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LVI, 2, (2018), 104– 114

On a logarithmic criterion for uniform

polynomial stability

Rovana Boruga and Mihail Megan

Abstract. The paper presents a logarithmic criterion for uniform
polynomial stability of evolution operators in Banach spaces. As
applications, another four characterizations of uniform polynomial
stability are obtained.

AMS Subject Classification (2000). 34D05, 47D06
Keywords. Uniform polynomial stability, evolution operator

1 Introduction

The classical notion of (uniform) exponential stability, essentially introduced
by Perron in [13] plays an important role in a large part of the theory of dy-
namical systems. We refer to the books [1], [2], [5], [6] and [12]. However, the
exponential stability is a strong requirement and hence is of considerable in-
terest to look for another growth rates that are not necessarily exponentially,
in particular pollynomial growth rates. This approach is present in the work
of Barreira and Valls [3], Bento and Silva [4], Hai [8], Megan, Ceauşu and
Rămneanţu [9], [10], [11], [12], [14], [15]. The main objective of this paper is
to give a new characterization for uniform polynomial stability of evolution
operators in Banach spaces. As applications of this result we obtain another
four characterizations for this property.
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2 Definitions and notations

Let X be a real or complex Banach space, X∗ the dual space of X and B(X)
the Banach algebra of all bounded linear operators acting on X. The norms
on X, on X∗ and on B(X) will be denoted by ‖.‖ . The identity operator on
X is denoted by I. We also denote by

∆ = {(t, s) ∈ R2
+ : t ≥ s}, ∆1 = {(t, s) ∈ ∆ : s ≥ 1}

and

T = {(t, s, t0) ∈ R3
+ : t ≥ s ≥ t0}, T1 = {(t, s, t0) ∈ T : t0 ≥ 1}.

Let U : ∆→ B(X) be an evolution operator on X (i.e. U(t, t) = I for every
t ≥ 0 and U(t, s)U(s, t0) = U(t, t0) for all (t, s, t0) ∈ T.)

Definition 2.1. An evolution operator U : ∆→ B(X) is said to be strongly
measurable if for all (s, x) ∈ R+×X, the mapping t 7→ ‖U(t, s)x‖ is measur-
able on [s,∞).

Definition 2.2. An evolution operator U : ∆ → B(X) is said to be *-
measurable if for all (s, x∗) ∈ R+ × X∗, the mapping t 7→ ‖U(t, s)∗x∗‖ is
measurable on [0, t).

Definition 2.3. The evolution operator U : ∆ → B(X) is uniformly poly-
nomially stable (u.p.s.), if there are N ≥ 1 and ν > 0 such that:

(t+ 1)ν‖U(t, t0)x0‖ ≤ N(s+ 1)ν‖U(s, t0)x0‖

for all (t, s, t0, x0) ∈ T ×X.

Remark 2.1. The following assertions are equivalent:

(i) U is u.p.s.

(ii) there are N ≥ 1 and ν > 0 such that

(t+ 1)ν‖U(t, s)x‖ ≤ N(s+ 1)ν‖x‖

for all (t, s, x) ∈ ∆×X.

(iii) there are N ≥ 1 and ν > 0 such that

(t+ 1)ν‖U(t, s)x‖ ≤ N(s+ 1)ν‖x‖

for all (t, s, x) ∈ ∆1 ×X.
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(iv) there are N ≥ 1 and ν > 0 such that

(t+ 1)ν‖U(t, t0)x0‖ ≤ N(s+ 1)ν‖U(s, t0)x0‖

for all (t, s, t0, x0) ∈ T1 ×X.

Definition 2.4. The evolution operator U : ∆ → B(X) is uniformly stable
(u.s.) if there exists N ≥ 1 such that

‖U(t, t0)x0‖ ≤ N‖U(s, t0)x0‖

for all (t, s, t0, x0) ∈ T ×X.

Remark 2.2. The following assertions are equivalent

(i) U is u.s.

(ii) sup
(t,s)∈∆

‖U(t, s)‖ <∞.

(iii) sup
(t,s)∈∆1

‖U(t, s)‖ <∞.

(iv) there exists N ≥ 1 with

‖U(t, t0)x0‖ ≤ N‖U(s, t0)x0‖|

for all (t, s, t0, x0) ∈ T1 ×X.

Definition 2.5. The evolution operator U : ∆ → B(X) has a uniform
polynomial growth (u.p.g.) if there are M ≥ 1 and ω > 0 such that

(s+ 1)ω‖U(t, t0)x0‖ ≤M(t+ 1)ω‖U(s, t0)x0‖

for all (t, s, t0, x0) ∈ T ×X.

Remark 2.3. The following conditions are equivalent

(i) U has u.p.g.

(ii) there are M ≥ 1 and ω > 0 with

(s+ 1)ω‖U(t, s)x‖ ≤M(t+ 1)ω‖x‖

for all (t, s, x) ∈ ∆×X.
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(iii) there are M ≥ 1 and ω > 0 with

(s+ 1)ω‖U(t, s)x‖ ≤M(t+ 1)ω‖x‖

for all (t, s, x) ∈ ∆1 ×X.

(iv) there exist M ≥ 1 and ω > 0 with

(s+ 1)ω‖U(t, t0)x0‖ ≤M(t+ 1)ω‖U(s, t0)x0‖|

for all (t, s, t0, x0) ∈ T1 ×X.

Remark 2.4. It is obvious that

u.p.s.⇒ u.s.⇒ u.p.g.

3 Uniform polynomial stability

The main result of this paper is

Theorem 3.1. Let U : ∆ → B(X) be an evolution operator with uniform
polynomial growth. Then, U is uniformly polynomially stable if and only if

S
d
= sup

(t,s)∈∆1

‖U(t, s)‖ ln
t+ 1

s+ 1
<∞

for all (t, s) ∈ ∆1.

Proof. Necessity. If U is u.p.s. then there exist N ≥ 1 and ν > 0 such that

‖U(t, s)‖ ≤ N

(
t+ 1

s+ 1

)−ν
. Then, we have that

S < N

(
t+ 1

s+ 1

)−ν
ln
t+ 1

s+ 1
= f

(
t+ 1

s+ 1

)
,

where f(u) =
lnu

uν
. It is easy to see that S ≤ f(e

1
ν ) <∞.

Sufficiency. Step 1. Firstly, we consider n
d
=

 ln

(
t

s

)
4S

, with (t, s) ∈ ∆1.

Then, it is easy to observe that the following inequalities hold:
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(1) se4nS ≤ t < se4(n+1)S

(2)

(
t+ 1

s+ 1

) ln 2
4S

≤ 2n+1

for all (t, s) ∈ ∆1.
Step 2. We prove that

‖U(se4S, s)‖ ≤ 1

2
, ∀s ≥ 1.

Indeed, from
1 + s4S

1 + s
≥ e2S, it results that

‖U(se4S, s)‖ ≤ S

ln
1 + se4S

1 + s

≤ S

ln e2S
=

1

2
.

Step 3. We have that

‖U(se4nS, s)‖ ≤ 1

2n
, ∀s ≥ 1.

Indeed,

‖U(se4nS, s)‖ = ‖U(se4nS, se4(n−1)S)‖·‖U(se4(n−1)S, se4(n−2)S)‖·...·‖U(se4S, s)‖.

Using the previous step, we obtain that

‖U(se4nS, s)‖ ≤ 1

2n
.

Finally, we prove that U is u.p.s. Using the evolution property, the first and
the third step, we have

‖U(t, s)‖ ≤ ‖U(t, se4nS)‖·‖U(se4nS, s)‖ ≤M

(
1 + t

1 + se4nS

)ω
· 1

2n
≤ N

(
t+ 1

s+ 1

)−ν
,

where N = 2Me4ωS > 1 and ν =
ln 2

4S
> 0.

In what follows, we will give a Barbashin [1] characterization for the uniform
polynomial stability.
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Theorem 3.2. Let U : ∆→ B(X) be an evolution operator *-strongly mea-
surable with uniform polynomial growth. Then U is uniformly polynomially
stable if and only if there exists B > 1 such that

t∫
0

‖U(t, s)∗x∗‖
s+ 1

ds ≤ B‖x∗‖

for all (t, x∗) ∈ R+ ×X∗.

Proof. Necessity. If U is u.p.s. then

t∫
0

‖U(t, s)∗x∗‖
s+ 1

ds ≤ N‖x∗‖
(t+ 1)ν

t∫
0

(s+ 1)ν−1ds ≤ B‖x∗‖,

where B =
N

ν
+ 1.

Sufficiency. If t ≥ 2s+ 1 then

|〈x∗, U(t, s)x〉| = 1

s+ 1

2s+1∫
s

|〈U(t, τ)∗x∗, U(τ, s)x〉|dτ ≤

≤ 2M

2s+1∫
s

(
τ + 1

s+ 1

)ω
‖x‖‖U(t, τ)∗x∗‖

τ + 1
dτ ≤

≤ 2ω+1‖x‖M
t∫

0

‖U(t, τ)∗x∗‖
τ + 1

dτ ≤ 2ω+1MB‖x‖‖x∗‖

It results that ‖U(t, s)‖ ≤ 2ω+1BM , for all t ≥ 2s+ 1.
If t ∈ [s, 2s+ 1) then

‖U(t, s)x‖ ≤M

(
t+ 1

s+ 1

)ω
≤M2ω ≤ 2ω+1BM.

Finally, we obtain that U is uniformly stable. Now, we prove that U is
uniformly polynomially stable. We observe that

‖U(t, s)∗x∗‖ ln
t+ 1

s+ 1
=

t∫
s

‖U(t, s)∗x∗‖
τ + 1

dτ ≤
t∫

s

‖U(τ, s)∗‖‖U(t, τ)∗x∗‖
τ + 1

dτ ≤

≤M1

t∫
s

‖U(t, τ)∗x∗‖
τ + 1

dτ ≤M1B‖x∗‖.
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So, we obtained ‖U(t, s)‖ ln
t+ 1

s+ 1
≤ BM1, and from Theorem (3.1) we have

that U is u.p.s.

In what follows, we will present a characterization of Datko type [7] of the
uniform polynomial stability concept.

Theorem 3.3. Let U : ∆ → B(X) be a strongly measurable evolution op-
erator with uniform polynomial growth. Then U is uniformly polynomially
stable if and only if there exists D > 1 with

∞∫
s

‖U(τ, t0)x0‖
τ + 1

dτ ≤ D‖U(s, t0)x0‖

for all (s, t0, x0) ∈ ∆×X.

Proof. Necessity. If U u.p.s. then there exist N > 1 and ν > 0 with

∞∫
s

‖U(τ, t0)x0‖
τ + 1

dτ ≤ N

∞∫
s

(
s+ 1

τ + 1

)ν ‖U(τ, t0)x0‖
τ + 1

dτ =

=
N

ν
‖U(s, t0)x0‖ ≤ D‖U(s, t0)x0‖.

where D = 1 +
N

ν
.

Sufficiency. Step 1. We show that U is uniformly stable. If t ≥ 2s+ 1 then

‖U(t, t0)x0‖ =
2

t+ 1

t∫
t−1
2

‖U(t, t0)x0‖dτ ≤ 2

t∫
t−1
2

‖U(t, t0)x0‖
τ + 1

dτ ≤

≤ 2M

t∫
t−1
2

(
t+ 1

τ + 1

)ω ‖U(τ, t0)x0‖
τ + 1

dτ ≤M2ω+1

∞∫
s

‖U(τ, t0)x0‖
τ + 1

dτ ≤

≤ DM2ω+1‖U(s, t0)x0‖

So,

‖U(t, t0)x0‖ ≤ DM2ω+1‖U(s, t0)x0‖,∀t ≥ 2s+ 1, ∀s ≥ t0 ≥ 0,∀x0 ∈ X.

If t ∈ [s, 2s+ 1) then 1 ≤ t+ 1

s+ 1
≤ 2. We obtain

‖U(t, t0)x0‖ ≤M

(
t+ 1

s+ 1

)ω
‖U(s, t0)x0‖ ≤ DM2ω+1‖U(s, t0)x0‖.
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So,
‖U(t, t0)x0‖ ≤M1‖U(s, t0)x0‖

for all (t, s, t0, x0) ∈ T ×X, where M1 = DM2ω+1.
Step 2. We prove that U is u.p.s. using Theorem (3.1).

‖U(t, t0)x0‖ ln
t+ 1

s+ 1
=

t∫
s

‖U(t, t0)x0‖
τ + 1

dτ ≤M1

t∫
s

‖U(τ, t0)x0‖
τ + 1

dτ ≤

≤ DM1‖U(s, t0)x0‖.

For t0 = s and from Theorem (3.1) we obtain the conclusion.

The next theorem is a characterization which uses Lyapunov functions for
the uniform polynomial stability of an evolution operator.

Theorem 3.4. Let U : ∆ → B(X) be a strongly measurable evolution op-
erator with uniform polynomial growth. Then U is uniformly polynomially
stable if and only if there are D > 1 and L : ∆×X → R+ with the properties

(i) L(s, t0, x0) ≤ D‖U(s, t0)x0‖, ∀(s, t0, x0) ∈ ∆×X

(ii) L(t, t0, x0) = L(s, t0, x0)−
t∫

s

‖U(τ, t0)x0‖
τ + 1

dτ, ∀(t, s, t0, x0) ∈ T ×X.

Proof. Necessity. If U is u.p.s. then by Theorem (3.3) the function L :
∆×X → R+ defined by

L(s, t0, x0) =

∞∫
s

‖U(τ, t0)x0‖
τ + 1

dτ

satisfies the conditions (i) and (ii).
Sufficiency. If there exists a function L : ∆ ×X → R+ with the properties
(i) and (ii) then

t∫
s

‖U(τ, t0)x0‖
τ + 1

dτ ≤ L(s, t0, x0) ≤ D‖U(s, t0)x0‖

for all (t, s, t0, x0) ∈ T ×X. For t→∞ we obtain

∞∫
s

‖U(τ, t0)x0‖
τ + 1

dτ ≤ D‖U(s, t0)x0‖

for all (s, t0, x0) ∈ ∆×X. By Theorem (3.3) it results that U is u.p.s.
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Finally, we present a new proof of a result due to Hai [8].

Theorem 3.5. Let U : ∆ → B(X) be an evolution operator with uniform
polynomial growth. Then U is uniformly polynomially stable if and only if
there exists r > 1 such that

S1
d
= sup

s≥1
‖U(rs, s)‖ < 1. (3.1)

Proof. Necessity. If U is u.p.s. then r = e4S, where S is given by Theorem

(3.1) and
1 + rs

1 + s
> e2S. Thus

S1 = sup
s≥1
‖U(rs, s)‖ ≤ S

ln
1 + rs

1 + s

≤ 1

2
.

Sufficiency. If (t, s) ∈ ∆1 then there exists a natural number n such that

srn ≤ t < srn+1(
n is the integer part of

ln t
s

ln r
, where r is given by (3.1)

)
. Then

srn + 1

s+ 1
≤ t+ 1

s+ 1
≤ srn+1 + 1

s+ 1
< rn+1

and hence

ln
t+ 1

s+ 1
< (n+ 1) ln r (3.2)

From here and u.p.g. property of U it results that there are M > 1 and
ω > 0 such that

‖U(t, s)‖ ≤ ‖U(t, srn)‖‖U(srn, s)‖ ≤M

(
t+ 1

srn + 1

)ω
‖U(srn, srn−1)‖‖U(srn−1, s)‖ ≤

≤MS1

(
srn+1 + 1

srn + 1

)ω
‖U(srn−1, srn−2)‖‖U(srn−2, s)‖ ≤

≤MS2
1(r + 1)ω‖U(srn−2, s)‖ ≤MSn1 (r + 1)ω

for all (t, s) ∈ ∆1. Using (3.2) we obtain

‖U(t, s)‖ ln
t+ 1

s+ 1
≤MSn1 (r + 1)ω(n+ 1) ln r ≤MN(r + 1)ω ln r,

for all (t, s) ∈ ∆1, where N = sup
n∈N

(n+ 1)Sn1 <∞. Finally, it results that

S
d
= sup

(t,s)∈∆1

‖U(t, s)‖ ln
t+ 1

s+ 1
≤MN(r + 1)ω ln r <∞

By Theorem (3.1) it follows that U is u.p.s.
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