k > n — 1, The last statement in Proposition 3.1 fails. 
Indeed, this is the only place in the course of the proof of Theorem A, 
where the codimension restriction is used. The geometric interpreta
tion of Proposition 3.1 is that the expression 

P j=i j $ j 2 ) j 2 stays in the 
Moser normal space N 4 ([8]) when k < n — 2. We remark that the 
last statement in Proposition 3.1 may hold also in any higher degree 
case. However, we will not pursue this because the present version of 
Proposition 3.1 is good enough for our purpose later. 

Proof of Proposition 3.1. By (3.4'), we can write 
(z,w) = aS >{z)w + 
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P^ {z, w) = A^ (z) + B® (z)w + D0w
2 

withRe(Do) = 0, and &j (z,w) = h j (z). Here a1-1 and b ̂ 3' are vector-
valued holomorphic polynomials of degrees 1 and 3, respectively. Then 
(3.4) reads as 

Im (A^ + B^w + D0w
2 -2i<z, a(1) > w - 2i < z, b(3) > 

(3.5') k 

where w = u + ijzj2 with u = Re(w). Noticing that {z, u} are indepen
dent variables, (3.5') can be split into the following equations: 

Im 

(3.5" 

z) + iB^{z)jzj2 - D0jzj* + 2 < z,a^{z)jzj2 - ib^(z) > ) 

k jht t j 2 , 

(3.5 m 
I m B ^ ( z ) + 2iD0jzj2 -2i<z,a(1)(z) > u = 0, 

Im(D0u2) = 0. 

Now, (3.5'") together with the normalization condition gives that Do = 
0. Moreover, noting that u is real and collecting terms of the form z l z k, 
we can also conclude from (3.5'") that B ^2> = 0. Hence 

Im(i <~z,a^(z) >) = 0. 

Returning to (3.5"), we similarly obtain that A^> = 0 and b-3' = 0. 
Therefore, P(4) = 0 and Q(3) = a^ (z)w. Furthermore, combining 
these with (3.5"), we get 

k 

2i < z , a ( 1 ) ( z ) > jzj2 = J2jh 

To complete the proof of the second part of Proposition 3.1, it now 
suffices for us to apply the following Lemma 3.2 to the equation —2i < 

z,aW(z)>jzj2 = P jh j)(z)j2--
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Lemma 3.2. Let fipj g k j = 1 and fXj j=i be holomorphic functions in 
z G C n near the origin. Assume that ig j(0) = j(O) = 0- Let H(z,~z) be 
a real analytic function for z « 0 such that 

k 

(3.6) X j(z)Xj z = j z j 2 H ( z , z ) -
j = i 

Then when k < n — I, H(z,~z) = 0. 

Proof of Lemma 3.2. Complexifying (3.6), we have 

k 

(3.6') X j (z ) j (É) = < z,i > H(z,0 
j = i 

with z, Ç independent variables. Without loss of generality, we can fur
ther assume that ipj ^ 0 for each j . Therefore, we can find a point zo 
sufficiently close to the origin such that ipj(zo) = ej 7̂  0 for each j . 

By the assumption: k < n — 1, we can easily see that 

V z0 = fz : ipj{z) = ipj{z0), j = 1, • • • ,kg 

defines a complex analytic variety of dimension at least f near zo. By 
our choice of zo and by ipj(0) = 0, it is clear that V zo can not contain 
a complex line passing through the origin. Hence, there exists a point 
z* G V zo such that V zo contains a complex curve C* near z* parametrized 
by an equation of the form 

(3.7) z(t) = z* +vt + o(t), 

where fz*,v are independent vectors and jtj < 1. Notice that for each 
z G C* and g with < z,£ > = 0 and £ close to 0, we have P ^ jXj(0 = 0-
Also notice that a direction computation based on (3.7) shows that all 
such £ fill in an open subset of C n. We conclude that P j ̂  jXj(z) = 0-
Hence, (3.6) can be reduced to 

fc-i 

X ^ j ( z ) - —k z))Uj(z)) =<z,z> H(z,z). 
j = 1 ek 

Now, applying an induction argument, it follows easily that PtpjXj = 0 
and H = 0. q.e.d. 
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4. A criterion for l inearity 

We now give a criterion on linearity for C2-smooth CR mappings 
between spheres. Notice that the results of the present section applies 
to any codimensional case. Namely, N can be any positive integer with 
N> n. 

To start, we let T = J^ be the real tangent vector field along 9 H n 

transversal to T ^ d H n + T ^ ' ^ d H n. We notice that 

(4.0) {L\, • • • , L n_i , L i , • • • , L n_i , T } forms a basis of C T 5 H n. 

Parametrize M\ by R 2 n _ 1 through (z, u) —> (z,w) = (z, u + i |z |2) , and 
introduce the standard pairing (•, •) over M\. For any differential opera
tor Y with smooth coefficients along M i , we can find its formal adjoint 
differential operator Y* with smooth coefficients such that (Y(x),p) = 
(x,Y*{p)). Here x G C°°{M{), p G C0°°(Mi). Then for each continuous 
function h and a differential operator with smooth coefficients Y along 
Mi , Y(h) can be identified as a distribution acting on the testing func
tion space Co°(Mi) in the canonical way: (Y(h),p) = (h,Y*(p)). A 
continuous function h is called a CR function if L j(h) = 0 in the sense 
of distribution for each j . 

With the above notion, we can state the following useful fact, whose 
proof is quite straightforward: 

L e m m a 4 . 1 . (a) T commutes with L j for each j . Hence, for any 
continuous CR function h over M\, Th is a CR distribution over M\, 
too. Moreover, Th = —^?[L j,L j]h = ^L j(L j h). 

(b) Let h be a C2 CR function over M\ and let x be a C1 function 
over Mi. Then for any k, it holds, in the sense of distribution that 

( 4 1 } L k(L k(h)x) = HL k(T(h))x + L k(h)L-k(x); 

L~k(L k(T(h))x) = 2iT2(h)x + L k(T(h))L~k(x). 

Next, let F be a twice continuously differentiable CR mapping from 
Mi into M2 such that F(0) = 0, which satisfies the normalization in 
(3.1). For each (zo,wo) G M i , write CT(Z0)M)0) G A u t ( H n) for the map 
sending (z,w) to (z + zo, w + wo + 2i < z,zQ > ) . Define T(ZOyWo) G 
A u t ( H N) by 

T(z*,w*) = (z* - f(z0,w0),w* -g{z0,w0) -2i < z*,f(z0,w0) > ) , 
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where f = (f, (f>) is as before. Then 

F(zo,wo)\zi w) — (f(zo,wo)i'r(zo,wo)ig(zo,wo)) ~ T(zo,wo) ° F ° ""(zcwo) 

is still a twice continuously differentiable CR map from a small open 
piece of <9H n containing 0 into 9H N with F(zO)w0)(0) = 0. As in §2, we 
can similarly define the data \zo,wo), (E l)(z„,w„), (E w)(z0iwo), (C l)(z0)w0), 

A(zo,w0)i F(z0,wo)' a(zo,w0)' r(z0,w0)i \e kl>(z0,w0)i \q kl)(zo,wo)i and G(zo,w ̂ )? 

etc, which are now subscripted by (zo,wo) for they depend on the choice 
of (zo,wo). As in §2, we can normalize FT w N by composing it with 
Gr?nwn\ to get the map FT* , = iff* \,tô* \,gÏ* \) so that 

(,z0,W0,I (zo,wo) ^ {zo,wo)ì^{zo,wo)ì{zo,wo)> 

the normalization condition as in (2.5) holds for FT* v Notice that 
FT* w -, also depends on the choice of (C l)(z0)w0). The purpose of this 
section is to prove the following linearity criterion, which should be also 
useful for other related investigations. 

Theorem 4.2. Let F be a twice continuously differentiable CR 
mapping from M\ into M ̂  such that F(0) = 0, which satisfies the nor
malization in (3.1). Assume the new map FT* w , is as defined in the 
above paragraph. Suppose that for each (zo,wo)(a 0) G Mi, it always 
holds that 

f{z*0,w0)=z + O(jwj2 + jzjjwj)+o(j(z,w)j2) 

and 

z , w o ) = O { j w j 2 + jzjjwj)+o(j(ziw)j2)-

Then F(z,w) = (z,0,w). 

We remark that in terms of Lemma 5.3 to be presented in the next 
d2 ((/>** . ) 

section, the assumption in Theorem 4.2 is equivalent to that —gz g™ jo 

= 0, or that —dz ^dw*> j° = ^ for each k> l and (zo? wo) ~ 0. 
Before proceeding to the proof of Theorem 4.2, we need to put 

Lemma 2.1 in a more applicable form. To this aim, we first write 
zo = (zi,o,--- ,z n-i,o), and 

f(zo,wo) = (lflJ(zo,wo)' ' \f n-l)(zo,wo)i \crl)(zo,wo)i ' \4>N-n)(zo,wo)) • 

In the following, we first collect certain expressions whose proofs follow 
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from a direct computation: 

(E w)(z0,w0) = (f e z0,w0)ïw(Q) = f e zO,wo); 

=L l(f e(zo,wo), 

{g{z0,w0))'z (0) =L l(g-2i <f e f>)(zo,w0); 

(g{zo,w0))w(°) =g w(zo>wo) - 2 i < f ̂ (z0,w0)e z0,w0) >, 

\(z0,w0) :=A(z0)w0) =g'w(z0,w0) - 2i < f ̂ (zo,w0),f e z0,w0) >; 

f(z0,w0) (°) =(f e z k z l(zo,wo) + 2iz0jl{f e z k w(zo,w0) 

+ 2iz^f e l w(zo,w0) - 4z0,l z0,k{f e'ww{zo,w0) 

=L l(L k(f e){z0 ,w0). 

Noticing the arbitrariness of (zQ, wQ) and applying Lemma 2.1 to F? 
the above formulas then allow Lemma 2.1 to be restated as follows: 

Lemma 4.3. Assume the above notation and assume the hypothesis 
in Theorem J^.2. For each j,k and at each point (z,w)(G MI) a 0, we 
then have the following: 

e 9 i e e e 
L L k(f))=j7-—M'w-(L j f)t)L k(f) 

\ > oi e e e 

Proof of Theorem 4-2. Write A k(z, w) = w'z w) ' which is clearly 
C1 over Mi. Assume, without loss of generality that L k(f k) ^ 0 over 
M\. Then we first notice that Lemma 4.3 gives immediately that 

A(z,w) L kif k) 

(4.2) k 2L k(f ky 

L j(L k{4>)) =A j(z,w)L k((f)) + A k(z,w)L j{4>). 

In particular, we obtain 

(4.3) L2k(<f>)=2A k(z,w)L k(<f>). 

In the following, we will often use the simple fact that two continuous 
functions are the same in the usual sense if and only if they are the same 
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in the distribution sense. Now, Applying L k to (4.3) and using Lemma 
4.1(b), we can easily get 

(4.4) 4iL k(T(</0) = B kil(z,w)L k(</>) + B k,2T (</>), 

where B kj2 = UA k(z,w) G Cl{Mi) and B kyl =L k'(2A k(z,w)) G C°(Mi). 
Notice that there are certain functions b kj such that 

(4.4') B ktl = b k,i(z,w)L k(T(f k)) + b k,2(zìw)L2(f k)ì 

where b kj(z,w) G Cl{M\) for j = 1,2. Indeed, by Lemma (4.2)(b) and 
(4.2), we have 

i oi 

L k{A k) = L k (2L^fÖ )L2k f k) + L f ) L k(T(ffc))' 

Hence, to see (4.4'), it suffices to take b ky2(z,w) = L k(L jf .) and b kyi = 

L2/'f ) , which are apparently C1 over M\. 

Applying L k to (4.4), we obtain in the sense of distribution 

(4.5) -8T2(4>) =h + L~k(B k,2)(T(4>)), 

where h = L k((b k,iL k(T{f k)) + b ki2L
2k(f k))L k((f>)). By Lemma 4.1 (b), 

h can be identified with 

{c k,iL k(T(f k)) + c kßT
2(f k) + c k,3L

2k(f k))) L k(<P) 

+ {c k,*L k(T(f k)) + c kìòL
2(f k)) T(<f>) 

for certain c'k j s, which are continuous over Mi. Hence, h is equivalent 
to a continuous function and we thus obtain point-wisely that 

(4.6) T2(<P) = C kil(z,w)L k(<f>) + C k,2(z,w)T(<f>), 

where C kj are certain continuous functions over Mi. 
Now, since 4> are CR over Mi, L k T((f>) and L j(L k(cp)) = 0. Identify 

Mi with a neighborhood of 0 in R 2 " - 1 through the map (x,y,u) —> 
(z = (x + iy),w = u + i\z\2) and write X for the vector ( ^ , -£, ^ ) . We 
then see from (4.0), (4.2), (4.4) and (4.6) that there is a certain matrix 
A.(x, y, u) whose entries are continuous functions over Mi such that X 
satisfies the following 

(4.7) DX = A(x, y, u)X t X(0) = 0. 
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Regarding (4.7) as a differential equation in X and applying the unique
ness theory, it follows that X = 0. Indeed, for any p = (xo,yo,uo) « 
0, let X p(t) = X(tp) for 0 < t < 1. Then dX = Ap(t)X p(t)t by 
(4.7) for a certain continuous matrix function (in t G [0,1]) Ap(t) with 
l|Ap(t)|| < \\p\\, where || • || stands for the super-norm. Since X p(0) = 0, 

X p(t) = R0tAp(pT)X p(r)t dT. Hence \\X p\\ < C| |p| | | |X p|| for some con
stant C > 0 independent of p. It thus follows that X p = 0 once \\p\\ < ^ . 
Since 0(0) = 0, this also gives that 0 = 0 over Mi . 

Once we showed that 0 = 0, then (f, g) is a C 2 CR diffeomorphism 
between two small open pieces (near the origin) of 9 H n. Applying a 
classical theorem of Alexander, we see that (f, g) extends to an auto
morphism of H n. Since (f,g) satisfies the normalization condition in 
(3.1), we get that (f,g) = {z,w), say, by Lemma 3.0. (Here, after know
ing (f> = 0, we remark that we can also directly get (f,g) = {z,w) by 
studying the uniqueness of the first n — 1 components of Equation (4.1'), 
coupled with L j(L k(g)) = 2iL j(L k(f)) • f . ) The proof of Theorem 4.2 
is complete. q.e.d. 

5. C o m p l e t i o n of the proof of T h e o r e m A 

We now proceed to the proof of Theorem A. We start with the 
following: 

Propos i t i on 5.1. Let F = (f,(j>,g) be any twice differentiable CR 
mapping from M\ into M ^ satisfying the normalization condition (3.1). 
Assume that N < In — 2. Then f = z + o wt(3), g = w + o wt(4) and 
<p = o wt{2). 

In what follows, to simplify the notation, we use Pi and Pi for 
polynomials which may be different in different contexts. We say that 
wt(Pi) >kif \Pi{tz,t2w,tz,t2w)\ < Ct k. 

We proceed by presenting the following Lemma 5.2 and Lemma 5.3. 
Since Lemma 5.2 is elementary, we leave its proof to the reader. (Dif
ferent from Proposition 5.1, the following two lemmas hold in any codi-
mensional case.) 

L e m m a 5.2. (a) For any function x £ C k(M{) T\o wt(k) with k>\, 

L jX, L jX, G o wt(k - 1), and Tx G o wt(_k - 2). 
(b) Ifxt Cl(M{) is such that L j(x), L jbÒ G P + o wt(k - 1) for 

each j and T(x) G P + o wt(k — 2), then x G P + o wt(k). Moreover, 
write x = hi + h2, where h\ is a polynomial with weighted degree not 
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larger than k and h2 G o wt(k). Then in case x is CR, hi must be a 
holomorphic polynomial in (z,w). 

L e m m a 5.3. Let F = (f,</>,g) = (fi,--- , n _ i , </>i, • • • ,4>k,g) be 
a twice differentiable CR map from Mi into M2 satisfying the nor
malization condition (3.1). Then, f = Q + o wt(3) and g = P + 
o>t(4) with P, Q certain holomorphic polynomials. In fact, we can 
choose P, Q such that P = w and Q = z + ^ a^^z), where a^(z) 
is a certain (vector-valued) holomorphic polynomial of degree one with 

< a ( z ) , z > = P k=il</j z -

Proof of Lemma 5.3. We first recall that 

(5.0) jLg = 5 L l(f j)f* + E L l ( j j 

Also, it is easy to verify the following: 

(5.al) L l f j f j = (Pi + o wt(l))(P2 + o wt(2)) GP + o wt(2), 

where wt(P<2) > 1; and 

(5.a2) L l f j j = (Pi + o wt(l))(P2 + o wt(2)) e P + o wt(3), 

where wt(Pi) > l,wt(P2) > 2. Hence, L l g G P + o wt(2). 
On the other hand, since g G C 2 ( M i ) , T(g) G P + o wt(l). By Lemma 

5.1 (b), we see that g G P + o wt(3). 
Notice g = w + o wt{2). Write g = gz + o wt(3) with g^ a weighted 

homogeneous polynomial of degree 3. By Lemma 5.2(b), g$ is holomor
phic. To see that g(3> = g% = 0 and f2> = 0, it now suffices for us to 
apply Lemma 3.0 to (3.3") with k = 1 (this can also be quite easily seen 
by a straightforward computation). 

Next, we apply L j to (5.0) to yield_^L j ( L l g) = L j(L l(f)) • f. Ap

plying the just obtained equation by L k and making use of Lemma 4.1, 

one gets L j(L l(f)) • L k f = 0, for j , l different from k, and 

L j(L l(f)) • L k f + cT(L v(f)) • f = c TL v(g), 

for k = j or k = l. Here when l ^ j , we have c = 2i, v = {l,j} n {k}; 
and when l = j , we have c = 4i, v = k. Since L k(fß) = 8kß + o wt(l), we 
can easily solve the above equations L j L^f k) and then verify that 
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Since e 

2iT{L l{g)) = L l(T(f e ) - 7 + (L^f e ) - T ( f e , 

it follows readily that T(L l(g)) £ P + o wt(l). Therefore, we prove that 

L j(L l(f k)) G P + o wt(l) for any j,l,k. 

Since F is assumed to be twice differentiable, L j(L l f k) = l j T(f k) G 
P+o wt(l) and T ( L l(ffc)) G P+o wt(0). Making use of Lemma 5.2, we see 
that L l(f k) e P + o wt{2) for any l,k. Again since T(f k) E P + o wt(l), 
f k G P + o wt(3) for any k. Also, by Lemma 5.2 (b), we can write 
f = Q + o ( 3 ) for a certain holomorphic polynomial Q. Making use of 
what we obtained above, it is now easy to verify that the expressions 
L l f j f j and I/l f j k2 stay in P + o wt(3) and P + o wt(2), respectively. By the 
identity (5.k), 2iT(g) =< 2iTff > + kL,J\ \2+ < 2iT<j>^ > + L ^ k 2 , 
and the same argument as before, we can see that L j(g) G P+o wt k3) and 
T(g) G P + o wt(2). Similarly, g = P + o wt{4) for a certain holomorphic 
polynomial P . Finally, applying the first part of Proposition 3.1 to 
(3.3'), we complete the proof of Lemma 5.3. q.e.d. 

Proof of Proposition 5.1. By Lemma 5.3, we can write f = z+f(3' + 
o wt(3) and g = w + o wt(4), where f(3> is a holomorphic polynomials of 
weighted degree 3. To finish the proof of Proposition 5.1, it suffices to 
apply the last part of Proposition 3.1 to (3.3'). q.e.d. 

Finally, we are ready to finish the proof of Theorem A: 

Proof of Theorem A. Let F be as in Theorem A and assume that 
N < 2n — 2. After the normalization in x2, we may assume that F 

satisfies the normalization condition in (3.1). Now, as did in x4, using 
the Heisenberg group structures of 9 H n and ô H N, for any [zQ,wQ) « 0 
and (C l)(zo,wo) as chosen before, we have the new twice differentiable 
CR map F?* w s from M\ into M2, which still satisfies the normal-
ization condition (3.1). Applying Proposition 5.1, we see that f," w -. 
= z + o wt(3), g*(*0jwo) =w + o wt(4) and (f>*z0two) = o wt{2) always hold. 
Hence, from Theorem 4.2 it follows that F = (z,0,w). This completes 
the proof of Theorem A. q.e.d. 
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