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Abstract

In this paper we present a new class of pedestrian crowd models based on the mean field games

theory introduced by Lasry and Lions in 2006. This macroscopic approach is based on a micro-

scopic model, that considers smart pedestrians who rationally interact and anticipate the future.

This leads to a forward-backward structure in time. We focus on two-population interactions

and validate the modeling with simple examples such as self-organization behavior as for in-

stance lane formation. Two complementary classes of problems are addressed, namely the case

of crowd aversion and the one of congestion. In both cases we describe the model, build a nu-

merical solver (respectively based on optimization formulation and partial differential equations),

and finally provide some numerical tests involving complex group behaviors such as symmetry

breaking and lane formation.

Keywords: Mean field games, interacting populations, Nash equilibrium, rational expectations,

flow of pedestrians, lane formation, numerical approximation

1. Introduction

In the last decades crowd motion modeling has become an active area of research. As the

world population and the urbanization continues to increase we can not underestimate the impor-

tance of understanding the behavior of human crowds. Nowadays there is lot of interdisciplinary

research among physicists, sociologists, biologists and mathematicians; crowd motion has be-

come one of the emerging research topics.

The first empirical studies on crowd motion have been deducted about 50 years ago (cf. Hankin

and Wright (1958); Hoel (1968)), nowadays various modeling approaches can be found in the lit-

erature. We distinguish between two different approaches, either microscopic models or macro-

scopic ones. The most popular microscopic approaches include the behavioral force models (cf.

Helbing (1998, 1991); Helbing et al. (2002); Helbing and Molnar (1995)), cellular automata (cf.

Burstedde et al. (2001); Kirchner and Schadschneider (2002)) and stochastic models. Behav-

ioral force models have been very successful in describing various crowd motion phenomena

like lane formation, oscillations at bottlenecks or clogging. The main drawback of microscopic

approaches is the high computational cost for large number of particles. In macroscopic mod-

els the crowd is treated as a density. Here the computational cost is much smaller, but it’s less

clear how to describe the motion of the density correctly. Several macroscopic models have been

derived by considering the limit as the number of particles tends to infinity, e.g. Burger et al.

(submitted). Other macroscopic approaches are based on kinetic equations or fluid dynamics
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(see e.g. Henderson (1974)). A different macroscopic approach has been proposed by Hughes

(2002), Francesco et al. (2010) studied the analysis and numerics in the one-dimensional case.

More recent models are based on optimal transportation, see Maury et al. (to appear). For a gen-

eral overview on the various modeling approaches we refer to Helbing et al. (2002).

Furthermore we would like to point out the connection between human crowd motion models

and herding models for animals, like ants, sheep or fish. A model for describing the collective

motion of ants has been used successfully to describe lane formation in crowds. Ants use chem-

ical substrates to lead others to valuable food resources. Schadschneider et al. (2007) used a

cellular automata model which uses a virtual trace that features collective behavior of humans an

subsequent lane formation.

In this paper we would like to present a new approach to model crowd motions. It is called

mean field games (MFG) and has been introduced initially by Lasry and Lions, see Lasry and

Lions (2007). A particular appealing feature is that the approximating macroscopic mean field

model is derived from a mean-field game as the number of players tends to infinity. Consequently

it offers the tractability of a macroscopic framework together with the more realistic interpreta-

tion at the microscopic level. Furthermore we treat players as “smart” individuals which try to

optimize their path with respect to a particular goal. Thus, a MFG model is quite novel for crowd

modeling and differentiates itself from the models cited above in mainly two points. First we

don’t talk anymore about neither particles nor robots nor automata, but rather about real indi-

viduals or agents, having strategical interactions within the crowd. Second, these individuals

anticipate the future. This is mathematically expressed through a forward-backward structure,

the forward dynamic describing the crowd dynamic whereas the backward one is needed to build

the expectations. This differs from pure forward frameworks that might be unable to describe

particular features of crowd dynamics.

We believe that a MFG model is interesting in the sense that beyond offering a description of how

pedestrian behave in a crowd, it also answers the questions why and how the crowd moves (or

why it has its specific shape in the stationary case). Here is an example of why it could be useful:

if for any exogenous reason some people in the crowd suddenly stop for a while, the collective

behavior will be re-established. This cannot happen in automata models.

As indicated in the name mean field games, it is a game approach and has the very important

feature to consider the pedestrians’ behavior as a non-cooperative equilibrium. Therefore it is

unfortunately not possible to consider cases of small groups interacting within the crowd.

We reiterate that the limiting MFG are motivated by an N-player stochastic game. These

limiting macroscopic partial differential equations (PDEs) have a surprisingly simple structure,

which allow the development of efficient numerical methods. Different numerical approaches

for MFG can be found in the literature (see for instance Achdou and Capuzzo-Dolcetta (2009);

Guéant (2009); Lachapelle (2010); Lachapelle et al. (2010); Lions (2008-2010)). They are either

based on the optimal control formulation of the problem or on the PDE system. In the first

case different methods from parabolic optimal control theory are available. On the PDE level

Newton-type methods have been used successfully for numerical simulations. Nevertheless the

forward-backward structure and the highly nonlinear equations still pose a great challenge to

numerical analysts and the development of efficient numerical methods is still in its early stages.

This paper is organized as follows. Section 2 is devoted to the general introduction of mean

field games in a crowd dynamic framework. Next we turn to the central topic of our paper,

that is the study of two interacting populations (or equivalently crowds). More particularly we

present two different classes of MFG (in order to show the diversity of cases that could be treated

2



by MFG). For both of them we describe the modeling, discuss a numerical solver and provide

numerical results. In section 3 we present a model where individuals are averse to the crowd,

in a time-dependent framework. The gradient-descent numerical method is based on an optimal

control formulation of the problem. Our numerical tests mainly provide a symmetry breaking in

some xenophobic situation (where the pedestrians of the first group really dislike the pedestrians

of the other group). In section 4 we look at a two-species stationary model involving congestion.

Here the numerical simulations, based on Newtons’ method, reproduce well known phenomena

in crowd motion like lane formation. Finally, we close with some concluding remarks in section

5.

2. Mean field games: a micro-macro approach to model pedestrian crowds

In this section we discuss the general concept of mean field games and its application to

crowd motion dynamics. For reasons of clarity and readability we start with the introduction

of mean field games for single species first. This discussion can easily be generalized for two

populations, which is of particular interest when studying interactions among crowds.

First we recall the microscopic fundament of MFG, that is a multi-player stochastic differential

games. Then we present the approximation of such games when the number of player tends

to infinity (without entering the mathematical details), namely the associated mean field game.

Various remarks throughout the section have been added to clarify the modeling assumptions.

2.1. Microscopic fundament: stochastic differential games

Let us start at the microscopic scale of a MFG, namely an N-player stochastic differen-

tial game. We look at an evolution game on a period [0,T ] in a stochastic framework. Here

we choose the probability space (Ω,F,P) where F = (Ft)t∈[0,T ] is the filtration enhanced by

a vector (with length N) of d-dimensional independent Brownian motions W = (Wt)t∈[0,T ] =
(

(W1
t )t∈[0,T ], ...(W

N
t )t∈[0,T ]

)

. We consider N players (also referred as pedestrians or individuals)

interacting one with each other through the choice of an action (or control). At every time t

player i chooses an action αi from the set of feasible actions Ai ⊂ R
d, for i = 1, ...,N. We define

A = A1 × ... × AN and the global set of admissible actions as

A = {α = (αt)t∈[0,T ];α is progressively measurable in A}.

Consequently, (αi
t)t∈[0,T ] denotes the strategy or control process of player i.

For any α = (α1, ..., αN) we will use the very convenient and usual notation in game theory

(αi, α
−i) = (α1, ..., αi−1, αi, α

i+1, ..., αN).

We are interested in simple cases where the state evolution of the system in R
N×d is given by the

solution of the following Stochastic Differential Equation (SDE for short):

dXt = αtdt + σdWt, X0 = x ∈ R
N×d, (1)

where σ is a Nd × Nd diagonal matrix (independence case).

Remark 1. In other words player i evolves controlling the drift of the controlled stochastic

process dXi
t = α

i
tdt+σdW i

t , starting at xi. Note that we will focus on the realistic particular case

where the crowd evolves in a bounded subset of R
2 (in this case we will specify the boundary

conditions later). We reiterate that the speed of each individual is not fixed a priori but rather
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determined by each pedestrian as the result of an optimization process (it is the control α). We

come back on this comparison later, when we will describe the macroscopic setting.

We emphasize that pedestrians are subject to independent noise. If we would consider correlated

noises, the resulting mean field game would be much more complicated, see e.g. Lions (2008-

2010).

It is well-known that for every α ∈ A there exists a unique solution Xt = Xαt to (1). Next we

discuss how player i determines its optimal strategy by a cost functional. This cost functional

consists of two parts, the first one corresponds to the running cost fi : [0,T ]×Ω×R
N×d×Ai → R

and the second one to the terminal cost gi : Ω × R
N×d → R. Then for each α ∈ A we define the

cost functional

Ji(α) = E

[∫ T

0

fi(t, X
α
t , α

i
t)dt + gi(X

α
T )

]

. (2)

Note that we will also study the stationary case for which we will consider a slightly different

definition of the cost functional namely:

J s
i (α) = lim

T→∞

1

T
E

[∫ T

0

fi(t, X
α
t , α

i
t)dt

]

. (3)

Next we discuss the special case of mean-field type interactions between players i.e. we discuss

special forms of costs and their very important aspect in the modeling.

Each pedestrian takes into account her own state Xi
t and the mean-field created by the others,

i.e. the empirical distribution of pedestrians x̂−i = 1
N−1

∑

j,i δx j where δx denotes the Dirac

mass located at x. Then for each i and x = (x1, ..., xN), the running and terminal costs have the

particular form fi(t, x, α) = f (t, xi, x̂−i, α) and gi(x) = g(xi, x̂−i) and we have

Ji(α) = E

[∫ T

0

f (t, Xi,α
t , X̂

−i,α
t , αi

t)dt + g(Xi,α
T
, X̂
−i,α
t )

]

.

Remark 2. Here we make the implicit assumptions that each player is anonymous. Indeed they

are identical but can be different (that is we cannot identify who’s who in the crowd but everyone

can have her own path that may differ from the others). This can be seen through the form of the

costs. For a fixed index i, Ji is invariant by any permutation of the −i other players.

In our model we assume that the pedestrians are rational, with rational expectations, i.e. every

individual or agent knows and anticipates the state of everybody through the distribution of the

crowd. These assumptions are probably wrong in the real world (except in routine crowd situa-

tions, say the daily way towards the subway exit). Indeed the pedestrians could be partially and

insufficiently informed, or some irrational local behavior can happen (e.g. an individual sud-

denly stops to observe the crowd). But as it is the case in physics, we first have to introduce the

model with rational expectations and rational individuals in order to be able to correct and im-

prove the model afterwards (e.g. by introducing partial blindness or an extra noise for instance).

A robot model might be more intuitive at the first glance, but it might fail if the environment

changes.

A first step to consider partial blindness can be performed either through the introduction of a

discount factor (chosen significantly high) which has been done in section 4 or considering run-

ning costs involving a convolution. The convolution of the empirical density with the indicator

function of a circle of radius r corresponds to taking actions of individuals in certain neighbor-

hood into account. Indeed we do not enter the details of the dependency of the cost upon the
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crowd empirical distribution, we do not even specified whether it is local or non-local. Here we

will only consider fully non-local dependencies, the generalization to other cost functions will be

subject of further research.

We reiterate that mean field games are an equilibrium-based approach. Hence we try to find

a Nash equilibrium (or Nash point). A Nash point is a situation in which every player cannot

improve his payoff by any unilateral deviation. That is a strategy α such that

∀i ∈ {1, ...N},∀αi ∈ Ai, Ji(αi, α
−i) ≥ Ji(α).

Existence of Nash equilibria can be shown under very general assumptions on the cost. We will

only consider quadratic dependence of fi upon αi, which is covered by standard existence results.

A rigorous study of such problems can be found in Bensoussan and Frehse (1984). Furthermore

they show that the differential game is equivalent to a system of coupled PDEs, that are intractable

when N is large. Next we discuss an approximation of such games by a mean field game with a

continuous distribution of players.

2.2. Macroscopic framework: Mean Field Game equations

Though the notion of games with a continuum of players is not novel (see the work of Au-

mann (1964)), it has not been adapted to stochastic games (the difficulty comes from the inde-

pendence of white noises when taking N → ∞). Our aim is not to enter the mathematical details

of taking limits when N → ∞, we rather give a common intuition of how to derive the MFG

system in the continuum of player setting. For more details on the highly technical proof of the

approximation result, we refer to Lasry and Lions (2007) and Lions (2008-2010).

Therefore we directly jump to the continuum of players setting. First we present the equations

of the MFG system (whose solutions are mean-field equilibria or equivalently approximation of

Nash equilibria) both in the dynamical and stationary cases. Then we briefly motivate a common

intuition on how to derive MFG equations.

2.2.1. Dynamical and stationary MFG systems

We distinguish between finite horizon MFG and stationary MFG. This is motivated by the

two differential crowd motion problems which we study in this paper. In section 3 we look at

crowd motion dynamics and therefore consider the following (and more general) type of finite

horizon MFG system:

∂tv +
σ2

2
∆v + H(t, x,∇v,m) = 0, v|t=T = g(mT ) (4)

∂tm −
σ2

2
∆m + div(m ∂pH(t, x,∇v,m)) = 0, m|t=0 = m0. (5)

The mathematical structure of this system captures many features of MFG modeling. It is a

forward-backward system coupling two PDEs. Equation (4) is a Hamilton-Jacobi-Bellman (HJB)

equation on the adjoint variable v. It is related to the control aspects and basically gives the

optimal strategy obtained by a backward reasoning (feedback). Note that there are two sources

of coupling in this equation: both in the Hamiltonian H and in the terminal condition of the

adjoint variable v. Here the Hamiltonian H is defined as the Legendre transform of the running

cost f , i.e. H(t, x, p,m) = f ∗(t, x, p,m) := supα{pα − f (t, x, α,m)}.

On the other hand, equation (5) describes the mass evolution equation of the system. It is called
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a Kolmogorov equation in financial mathematics or a Fokker-Planck equation in physics. Here

m0 denotes the initial pedestrian distribution. Its solution mt is the distribution of pedestrians

transported according to individuals’ optimal choices (forward in time). The optimal strategy is

given by α = ∂pH(.,∇v,m).

The forward-backward structure is a core aspect of MFG. The achievement of a MFG equilibrium

(i.e. a solution of the system (4)-(5)) is performed through the rational expectations assumption

(we come back more in details on this very important point in the next subsection).

In section 4 we look at the corresponding stationary case that is a MFG system having the

following form:

σ2

2
∆v + H(x,∇v,m) − rv + λ = 0 (6)

−
σ2

2
∆m + div(m ∂pH(x,∇v,m)) = 0 (7)

λ ∈ R,

∫

mdx = 1, m > 0,

∫

vdx = 0. (8)

The structure of the stationary problem is very similar to the the time-dependent one. Note the

additional variable λ, which gives the optimal value of the equivalent of (3) in the game with a

continuum of players, and the distribution’s conditions in (8). The linear term rv appearing in

(6) comes from the introduction of a discount factor r in the cost functional. We reiterate that

the rigorous derivation of these PDEs systems can be found in Lasry and Lions (2007) and Lions

(2008-2010).

2.2.2. Formal derivation of the finite horizon system

In order to better understand the forward-backward structure, we would like to give an intu-

ition on the derivation of MFG. We consider an equivalent formulation of the individual problem

consisting of minimizing (2) in the infinite number of players game. Here the starting point is

the individual problem of a single individual located at x:















infα∈A E

[

∫ T

0
f (t, Xα,xt , αt,mt)dt + g[mT ](Xα,x

T
)

]

dX
α,x
t = αtdt + σdWt , Xx

0
= x.

(9)

Note that we replace the empirical distribution 1
N−1

∑

j,i δX
j
t

by mt. Each individual in the contin-

uum takes into account the global distribution evolution (mt)t∈[0,T ], hence anticipating the future.

We proceed in two steps in order to get the system (4)-(5). First we assume that (mt)t∈[0,T ] is

known (expectations hypothesis) and solve the stochastic control problem. We introduce the

value function:

v(t, x) = inf
α∈A

E

[∫ T

t

f (s, Xα,xs , αs,ms)ds + g[mT ](Xα,x
T

)

]

.

It is well known that the value function v is a solution to the HJB equation (see Bensoussan and

Frehse (1984))

∂tv +
σ2

2
∆v + H(t, x,∇v,m) = 0 , v|t=T = g[mT ].
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We reiterate that we define the optimal feedback as a maximizer in the previous formula, com-

puted at the point (t, x,∇v(t, x),mt(x)), i.e. α(t, x,m) = ∂pH(t, x,∇v(t, x),mt(x)).

The Kolmogorov equation describes the evolution of mt, it is a transport by drift (here α) and

diffusion equation. For each t ∈ [0,T ], define the distribution as follows:

∫

ϕdmt =

∫

E
[

ϕ(Xα,xt )
]

dm0(x) for all test function ϕ.

Then the Kolmogorov equation follows from applying Itô’s Lemma

dϕ(Xx
t ) = [α(t, Xx

t ,mt)∇ϕ(Xx
t ) +
σ2

2
∆ϕ(Xx

t )]dt + σ∇ϕ(Xx
t )dWt.

Indeed, by a simple integration by parts one can write

∫ T

0

ϕ∂tm =
d

dt

∫ T

0

ϕdmt =

∫ T

0

E[dϕ(Xx
t )]dm0(x)

=

∫ T

0

E[α(t, Xx
t )∇ϕ(Xx

t ) +
σ2

2
∆ϕ(Xx

t )]dm0(x)

=

∫ T

0

ϕ[−div(mα) +
σ2

2
∆m],

and we finally obtain the desired equation.

Now we are able to put everything together. For α(t, x) = ∂pH(x,∇v(t, x),mt(x)) we obtain the

Kolmogorov equation:

∂tm −
σ2

2
∆m + div(m ∂pH(t, x,∇v,m)) = 0, m|t=0 = m0.

Remark 3. The forward-backward aspect can be considered as the heart of the MFG theory

and refers to the rational expectations equilibrium approach. Indeed individuals anticipate the

crowd evolution first and then evaluate their cost function (9). Next they deduce their strategy

(feedback control) by solving the HJB equation. Finally the mass evolves according to these

strategies (Kolmogorov equation). At the optimum the mass evolution has to coincide with the

one which has been anticipated, according to the rational expectations assumption.

Even in very simple configurations, a pure forward model should not be able to predict the crowd

dynamic. This is why we believe that it is necessary to introduce forward-backward models

such as MFG. Indeed, if we want to find expectation phenomenon, it is necessary to have both

a forward equation (to describe the real dynamic) and a backward equation (to build up the

expectations).

2.2.3. Link with optimal control

Finally we would like to complete the picture by linking mean field games to optimal control

problems. MFGs are equivalent to optimal control problem under certain assumptions on the

cost function. One of the presented crowd motion models is equivalent to an optimal control

problem, the other not. In the first model, namely the crowd aversion model of section 3, we

take full advantage of the optimal control structure in the numerical discretization. However, this

won’t be possible in the second model of section 4, where we take into account congestion.
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An optimal control problem is equivalent to a MFG if the following criteria are satisfied. First

the running cost can be written f (t, x, α,m) = L(t, x, α)m + V[x,m] and second V and g are the

derivatives (e.g. the Gâteaux derivatives) of two potentials Φ and Ψ on bounded measures, i.e.

V = Φ′ and g = Ψ′. In this case, the critical points of the optimal control problem of Kolmogorov

equation














inf
α∈A

J(α) :=
∫ T

0

∫

Ω
L(x, α)m(t, x)dx + Φ(m)(t)dt + Ψ(mT )

∂tm −
σ2

2
∆m + div(αm) = 0 , m(0, .) = m0(.),

(10)

are solutions of the MFG system (4)-(5). A proof of this statement can be found in Lachapelle

(2010). Note that this is a sufficient condition as soon as Φ and Ψ are convex. Consequently, we

see that the continuum of individual problems can be seen as a global optimization (or control)

problem.

Finally we present some concluding remarks on our modeling approach.

Remark 4. First, it is clear that when we use the terminology of game we refer to classical game

theory with an equilibrium approach and not to evolutionary game theory used in biology (also

for crowds modeling and socio-behavioral modeling, see Haag and Weidlich (1983) or Helbing

(1998)).

• We reiterate one more time the difference with social force models (see Helbing (1991);

Helbing and Molnar (1995)) where pedestrian acts like automata (even with a memory

criterium). Here this can be typically understood by looking at this forward-backward

structure and the term in the divergence of the Kolmogorov equation (5), which is not fixed

a priori since it is the feedback control.

• Moreover, the non-cooperative equilibrium approach is a bit restrictive since it does not

allow to model more realistic pedestrian crowds with small social groups therein (2 or 3

people groups for instance).

• Finally a satisfying point we want to mention is that contrary to other game models, it

allows entries and exits of pedestrians in the crowd (see section 4 for an example). Indeed,

in games with a finite number N of players, it is very complicated to consider a non-

constant N.

In the next sections, we illustrate how MFG can be used for modeling pedestrian crowds.

More precisely we introduce two different models for 2-population interactions, the first one is

based on crowd aversion while the second one takes into account congestion in the running cost.

We present numerical discretizations and simulations in both cases.

3. Pedestrian dynamics in the case of xenophobia: symmetry breaking

In this part we model two groups dynamics, each of whom consisting of infinitely many

pedestrians. Consequently we use the finite horizon setting. We will focus here on a MFG

that can be written as an optimal control problem (the running cost has the form f (t, x, α,m) =

L(t, x, α) + V(x,m(x)) as mentioned in section 2. The optimal control formulation serves as a

starting point for our numerical discretization, namely a gradient descent method. Note that we

will only use the macroscopic optimal control formulation, but nevertheless, it is good to keep in

mind the microscopic basis.

The basic modeling assumption is that pedestrians in both groups have an aversion towards
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crowds. Furthermore the groups want to avoid each other (xenophobia). This approach dif-

fers from the one we use in the next section where the pedestrians’ choices take congestion into

account (that is the cost to move increases with the crowd distribution). Here crowd aversion

only consists in penalizing congestion, not modeling it. The first of the previous aspects is math-

ematically expressed as convexity in the group problem while we will see that the latter leads to

the loss of convexity in the joint problem for both groups.

We start with the macro-Nash problem between two populations (each of them being MFG),

then state some theoretical results, detail the numerical algorithm and present some simulations

including symmetry breaking.

3.1. Writing a macro-Nash problem between two groups

Let us focus on the case where two populations interact inside a subset Ω of R
2. We also

define the time-space domain Q = [0,T ] ×Ω.

We want to study equilibria between the two groups (typically Nash points as suggested by

Lasry and Lions (2007)). Formally, the global optimization problem (linked to a continuum of

individual problems) of group i, given the control and the mass evolution of the other group (i.e.

(α−i
t ,m

−i
t )), reads as:

inf
αi

Ji
λ(α)

where

Ji
λ(α) =

∫

Q

|αi|2

2
mi +

∫ T

0

Φi
λ(m

1
t ,m

2
t ) +

∫

Ω

Ψimi(T ). (11)

Note that the upper index now refers to the group (or population) and not to the individual player.

From now on, mi depends upon αi, more precisely it is viewed as a bounded nonnegative measure

(i.e. belonging to the setMb(Q,R+)) which is a weak solution of the Kolmogorov equation:

∂tm
i −
σ2

2
∆mi = −div(αimi),mi(0) = mi

0. (12)

We distinguish the populations by considering different initial densities mi
0
(.) and different final

incentive costs Ψi, for i = 1, 2. However we study the simple case where the Brownian motion

and the noise are similar for both groups. In the definition of the criterion (11), the coupling cost

we consider is

Φi
λ(mt) :=

∫

Ω

(mi
t)

2 + λm1
t m2

t ,

for a nonnegative real constant λ. This models situations in which individuals have an aversion

towards members of his/her own group as well as the other group. Therefore λ can be interpreted

as the ”xenophobia” parameter. To see that, note that the individual mean field criterion is:

Vi[mt](x) = 2mi
t(x) + λm−i

t (x).

In fact we consider that xenophobia is significant when the aversion λ to the other group is higher

than the one to the own group (equal to 2). The Nash problem between the groups is then:

(N) Find α = (α1
, α

2) such that: Ji
λ(α) = inf

αi∈Mb(Q,Rd)
Ji
λ(α

i, α
−i), for i = 1, 2.
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3.2. Existence and optimality

3.2.1. Optimality conditions

In this part we present a characterization of the Nash equilibria. To do so, let us introduce the

MFG system for two groups: for i = 1, 2,

∂tm
i −
σ2

2
∆mi + div(mi∇vi) = 0, mi(0) = mi

0, (13)

∂tv
i +
σ2

2
∆vi +

|∇vi|2

2
= Φi

λ(m)′, vi(T ) = Ψi, (14)

and the joint minimization problem (for the two groups)

(Q) inf
α=(α1,α2)

Jλ(α) := J1
λ/2(α) + J2

λ/2(α),

under the constraints: mi is a solution of (12), for i = 1, 2. Note that Jλ is convex if the xeno-

phobia parameter is small, that is λ ≤ 2. Now we are able to state the following optimality

conditions.

Proposition 3.1. If λ ≤ 2 then the following assertions are equivalent:

1. α ∈ Mb(Q,Rd) is a solution of (N) and m satisfies (12) for α = α,

2. α ∈ Mb(Q,Rd) is a solution of (Q) and m satisfies (12) for α = α,

3. (m, v) is a solution of the MFG system (13)-(14), with α = α = ∇v.

If λ > 2 then it is only necessary i.e. 2. ⇒ 1.,3.

A proof of this statement is based on classical arguments of differential calculus and can be found

in Lachapelle (2010). It basically consists of introducing first order perturbations, the linearized

PDE and compute the first variation.

3.2.2. Existence

If problem (Q) has a solution, then proposition 3.1 ensures the existence of a Nash point

between the two groups. In order to give an existence result, we may reformulate the problem

following Benamou and Brenier (2000); Buttazzo et al. (2009); Lachapelle et al. (2010). We

adopt a vectorial point of view, and use the following notations:

• m = (m1,m2), and for all x = (x1, x2) ∈ R
2
+∗,

1
x

:= ( 1
x1 ,

1
x2 ),

• q = (q1, q2), and for all y = (y1, y2) ∈ R
d × R

d, |y|2 := (|y1|2, |y2|2),

• A := {(q,m) :
∫

Q
(∂tu+

σ2

2
∆u)dmi+

∫

Q
∇u.dqi =

∫

Ω
Ψimi(T )−u0mi

0
, ∀u ∈ C∞(Q), i = 1, 2}.

Next we formally introduce the new variables q = (αm,m) and the corresponding cost functional

K(q,m) =

{

Jλ(α), if q << m and q = αm

+∞ else,

where q << m means that the measure q is absolutely continuous with respect to m. In this

setting, a rigorous formulation of (Q) is

inf
(q,m)∈A

K(q,m). (15)

The reformulation allows us to prove the following proposition.
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Proposition 3.2. If λ ≤ 2 and m1
0
, m2

0
∈ L2(Q), then problem (Q) possesses a solution (which is

unique as soon as λ < 2). Moreover there exists a Nash point i.e. a solution of (N).

Remark 5. Note that existence does not fail when adding a constraint of the type m ≤ constant

as in Maury et al. (to appear).

Given the reformulation (15), the proof is a simple adaptation of the one obtained by Buttazzo

et al. (2009). The key points are to work on the space of bounded measures, to prove that the

functional K is lower-semicontinuous for the weak-⋆ topology and use Jensen’s inequality. A

complete proof of this proposition is provided in Lachapelle (2010). In the next section we deal

with defining a numerical procedure to approximate the solution.

3.3. Numerical setting

In this part we introduce the discretization and a gradient descent method in order to approx-

imate the solution(s) of problem (N). More precisely, we distinguish the cases when the joint

problem (Q) is convex from when it is not. In the convex setting (i.e. when λ ≤ 2) we describe

the gradient descent that we apply to the joint functional. The non-convex case λ > 2 (in which

the xenophobia is significant) is more involved but interesting (we expect non-uniqueness). Here

we use an alternating directions method which takes advantage of the convexity of group i’s

problem, given group (−i)’s evolution.

Gradient First of all, let us write the gradient formula of the functional. We look at the

reformulated problem given by (15). We slightly modify the point of view considering that the

density m is an affine function of the momentum q. To fix ideas, the joint problem reads as:

inf
q

F(q) :=
∑

i=1,2

(∫

Q

|qi
t |

2

2mi
t

+ Φi
λ/2(mt) +

∫

Ω

Ψimi
T

)

, (16)

where mi, i = 1, 2 solves :

∂tm
i −
σ2

2
∆mi = −div(qi), mi(0, .) = mi

0(.). (17)

The gradient of the functional can be calculated using classical differential calculus,

∀(q,m) ∈ A,∀w = (w1,w2) ∈ Mb(R2d), ∇F(q).w =

(∫

Q

( qi

mi
+ ∇θi

)

.dwi

)

i=1,2

, (18)

where θi satisfies, for i = 1, 2: θi|t=T = Ψ
i and

−∂tθ
i −
σ2

2
∆θi = −

|qi|2

2(mi)2
+ (2mi + λm−i). (19)

Algorithm for the convex case Since problem (16) is convex if λ ≤ 2, we use a gradient

descent method. We focus on the 2D-case (d = 2) and take Ω = [0, 1]2 with periodic boundary

conditions.

Let M and N be two positive integers, we define the time and space steps by dt = 1
N

and dx = 1
M

.

For (i, j, k) ∈ A := {0, ...,N} × {0, ...,M}2, for a given function f defined on Q, f i
j,k

denotes the

11



numerical approximation of f (idt, jdx, kdy). Equations (17) and (19) are iteratively solved by a

finite difference method. We use the following approximations

∂t f (idt, jdx, kdy) =
f i+1

j,k
− f i

j,k

dt
,

∆ f (idt, jdx, kdy) =
f i

j+1,k
− 2 f i

j,k
+ f i

j−1,k

(dx)2
+

f i
j,k+1
− 2 f i

j,k
+ f i

j,k−1

(dy)2
.

At step n, let f (n) :=
(

f
i,(n)

j,k

)

(i, j,k)∈A
. Then the gradient descent method (GDM) reads as:

1. Initialization:

Choose q(0) then compute m(0) by solving (17) with the finite difference scheme.

2. Step n:

• Compute θ(n) by solving numerically (19) with q(n−1) and m(n−1), then compute the

discretized gradient ∇F(q(n−1)) (formula (18)), using θ(n).

• Compute the descent: q(n) = q(n−1) − ρn∇F(q(n−1)).

• If ||q(n) − q(n−1)|| <Tol1, then stop the algorithm (Tol1 is a tolerance threshold defined

by the user).

Else, n = n + 1.

Note that ρn above is the descent step size, it is chosen optimal, i.e. minimizing the following:

ρ ∈ [0, 1]→ F(q(n−1) − ρ∇F(q(n−1))).

Alternating directions method for the non-convex problem We expect non-uniqueness in

the case where aversion to the other group is significant (λ > 2). It is well known that classical

gradient descent methods have convergence problems or diverge due to the non-convexity of the

functional. Therefore we use the alternating directions method, which uses the convexity of both

group i’s problem. The algorithm reads as: Given group (−i)’s evolution solve

inf
qi

F i(q) :=

∫ T

0

∫

Ω

|qi
t |

2

mi
t

+ Φi
λ(mt)dt +

∫

Ω

Ψimi
T ,

where mi solves (17) for qi, i = 1, 2. One can easily get the formula of the gradient of F i looking

at the joint case (18)-(19). Note that we can deduce m from our computation of q. The idea of

the alternating directions method is to apply GDM successively for each group. Note that the

upper index refers to the group number and the lower one to the iteration.

1. Initialization:

Choose q1
0

then compute q2
1

with GDM and q1
0
.

2. Step k > 1: We know q2
k
.

• Compute q1
k

then q2
k+1

by using GDM (with, respectively, q2
k

and q1
k
).

• If ||qi
k
− qi

k−1
|| <Tol2 for i = 1, 2, then stop the procedure.

Else, k = k + 1.

3.4. Simulations

The GDM shows good convergence results when the initials densities of individuals are sig-

nificantly positive (i.e. mi
0
> constant > 0). We set T = 1 and σ2

2
= 0.01 in all numerical

simulations in this section.
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3.4.1. Test 1: crowd aversion in a single group

In the first example we focus on a case involving only one population (m2
0
= 0), i.e. a similar

framework as the one studied by Buttazzo et al. (2009). Fig. 1 shows the initial density of

agents (centralized around the point (0.1, 0.1)) and the final cost, modeling a strong incentive for

individuals to be in some neighborhood of (0.5, 0.8) and (0.8, 0.5) at instant T .

(a) Initial density (b) Final cost Ψ

Figure 1: Data

(a) Density at instant t = 0.06 (b) Density at instant t = 0.5

Figure 2: Spreading over during the first half

Fig. 2 and Fig. 3 present the mass evolution at some chosen instants in [0,T ]. More precisely,

we may observe on Fig. 2 a first step corresponding to a spreading over of m (explained by the

aversion term and the diffusion parameter). Note that the running time of dispersion is greater

than one half. We then observe in Fig. 3 a split inside the population so that individuals can

converge to the two attractive areas. Finally, the discrete energy seems to reach quickly the

minimum (5 iterations), see Fig. 4.

3.4.2. Test 2: groups interactions

Next we consider a more interesting example with two populations. Recall that we look

for Nash equilibria between two groups whose global optimization problem is (15). We use the

13



(a) Density at instant t = 0.9 (b) Density at instant T = 1

Figure 3: Splitting and centralization during the second half

Figure 4: Value of F for each iteration

procedure detailed before (starting with group 2). In order to emphasize the xenophobia behavior

we choose λ = 20 in the definition Φi
λ
(m1,m2) =

∫

Ω
(mi)2 + λm1m2. We consider a symmetric

configuration and represent the graphs of the initial densities (mi
0
, i = 1, 2) and final costs (Ψi,

i = 1, 2) in Fig. 5. Group 1 is initially centered around (0.35, 0.5), group 2 around (0.5, 0.35).

Concerning the final costs the situation is still symmetric since they model incentives to reach

positions in the neighborhood of (respectively for group 1 and 2) (0.65, 0.5) and (0.65, 0.5).

With such a situation we are interested in crossing phenomenon. The graphs of both densities

are depicted in Fig. 6. Note that we observe the same spreading as in Test 1. However, the

most interesting evolution period is described in Fig. 7. Indeed, we can see that group 1 gives

the priority to group 2 to go to its attractive area passing through the center of the domain (the

shortest road for the euclidian metric). Some of the individuals of group 1 wait, some others go

through the border (periodic conditions), and the lasts go through the center (the most congested

area). Anyway we note that group 2 reaches its goal quicker than group 2. Looking at Fig. 8, we

can check that both group are finally centered around the points (0.65, 0.5) and (0.5, 0.65).

Finally we remark that we obtain the opposite (or symmetric) situation, i.e. when starting to

optimize with group 1. Then, the symmetry breaking seems to be a consequence of this starting

choice.
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(a) Initial densities (b) Final costs Ψi

Figure 5: Data

(a) Densities at instant t = 0.1 (b) Densities at instant t = 0.4

Figure 6: Spreading over of m1 and m2

(a) Densities contour lines at instant t = 0.65 (b) Densities at instant t = 0.75

Figure 7: Group 2 go through the middle of the domain as some agents of group 1, nevertheless most of group 2

individuals transit by the border (periodic conditions)
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(a) Densities at instant t = 0.9 (b) Densities at instant T=1

Figure 8: End of the period evolution

4. Congestion: stationary lane formation

This section is devoted to mean field game congestion models. We start with the motiva-

tion for a single population, and then present the generalization for two populations. Note that

although the basic assumptions on the cost functional are quite simple, the model is capable of

reproducing interesting phenomena like lane formation.

4.1. Single species congestion model

Here we define as in Lions (2008-2010) the running cost as fi(t, x, α,m) = (
|α|q

q
(x̂−i)a +

k(t, xi))e−rt, where:

• k models panic (this permanent cost does not depend on density or time, the larger it is the

faster people want to get out),

• r > 0 is the discount factor (i.e. the actual position of all other people affects the strategy

of an individual much more than the evolution in time),

• we write here the general case where q > 1 but we will in fact focus, as usual, on the

quadratic case q = 2

• the nonnegative power index a models how congestion impacts the cost to move. Note that

the running cost increases with the a-th power of the distribution of people, forcing indi-

viduals to avoid congested areas. Note that for a = 0 the cost does not penalize congestion

(for a fixed value of q). Furthermore we can show uniqueness of solutions if a < a∗, where

a∗ is a nonnegative constant depending on q (see Lions (2008-2010)) for more details).

Then the corresponding stationary MFG (see Lasry and Lions (2007) and Lions (2008-2010) for

the detailed derivation) is given by

ν∆u +
1

p

|∇u|p

mb
+ −ru + λ = k (20a)

−ν∆m + div(m
(∇u)p−1

mb
) = 0 (20b)

m > 0,

∫

udx = 0,

∫

m dx = 1, (20c)
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with ν = σ
2

2
, b = a

q−1
and p =

q

q−1
.

4.2. Two-population model

The corresponding two species model looks slightly different. Here we assume that each

density would like to avoid congestion within its own group as well as with the other. The

corresponding running cost is given by

fi(t, x, α,m) =

(

|α|q

q
(mi)

a(m j)
ã + k(x, t)

)

e−rt (21)

for i = 1, 2, with m = (m1,m2). Note that when ã > a, individuals of one crowd primarily avoid

congestion with people from the other group. Then the corresponding mean field game for m1

and m2 reads as

ν∆ui +
1

p

|∇ui|
p

mb
i
mb̃

j

− rui + λi = k (22a)

−ν∆mi + div(mi

(∇ui)
p−1

mb
i
mb̃

j

) = 0 (22b)

mi > 0,

∫

uidx = 0,

∫

mi dx = 1, (22c)

with i, j = 1, 2 and b̃ = ã
q−1

. To avoid the division by zero we consider a slightly different model

(which corresponds to consider (c + m) instead of m in the running cost (21)), namely

−ν∆ui +
1

p

|∇ui|
p

(c + mi)b(c + m j)b̃
− κui + λi = k (23a)

−ν∆mi − div(mi

(∇ui)
p−1

(c + mi)b(c + m j)b̃
) = 0 (23b)

mi > 0,

∫

uidx = 0,

∫

mi dx = 1. (23c)

for a positive constant c.

We choose homogeneous Dirichlet conditions for mi at the exit (people leave the room, hence

the density has to be zero) and a homogenous Neumann boundary conditions on the rest of the

boundary, i.e.

mi = 0 for all x ∈ Γout
i and

∂mi

∂n
= 0 on the rest of the boundary. (24)

The same boundary conditions are set for ui. Here the additional variable λi and the integral

condition for ui are not necessary. We replace the integral condition for mi by a source term in

the Kolmogorov equation, i.e.

−ν∆mi − div(mi

(∇ui)
p−1

(c + mi)b(c + m j)b̃
) = f (x).

This source term can be interpreted as an exit of an underground or a large supermarket.
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Figure 9: Sketch of the computational domain with two exits

4.3. Numerical simulations

Finally we would like to illustrate the behavior of the proposed congestion model (23) with

various numerical simulations. Note that system (23) is a coupled system of four nonlinear PDEs,

which can be solved using Newtons’ method. The abstract formulation of (23) is given by

F(u1,m1, u2,m2) = 0

where F is a nonlinear operator. Hence Newtons’ method reads as

JF(wn)qn = −F(wn), wn+1 = wn + τqn,

where wn = (un
1
,mn

1
, un

2
,mn

2
) denotes the n-th Newton iterate, JF(wn) is the Jacobi matrix evalu-

ated at wn and τ is an appropriate damping parameter. We use a hybrid discontinuous Galerkin

method to discretize the Newton system in space. All computations and simulations are based

on the softwares package Netgen/NgSolve (cf. Schöberl (1997)) and Pardiso (cf. Schenk and

Gärtner (2004b,a)). Throughout this section we choose the following parameters

q = 2, r = 1 and k = 1.

4.3.1. Validation of the model

First we would like validate our mathematical model with a simple test case. We choose a

rectangular domain of size [−1, 1] × [−0.2, 0.2], that has two exits (see Figure 9). We have two

sources fi, i = 1, 2 (Gaussians) located at (0.8,−0.1) and (−0.8,−0.1). The first group located at

(0.8, 0.1) wants to exit at the upper left door, while the other one wants to get to the lower right

one. We assume that people want to avoid congestion within their own and the other group at the

same level, i.e. a = ã = 0.5. The diffusivity parameter is set to ν = 0.05.

The intuitive solution of this problem is that each group stays in its “predefined” lane, that is de-

termined by the offset of both sources. Our numerical simulations confirm this intuitive solution,

we observe the formation of two lanes in Figure 10.

4.3.2. Avoidance behavior

Next we would like to study the avoidance behavior if two groups move towards each other

without the possibility to totally avoid the other group. We choose the same domain as in the first

example, only the exits are different. Here the exits are located at x = ±1. We put two sources

of people at (±0.8, 0), each group wants to move to the opposite exit. Again we set a = ã = 0.5

and ν = 0.05. The solution is depicted in Figure 11, we observe that both groups move towards

each other. Because of the high densities at x = ±0.8, the groups split and merge behind the high

density regions.
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(a) Population m1 (b) Population m2

Figure 10: Validation: top view of both groups

(a) Population m1 (b) Population m2

Figure 11: Avoidance behavior: top view of both groups

4.3.3. Obstacle problem - symmetry breaking

Let us consider a domain with a circular obstacle, i.e. a rectangle [−1.5, 1.5] × [−0.2, 0.2]

with a circular obstacle of radius r = 0.05 located at (0, 0). Here we place two sources of people

at (±0.75, 0), the exists are located on the right and the left of the domain. We assume that

the groups do not strongly mind congestion within themselves, but clearly with the other group.

Hence we choose two different coefficients a and ã, i.e. a = 0.25 and ã = 0.75. Here the diffusion

parameter is set to ν = 0.05. The solution of the Newton iteration is illustrated in Figure 12. Here

we observe the loss of symmetry and the consequent formation of lanes, i.e. each group passes

the obstacle on one side.

We think that the different values of a and ã facilitate the symmetry breaking. Furthermore we

suspect that the geometry of the domain as well as the diffusion parameter play another role in

this complex process.

(a) Population m1 (b) Population m2

Figure 12: Obstacle problem: top view of both groups
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(a) Population m1 (b) Population m2

Figure 13: Corridors: top view of both groups

4.3.4. Corridors

Finally we consider a more complicated domain, i.e. a rectangular domain which has an

L-shaped obstacle in the center (see Figure 13) . This obstacle creates a small “door” on the left

side. We place two sources at the lower left and lower right corner at (0.35, 0.3) and (1.4, 0.3).

The exits are located at the right and left side of the rectangle, each group wants to get to the

opposite exit. We set a = 0.5 and ã = 2, i.e. people within a group try to avoid congestion

with the other group but do not mind congestion as much within their own group. The diffusion

parameter is set to ν = 0.1. Again we observe lane formation, the first group takes the small

door to exit at the top edge, while the second group takes the left corridor to exit on the bottom

edge (see Figure 13). From our viewpoint this is a reference example where pure forward models

may fail to describe this “anticipation” solution. Indeed, there is no reason why the pedestrians

coming from the right source should avoid the lower corridor if they do not anticipate that people

coming from the left source will reach the small door much faster (which is naturally a congested

area).

5. Conclusion and outlook

In this paper we presented a new mathematical modeling approach for crowd motion models.

It is based on the theory of mean field games, which assumes that individuals are smart players

which try to optimize their strategy and path with respect to certain costs (equilibrium with

rational expectations approach). This clearly differentiates MFG from robot or automata models.

We focused on modeling aversion and congestion behavior between two groups of pedestrians

via MFG. In both cases we provided numerical solutions to approximate the solutions. Here

we were able to reproduce characteristic features of crowds like lane formation or symmetry

breaking. We showed that many situations can be treated via MFG (finite horizon vs stationary

problems, aversion vs congestion, objective function vs panic, boundary conditions and sources

terms). The main feature of MFG is the forward-backward structure, the usual forward part

describes the crowd evolution while the backward gives the process of how the expectations are

built.

To the best of our knowledge this is one of the first applications of MFG to pedestrian crowd

modeling. It is thus necessarily imperfect and many things remain to be done. Here we list some

of them. First it would be interesting to introduce a common noise (e.g. modeling an earthquake

incidence or a bridge failure’s rumor etc.). This is feasible in a MFG setting, but leads to infinite

dimensional PDEs (thus more complicated). Furthermore we would like to include the realistic

assumption that people can not observe the whole distribution of the crowds. This could be

accomplished by introducing partial blindness. The goal is then to model myopic individuals.

We think that the proposed MFG models give a good impression of the possibilities of mean field
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games theory. These models may serve as a first and promising step towards the development of

more realistic MFG models for crowd motion.
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http://www.college-de-france.fr/default/EN/all/equ der/index.htm.

Maury, B., Roudneff-Chupin, A., Santambrogio, F., to appear. A macroscopic crowd motion model of gradient flow type.

Math. Models Meth. Appl. Sci.

Schadschneider, A., Chowdhury, D., Nishinari, K., 2007. Pedestrian and Evacuation Dynamics 2005. Springer Berlin

Heidelberg, Ch. From Ant Trails to Pedestrian Dynamics — Learning from Nature.
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