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Abstract. In this paper, some of the formal arguments given by Jones and Kline [J. Math.
Phys., v. 37, 1958, pp. 1-28] are made rigorous. In particular, the reduction procedure of a
multiple oscillatory integral to a one-dimensional Fourier transform is justified, and a
Taylor-type theorem with remainder is proved for the Dirac 8-function. The analyticity
condition of Jones and Kline is now replaced by infinite differentiability. Connections with
the asymptotic expansions of Jeanquartier and Malgrange are also discussed.

1. Introduction. In [12] Jones and Kline have given an ingenious derivation of the
asymptotic expansions of the double integral

(1.1) I(X) - ff gix,y)eW*^ dx dy,
where D is a bounded domain, g and/ are real-valued analytic functions in D, and
X is a large real parameter. Although ingenious, some of their arguments seem to be
only formal and require justification. We are particularly concerned with (i) the
procedure which they have used to reduce /(a) to a one-dimensional Fourier
transform, and (ii) the validity of a Taylor series expansion for the Dirac fi-func-
tion. Our objective here is to show that the reduction procedure of Jones and Kline
can be made rigorous, and to present a Taylor-type theorem with remainder for the
S-function. In our analysis, / and g need be only sufficiently smooth.

There are several other methods of obtaining asymptotic expansions of /(\). The
better known ones, in addition to that of Jones and Kline [12], are due to Focke [6],
Chako [3], and Bleistein and Handelsman [1]. The advantages of the Jones-Kline
method are: (i) it is easier to calculate the coefficients in various asymptotic
expansions of 7(\); (ii) it enables one to use the well-developed asymptotic theory
for the one-dimensional Fourier integral, including, probably, the error analysis
recently established by Olver [14]; and, most importantly, (iii) it gives explicit
asymptotic expansions for the Dirac distribution 8{t — fix,y)} concentrated on
the curve / = fix, y) for small t. Asymptotic expansions for such curve (or, more
generally, surface) distributions have been obtained by Gel'fand and Shapiro [7],
and also by Jeanquartier [10]. In Section 5, we shall give a more detailed discussion
in connection with their work.
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510 R. WONG AND J. P. McCLURE

2. Reduction to a Single Integral. In order to reveal the subtlety of the problem in
hand, let us briefly repeat some of the arguments given in [12].

Let m and M denote the infimum and supremum of fix, y) in D, respectively.
Then

(2.1) eiXf=[MeiX,8it-f)dt,
•'m

where 8 is the one-dimensional Dirac delta function. Inserting (2.1) in (1.1), we
have

(2.2) /(A) -ffg(x,y)fMe°*8{t - f(x,y)) dt dx dy.
Interchanging the order of integration gives

(2.3)

where

(2.4)

/* K4

IiX)=\    eiX'h(t)dt,

*(')=// g(x, y)8{t- f(x, y))dxdy.

The double integral is thus reduced to a single Fourier integral.
Observe that the right-hand side of Eq. (2.1) is not really an integral. It is only a

symbolic notation customarily used to represent the Fourier transform of the
distribution 8(t — f). Thus, Eq. (2.1) holds only in the sense of distributions. With
this in mind, the interchange of order of integration in (2.2) becomes meaningless.
Also, observe that the right side of (2.4) cannot be a double integral, since the set in
which the distribution 8{t — f(x,y)} does not vanish has (2-dimensional Lebesgue)
measure zero.

One of the ways to legitimately reduce the double integral I(X) to a single
Fourier integral is to use the method of resolution of double integrals given in [4,
pp. 298-300]. That is, to calculate I(X) by using a subdivision determined by the
curves fix, y) = constant and their orthogonal trajectories. Thus, with fix, y) = t
and o being the arc length of this curve, we have

(2.5)

where

(2.6)

I(X) = fe"h(t) dt,

hit)=f
f(*JY

g(x,y)

-'^fî+fy2
do.

Comparing (2.3)-(2.4) and (2.5)-(2.6) suggests that the correct interpretation of
the double "integral" in (2.4) is to view it as the Une integral in (2.6). In fact, it is
this line integral which is frequently used to define the curve distribution
8{P(x,y)}, where P(x,y) is any sufficiently smooth function with VP =
(dP/dx, dP/ay) nowhere zero on P(x,y) = 0. Thus, if g(x,y) is a C "-function
with compact support, then we define

g(x,y)
. -o  |VP|

see [8, p. 222] and [11, p. 263].

(2.7) <o(P),g>=/ do;
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ASYMPTOTIC EVALUATION OF MULTIPLE INTEGRALS 511

There is an alternative definition of the distribution 8(P), which may serve as a
justification for the interchange of the order of integration in (2.2)-(2.3). Let 9(P)
denote the characteristic function of the region P(x, y) > 0:

(2.8) 9(P)={°    ÍOTP<0'V    ' K   '      \ 1    for P > 0,

and define the distribution associated with this function by

(2.9) (9(P),g)=(f     g(x,y)dxdy.

Since the one-dimensional 5-function is the (distributional) derivative of the
Heaviside step function, it is natural to define

(8(P), g) = Urn -<0iP + c) - 9iP), g)
c-»0 C

(2.10)
= linn7ÍÍ g(x,y)dxdy.

c->0 C J J-C<P<0

This definition is due to Seeley [16]. By the argument immediately preceding
(2.5)-(2.6), it is easily seen that the double integral in (2.10) is equal to

nJ-rJ t

g(x,y)
P(xy)-i

VpT da dt

see, again, [4, pp. 298-300]. Thus, the above two definitions of r5(P) agree. Observe
that, if we interpret the double "integral" in (2.4) in the sense of the limit in (2.10)
with P(x, y) = t — fix, y), then substituting (2.4) in (2.3) and reversing the order of
integration shows that the double integral in (1.1) and the single Fourier integral in
(2.3) are indeed equal.

3. A Taylor-Type Expansion for the 5-Function. Let us now return to (1.1) and
assume that (0, 0) is a critical point of /, i.e., (V/)(0, 0) = (0, 0). For simplicity of
illustration, we further assume that g vanishes C "-smoothly on the boundary of D,
i.e., g G Cca(D) and g together with all its derivatives vanish on oD, and that the
origin is the only critical point of f(x,y) in D, i.e., (Vf) ^ (0, 0) in. D ~(0, 0).
Under these conditions it is well known that the major contribution to the
asymptotic expansion of I(X) comes from the immediate vicinity of the critical
point (0, 0); see [1, Section 2] and [3, Section 3(a)]. (This fact seems to be
particularly transparent from the representation of I(X) given in (2.5)-(2.6).) Thus,
without loss of generality, we may suppose that D is some sufficiently small
neighborhood of (0, 0). The above ideal situation can be realized by using an
appropriate van der Corput's neutralizer to isolate the critical point at the origin;
see[l] and [3].

As in [12, p. 5], we now set

(3.1) f(x,y) = f0ix,y)+fl(x,y)
and introduce the new variables
(3.2) i = U{x,y),   r, = *(*,.y),
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512 R. WONG AND J. P. McCLURE

where ^ is at our disposal. If we write

(3.3) Fil V) = fi(x,y),    *«, i») = 8i*,y)^jj

and extend g to be identically zero outside D, then

(3.4) //,**(' -f)dxdy= //*«(/ -t-F)dtdn.

(Here we have used the assumption that g vanishes C "-smoothly on oD.) Since
both sides of (3.4) are not really double integrals as we have pointed out earlier,
this relation holds only formally. The correct interpretation of (3.4) is

(3.5) <«(/-/),*> = <«(f-i-n*>
or, equivalently,

g(x,y)   . _ r $(£ *0<"> LW-U do',
-/   17/1 Jl=i+F\V(£ + F)\

where do' denotes the length of the curve / = £ 4- F(£, tj). In (3.6), the gradient on
the left-hand side is taken with respect to the variables x and y, whereas the
gradient on the right-hand side is taken with respect to £ and n. The last identity
can be proved by using (2.10) and the familiar change-of-variables formula.

For k = 1, 2, ..., we define the derivatives 5W(P) of the distribution 8iP) by

(3.7) 5<*>(7>) = \im-[8ik-l\P + c) - «<*-»(/»)].

It is easy to see that

(3.8) (8Mit-0,<p)=r^-k<pit,r,)ctn
-'-oo atk

for any C "-function <p(£, tj) with compact support.
The idea of Jones and Kline is to expand the 5-function on the right side of (3.5)

into a Taylor series, that is, to write

(3.9) (Sit - Í - F), *> - 2 ^<o(r)(i - É)FU V), *>.
,=o    ''/"!

Such an identity can be easily shown to be true if F is independent of £, and O is
analytic. But, if F depends on £, the validity of (3.9) requires justification. In what
follows, we shall show that under our C"- (instead of analyticity) conditions, the
5-function in (3.9) has a finite Taylor expansion plus an explicit remainder term,
from which the remaining analysis of Jones and Kline can be continued and the
various asymptotic expansions of I(X) be derived.

We first need the following lemma, a proof of which can be found in the
appendix.

Lemma 1. Let fand g be C°°-functions, and let n be a nonnegative integer. Then

[f(x)g"+x(x)f+1) -- S (" + \)[f(x)g^(x)f" + x\-g(x)Y+x
(3.10) P-o\P + l>

+ (n+l)\f(x)[g'(x)y + x.
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ASYMPTOTIC EVALUATION OF MULTIPLE INTEGRALS 513

Lemma 2. Let 4>(£, rj) be a C ^-function with compact support, and F(£, n) be a
C°°-function with dF/d£ > -1 on the support of O. If £t denotes the solution £(Cî) to
the equation t = £ + F(£, n), then for any n > 0

(3.11)   <*(/ - * - n *> - i M^<nt i)«(r)(< - ö. *> + *»+.(').
c-0      r-

w/zere

(3.12) Rn+M= rrH+¿t,i,)dn
•'-00

,_ttft,TO[-Ftfa,„)]"+i
Vil'»«- 1 + F{ft,,)

(3-13) «      i      /*        a-»

Proof. Since 1 + Fj > 0, by the imphcit function theorem, there exists a solution
£,(■»)) to the equation t = £ + F(£, n), and hence we may write explicitly

.,     V[l + Fffe,T?)]2+[/;(£„ n)f
1 + F£(£„ r,)

From this and the line integral on the right-hand side of (3.6), it follows that

•oo        Gfolj)(3,4) <a(,-t-n#>-£-Jk3^*

Since distributions multiplied by C "-functions are, by definition, the distributions
acting on test functions multiplied by the C "-functions, we also have from (3.8)

(3.15) <«<'>(/ - One, tj), *> =f ^[*(t, rùnt, *?)] an.
Thus, rn+x(t, n), as given in (3.12), satisfies

(3.16)     '-At>-TT^f-£*# pi*^('•')]-
To show that (3.13) holds, we proceed by induction. When « = 0, the result

follows immediately from the fundamental theorem of calculus. Assuming that the
statement is true for n = k, one can show that it holds also for n = k + 1 by (i)
inserting (3.13) (with n = k) in

(3.17)       r,+2(f,r,) = rM(U *) - £|£^ ^[«ÍM)***^)].

(ii) integrating the terms under the sum by parts, and (iii) adding and subtracting
the terms

•felÖHWir,*)]**'
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514 R. WONG AND J. P. McCLURE

and

(-1)*+1
(* + O! ^{^,ri)Ft+1(U)}

3£*+i Jí-í.
Here use is made also of the identity in Lemma 1. This completes the proof of
Lemma 2.

4. The Behavior of h(t) Near the Origin. From the theory of one-dimensional
Fourier integrals, it is now well known that the asymptotic behavior of I(X), given
in (2.5), as X -^ oo, is completely determined by the behavior of the function h(t),
given in (2.6), in the neighborhood of t = 0. In this section we shall show that
under our C" (instead of analyticity) conditions set in Sections 2 and 3, the
function h(t) indeed possesses asymptotic expansions near t = 0. Since much of
our analysis is similar to that given in [12, Section 5], we shall present only the case
in which (0, 0) is a local extremum of fix, y).

Since / is a C "-function, we may expand fix, y) into a finite Taylor series with
remainder. The linear terms do not appear, because (0, 0) is a critical point. The
constant term can be omitted because it contributes only the factor exp{rX/(0, 0)}
outside the integral. Hence,

f(x,y) = {f20x2 + fnxy + /02V2} + higher terms.
By a simple rotation of coordinates, we may, without loss of generality, assume that
the cross-product xy vanishes, i.e., /n = 0; see [2, p. 326]. This simplification is
made, essentially, in all derivations of the multi-dimensional stationary-phase
approximation. Thus, the first few nonzero terms of/are given by

(4.1) f(x,y) = f20x2 + /œV2 + cubic terms +-
Let us assume that both /^ and f^ are positive, i.e., (0, 0) is a local minimum.

Put

(   } *    ill2 ' y   k   fU2 '
Then
(4-3) £ = /2o*2+/o2V2,

and
d(x,y) 1

(4.4)

Since f(x,y) = £ + F(£, n) by (3.1)-(3.3), we have, from (4.1) and (4.2), 1 + 3F/3£
= 3//3£ > 0 on the support of $. (Keep in mind that the support of «P can be
taken to be any shape and arbitrarily small as long as it contains an open disk with
center at the origin; see the first paragraph of Section 3.) Since (0, 0) is a local
minimum, m = 0 in (2.5) and h(t) = 0 for t < 0 in (2.6). Recall that
(4.5) hit) = <5(/ - /), g) = <5(f - £ - F), *>.
Combining (3.11), (3.15) and (4.2), we have for / > 0

(4-6) hit) = |oífíí[^l)nM)] dn + Rn+Xit).
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f•'n

Since/and g are C", so are <I> and F. Therefore, by (4.2), for any N > 1,

(4.7) *#*& i>m V) =  2* cM(r?)£"/2 + OiiN'2),
r- M=o

where ^(tj) is a polynomial in cos tj and sin tj, and the 0-symbol is independent of
tj. Since it is easily shown that

r2ir
c„(n) dn = 0,       /i = 1, 3, 5, . . . ,

/o
(cf. hnes 7 and 8 in [12, p. 16]), each term in the series of (4.6) has an asymptotic
expansion, as r-»0+, of the form 2"_0a„rf', where the coefficients a„ are
constants. If we can show that

(4.8) R„+X(t) = 0(i<"+1>/2),   as/^0+,

then we succeed in establishing the asymptotic expansion
00

(4.9) A(0~2V.   asf^0+.
x-0

The coefficients av are of course those already given in [12, Eq. (33)].
Here we wish to point out that we have not established the equality in (33) of

[12] (even under the stronger assumption of analyticity). What we have shown is
that Eq. (33) there holds at least asymptotically. This is, nevertheless, all one needs
to derive the desired asymptotic expansion of the double integral /(A).

To prove (4.8), we return to (3.12) and (3.13). Note that, as £-»0+, we have

(4.10) *tt,u)~2ô,(î|)€'/2,
x-3

where ¿„(tj) is a polynomial in cos tj and sin tj. This series can be termwise
differentiated to yield an asymptotic series for F(H, tj). By substituting (4.10) into
the equation t = £ + F(£, tj) and inverting the resulting series, we have

(4.11) i ~ t + 2 dr(v)tp/2,   as t -> 0.

The first term on the right side of (3.13) is now clearly of the order 0(tin+x)/2).
Each of the integrals under the summation sign in (3.13) is also of this order, since
|£, - i| = 0(t3/2), and hence

rj t\t - ju)yn-3r-2)/2 dp = 0(r<"+1>/2),

as / ->0+. This proves that rn+x(t, tj) = 0(t(n+X)/2) as / ->0+. Since the 0-symbol
here is independent of tj, the validity of (4.8) is therefore established.

Here we wish to point out that if we assume that / and g in (4.5) have only a
finite number of continuous derivatives, then a finite (instead of an infinite)
asymptotic expansion of the form (4.9) can still be obtained for h(t) and hence for
the double integral I(X) in (1.1). Also, it is obvious that this weaker assumption will
not cause any complication in the derivation of the final result.

When f20 and /^ are both negative, i.e., (0, 0) is a local maximum, we have
M = 0 in (2.5) and h(t) = 0 for t > 0 in (2.6). The analysis in this case remains
essentially unchanged.
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516 R. WONG AND J. P. McCLURE

To conclude this section, we also make a remark concerning the change of
variables

(4.12) £ = f20x2 + f^y2   and   tj = x
made by Jones and Kline, in the case when f20 > 0 and f^ < 0, i.e., (0, 0) is a
saddle point, see [12, p. 16, Section 5.2]. Since 3(£, n)/a(x,y) = 0 when>> = 0, the
Jacobian 3(x, y)/3(£, tj) in (3.3) does not exist there, although their result is still
correct since the integral after the transformation converges as an improper
Riemann integral. However, it appears to us that it is more natural to let

(4.13) * = £'/2^l,   y = £'/2-SinhT'
fU2 (-/o,)'72

Then we have

(4.14) l = /2o*2+/o2V2,
as in (4.3), and the Jacobian in this case is a constant

(4.15) ¿gui- —J=-.

Using our transformation (4.13), we need consider integrals of the form

(4.16) /*„ = r^cosh^q sinh'Vj dv,

where m + n is a nonnegative even integer and

(4.17) 71,(0 = 0,   Tj2(0 = cosh-1[i/(/20/f)1/2]       id>0).

These integrals can be easily evaluated with the aid of integral tables, and they are
related to those Im„ considered by Jones and Kline. In fact, a simple change of
variable shows

(4.18) /m,„ =
.m + n

rm+1/2    m.n"
J2C120

5. Remarks on Asymptotic Expansions of Surface Distributions. From the analysis
in [12] and the present note, it is evident that the method of Jones and Kline can be
applied to integrals of higher dimensions. In a more recent paper [13], Malgrange
has also studied the asymptotic behavior of the integral

(5.1) /(A) = ( gix)eiX^ dx,
JR"

as A-» +00, where/ is a real analytic function on R" and g is a C"-function on
R" with compact support. More specifically, he has shown that this oscillatory
integral has an asymptotic expansion of the form

(5-2) /(A)~2c^—'(logA)*,
where 0 < q < n — 1 and a runs through a countable set of positive rational
numbers; see [13, Eq. (7.4)]. Although Malgrange has pointed out that the a's and
q's are related to the Picard-Lefschetz monodromy of/at 0, no explicit expressions
are given for these exponents; see, also, [9] and [5, p. 262]. This is mainly because
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ASYMPTOTIC EVALUATION OF MULTIPLE INTEGRALS 517

of a result due to Jeanquartier, which Malgrange has employed in the derivation of
(5.2). Malgrange's approach can essentially be described as follows. Proceeding as
in Section 2 of the present note, he first reduces the multiple integral (5.1) to a
one-dimensional Fourier transform by writing

(5.3) I(X)=re^(8(f-t),g)dt,
•'-oo

where <5(/ - t), g> is the surface distribution defined by (2.7); see [13, Eqs. (6.1)
and (7.1)], and then termwise integrates the asymptotic expansions

(5.4) <5(/ - t), g) ~ 2 a£\t\"ilog\t\y,

as /-»O*; see [13, Section 7]. The existence of these expansions has been estab-
lished earlier by Jeanquartier [10], who has also shown that these expansions can be
differentiated term by term to give asymptotic expansions of the successive deriva-
tives of <5(/ - t), g}. However, the method of Jeanquartier leads to only an
existence result, whereas that of Jones and Kline can be used to construct
asymptotic expansions of the form (5.4) in most cases. Furthermore, Jeanquartier
(and hence Malgrange) assumes that / is real analytic, whereas the result of Jones
and Kline now only requires / to be C " (in view of Lemma 2 of the present note).
In fact, it is these differences that have motivated us to make the formal arguments
in [12] rigorous. Another point which we wish to make is that, when the coefficients
a^ in (5.4) are explicitly known, the asymptotic expansion (5.4) may become
simpler. For instance, in the case when n = 2 and the origin is a saddle point, the
asymptotic expansion of <5(/ - /), g> is given by

(5.5) <5(/ - t), g) ~ 2 <f Vlog|i|,   as |r| -* 0+,

where the coefficients cs(±) satisfy cJ(+) = ci(_) for all s > 0; see [12, Eq. (37)].
Therefore the asymptotic expansion of /(A) in this case is of the form

(5.6) /(A) ~ 2 asX~s~\   as A ̂  +00,
i = 0

and does not involve logarithms; see [12, the paragraph immediately following Eq.
(37)].

To conclude this paper, we also call attention to an asymptotic expansion,
similar to (5.4), given in Gel'fand and Shilov [8, p. 326]. Let / and g be C"
functions on R " and g have compact support. Assume that the hypersurface / = 0
consists only of reducible points (see [8, p. 313]) and that the hypersurf aces / = t
with / > 0 have no singular points at all (i.e., (V/)(x) ^ 0 for all xon/= t). Then
it has been shown that

OO        mk

(5.7) <«(/-0,S>~2   2 «W^-'OogO""1.   as/^0+,
k-lm=l

where the \'s are positive rational numbers arranged in an increasing order and
the mk's are nonnegative integers. This result is actually due to Gel'fand and
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Shapiro [7], and their method proceeds as follows. First they show that the function
FiX), defined by

(5.8) F(A) = [    f\x)gix) dx,       ix G R"),

is meromorphic in A and that its poles can be arranged in a decreasing order

-A„ -A2, . . . , A*, . . . ;       0 < A, < A2 < • • • < Xk < . . . .

Next they observe that putting

(5.9) 7(0 = <5(/-/),g>
gives

(5.10) FiX) = riit)txdt.

(This identity can be proved by using the method of resolution of multiple integrals
mentioned in Section 2.) The integral on the right-hand side is the Mellin transform
of /(/) evaluated at A + 1. Thus, by the Mellin inversion formula,

(5.11) iw-¿r+,v-if&)A.
¿m Jc-iaa

Finally, shifting the contour of integration to the left, they obtain the desired
expansion (5.7). The terms in the series (5.7) are thus picked up as residues, the
integer mk is the multiplicity of the pole at -Xk, and akm is (-l)m/(m — 1)! times
the coefficient of (A + Xkym in the Laurent expansion of F(X) about the pole at
-V

Although the result of Gel'fand and Shapiro given in (5.7) appears to be more
explicit than that of Jeanquartier given in (5.4), the determination of the locations
of the poles of F(X) and the calculation of the coefficients akm in (5.7) are still
difficult tasks.

It is obvious that the asymptotic expansions mentioned in this section are
intimately related to the work of Jones and Kline, this fact, however, does not seem
to have been observed before.

Appendix. In this appendix we shall prove Lemma 1. The case n = 0 is essen-
tially the product rule. For n > 1, we need the following identity [15, Section 0.43,
p. 19], which is known as the Leibniz rule for composite functions: For any positive
integer r,

(ai) (/o g)<-> = 2 /«> o g2ctti,,r n (g(T,
/-] a ,-1

where the coefficients cajr are positive integers, and the second sum runs over all
multi-indices a = (a,,..., ar) of nonnegative integers such that a, + • • • +ar =

j and a, + 2a2 + • • • + rar = r. First we consider the left-hand side of (3.10). The
following steps are straightforward.
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/ in + 1)!

(n+l)        n+]

Ai j y    [(n+l)!
./(-«)j!l+yí» + lUHy        g" + '-p

3    i»+ i)i   fry j y       fl(B + 1_/,)!
x2^n(awi-i

(Al) n+l

+/2 v..7"^,2ew„ II (¿T +/(gT+1,-, (n+l - />)! i = i

= yt«+i)_£
n+l

(n + l)!
n     n+l

+ /(*')
n+l

+ 2 2il, + 1W1^   g Sc

x n u(t.
Next we consider the right-hand side of (3.10). We obtain

!(«+») i-gf+x2_ r     o«-f-2
/,=0 (P + 1)!

n    n + l

+ f(g'Y(n-p)\

=/ur+1-2 ïi't'W

= /U')"+1- 2/n+V+

-» gn-p

(n-p)\

(j) (-gf+l
(p + 1)!

,-jn + l v>   rin + n.m-1 (~V

p-0 (»-/»)!(/»+ 1)1

2 2 r t] V"1-» 2 , g „   rV 2 ca,rJ,=o,=i\   J   i r-i(n-p-n] «

n-1n-p

p=u j

j + 1

(A2) x ïï(g('))'" ( g^X,íVg  J   (/> + !)!
n-l        n+ln —i        n+i       /       i    i \ "   y #»n—/> —r- T      V     ln+ l lAn+i-y) y __£_Ä,-Ä+i'    ̂      ' Ä(i»-J»-r)l

xTc   Tí (g(,)r ̂ ~g^+rvji,u ; (p + iy.

= f(gT+l+f{n+l)TÄ
n + l

(» + O!
n    n-p + 1 /        .    ,\ J „n-p-r+1

¿i   jit   \    J    I1 rÍx(n-p-r + l)\

x2ca,,,,n(g<'>ri#
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(Equation (A.2) continued)
n n + l        i        .    i\ n—p + 1 n-p-r+\

- y     y    í "     i/-(«+•-y) y  _£_,Íij-Á+2\    J    y il    in-p-r+l)\

x2^nu<Ti#
a , = 1 /*!

_n + l
=   fío')"+X +   A"+D_I-

Ag; 7 (fl+1)!

_   _    n-^+ln-^+1 ^ g-'+\-lY

,Íi   ,Ít     jir   {    j    y in-p-r+ l)\p\

x2^n (g(i)r
a i = l

n     n-p+1       n+\        , . „_r+1.

„f,    Ä   ,-„~+2l    ;     y in-p-r+iy.

x2ca,r,,nu<'>r
a i=l

= /(g')n+1+/

p\

„n+l
\n+l f(n+l)     g

(« + 0!

riwirl    /    r \ „£,   («-/»-r + l)!/,!]

xg"-r+12^ÍKg(T

= /(gr+1+/"+,)—(n+l)!

"     " + 1 / *.   4-   1 \ „«-'+1

x n (gt'T-i=i
This is exactly the same as the expression in (Al), thus proving Lemma 1.
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