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Abstract. Let D be a plane domain partly bounded by two line segments which

meet at the origin and form there an interior angle va > 0. Let U(x, y) be a solution

in D of Poisson's equation such that either U or dll/dn (the normal derivative)

takes prescribed values on the boundary segments. Let U(x, y) be sufficiently

smooth away from the corner and bounded at the corner. Then for each positive

integer N there exists a function Vn(x, y) which satisfies a related Poisson equation

and which satisfies related boundary conditions such that U — Vn is AZ-times con-

tinuously differentiable at the corner. If 1/a is an integer Vn may be found ex-

plicitly in terms of the data of the problem for U. |

In solving an elliptic partial differential equation by numerical methods the

results proved about convergence of the numerical approximation to the actual

solution frequently depend on differentiability properties of the (unknown) solu-

tion. In the work of Gerschgorin [2] and other papers written since, it is assumed that

the solution of the partial differential equation has derivatives of order four which

are continuous up to the boundary. If the boundary and all the data are sufficiently

smooth there is, of course, no problem. In many cases, however, the boundary pos-

sesses a finite number of singularities, usually (in the two-dimensional case) in the

form of corners; occasionally too, the boundary data may have jumps. Laasonen

[3] has proved that convergence of the discrete solution to the actual solution holds

for the Dirichlet problem, but that the convergence is slow in a neighborhood of the

corner.

In this paper we will consider a method to subtract off the singularity. The

method is quite old (see Fox [1]), but includes results on the asymptotic behavior of

solutions near a corner. In this light see the works of Lewy [4], Lehman [5], Wasow

[6], and the author [7]. We consider a problem for which the solution is not known to

be smooth. We then find, explicitly in terms of the boundary data, a solution to a

related problem; then the difference between these two solutions is a solution to a

third problem, and is sufficiently well-behaved to insure convergence of difference

schemes. Finally, the sought solution can be found by adding the explicitly given

one to the numerically-solved one.

Let D be a plane domain partly bounded by two open line segments i\ and Ti,

which share the origin as a common endpoint and form there an interior angle

ira > 0. We assume that Ti is a subset of the positive x-axis and r2 makes an angle

7ra > 0 with the positive z-axis. Let F(x, y) be given in D and $,(x, y) (respectively

^i(x, y)) be given on r, (i = 1, 2). Let U(x, y) be a solution of AU = F in D, and

have boundary values U(x, y) = $i(x, y) on T¿ (respectively dU/dn = ^¿; d/dn is
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the outward normal derivative). We assume that U is bounded and has continuous

second derivatives in D, and is continuous (respectively has continuous first de-

rivatives) in D U Ti U r2. Throughout the paper we have the independent var-

iables z = x + iy = re'e. Depending on circumstances we will sometimes write

u(z, z) for u(x, y).

In general U is smooth along Tx and r2 but possesses singularities of its deriva-

tives at the corner. We do, however, have knowledge of the asymptotic behavior of

U and its derivatives (see [5], [6], [7]). For simplicity let us assume that F is analytic

in D U Ti U r2 U [0} and that $, (respectively ^,) is analytic on F,. Weaker con-

ditions on the data could be used [7]. Let N be an integer 5ï 2. Then there exists a

polynomial Pn(z, z, z1/a, z1/a, log z, log z) such that as z —> 0, z E D U Ti U T2,

(1) 17(1, y) = PN(z, z, z"", *'« log z, log z) + o(z») .

Derivatives of U(x, y) of order ^ N have asymptotic expansions obtained by

differentiating (1) formally; thus the fcth derivative of the error term o(z-v) is an

error term o(zN~k). If we wish to examine the derivatives of U(z) of order ^ 4 we

can take N = 4. Then the error term will have continuous fourth derivatives, and

the singularities of U(z) and its derivatives of order ^ 4 are exhibited in the polyno-

mial Pn- Thus for numerical purposes it would be desirable to calculate, in terms

of the data, the coefficients of Pn; or at least the coefficients of those monomials of

Pn which do not have fourth order derivatives at z = 0.

In this paper we will indicate a method to find most of the coefficients. To be

more specific we will give an algorithm to calculate all of the coefficients of Pn except

those which are coefficients of monomials of the form (zm/a — zm,a). Thus the

singularities of U of order ^ N are known explicitly up to some polynomial

INa]
r\ \"^     a      /  m/ct _m/a\
Qn  =    ¿^  Am(z —  Z        )

777=0

where [    ] is the greatest integer.

Let us assume for the moment that the algorithm has been demonstrated. Then

we have two cases.

Case I. 1/a is an integer. Then Qn is smooth at the origin, and the singularities

of U(x, y) of order ^ N are known explicitly. Let us use the symbol Rn to denote the

polynomial formed by taking those monomials of Pn which have singular deriva-

tives ; since 1/a is an integer, these will be precisely the terms of Pn which involve

logarithms. Then the function V = U — Rn belongs to CN at the origin. If we then

replace the original differential equation AU = F, U = <£, (dU/dn = >ï\) with the

problem AV - F - ARN, V = $,- - RN (dV/dn = ¥,• - dRN/dn), we know in

advance that the solution V = Vn will belong to CN. Thus we can solve the new

problem numerically and are assured of convergence of the discrete solution to the

actual solution. Then by adding RN to this discrete solution of the new problem we

get a good approximation to U(x, y).

Case II. 1/a is not an integer (the most common case in practice seems to be

a = 3/2). If the proof of Gerschgorin's results are examined (see, e.g., Forsythe and

Wasow [8, pp. 283-288]) it is seen that the difficulty lies with the unboundedness

near z = 0 of certain fourth derivatives of U(x, y). Let us, as before, construct the

polynomial Rn consisting of the singular terms of Pn. Then the function Vn has for
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its singularities precisely those monomials of Qn = S Am(zmla — zmla). It may be

possible to devise a numerical method of approximating the coefficients Am. Suppose

that Äm is such an approximation and that Vn is the function obtained by replacing

Qn with Qn = ^2 Äm(zmla — zmltt). Then Vn will have singular derivatives, but if the

approximation Äm of Am is good enough the singularities may still be small. Thus

for a given mesh size h one could approximate Am with Am(h), then find a discrete

approximation V(h) to V using the Gerschgorin method. Knowing V(h) one could

then find a better approximation Äm(h/2) to Am, and then repeat the process.

We now discuss the algorithm for finding the coefficients. First we reduce the

problem to the simpler case F = 0. Consider the transformation f = zlla. In a

neighborhood of the corner it has the effect of straightening out the corner; in fact

it maps a neighborhood of the corner conformally into some semicircle about the

origin in the upper half of the f-plane and maps Ti and T2 into the diameter of the

semicircle. We define w(f) by w(f) = U(z) and then, for some r0 > 0, we have

00

/r>\ a     /   \ 2    V"1 (p+1)«— l-(4+l)<*—1(2) Au(z) = a   2^ apqzv        £
p,q=0

for 0 < \z\ < r0, Im z > 0. Here the apq come from the complex form

of the Taylor series of F.

Since

F(x, V) =   Z) apqzpz"
p,q=0

32
Au = 4 —— u

dzdz

where d/dz = \(d/dx — id/dy), d/dz = |(3/3.r. + id/dy), we see by integration

with respect to z and z that if u were asymptotic to a power series in za and z", then

u would be asymptotic to the series

(3) u(x,y) = — 22 7—,   ,n   /—,—r- apqz(p+1)az(q+1)'" .
4  Pi^o (p + l)a(q + i)a

If we define v(z, z) to be the right side of (3), then the function w = u — v satisfies

Aw = 0. Setting V(z, z) = v(zUa, zUa) and W(z, z) = w(zl/a, z1/a) we have W = U —

V where

(4) Viz z) = —  Y -~-s^V"1"1
{) V{'   '       4 P^o(p+l)(«+l)

Thus if we set 4\- = í>¿ — V (respectively M/, = Vi — dV/dn), we have AW = 0

in D, W = *,- (3Tf73n = *<) on T,-.
Thus by replacing U with W and 4>, with $,, (^, with *,•) we can assume

F = 0 and AU = 0.

Now let us assume that U is prescribed on Ti U IY Thus we have AÍ7 = 0 in D

and U = $; on T,-. Let the Taylor series for 4>! and $2 be

00 CO

*i(r) = £ a„/   and    $2(f") = ^bvr
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where r = |z| denotes arc length on I\. For every integer A^ ^ 2 we will find a

polynomial vn(z", za, log z, log z) such that wn = u — vn satisfies Awn = 0 in D and

wN(x, 0) = oda;^) on Im z = 0.

For convenience of notation we drop the subscript N.

We begin by setting

1    x

vi(z, z) = — 22 o-- (z" + z"") ■
¿    y=0

Then for z = z = r > 0 we have

00

(5) vi(r, r) = 22 ay = u(r, r) ,
v=0

and for z = z = — r < 0, if Wi = w — i>i,

Wl(z, 2)  =   22 fr»7""* —   22 «"(COS CTra)r"a .
7-=0 17—0

We now look for a function vi(z, z) which is harmonic, vanishes on the positive

x-axis in a neighborhood of the origin and agrees with Wi(z, z) on the negative .x-axis

in a neighborhood of the origin. It is reasonable to hope that such a function would

be given by powers of z"" — zva. Indeed, for irrational a we can choose Vi by

Zb, — a, cos vira , va     _7.c«N

„=o       2% sm vira

It may happen, of course, that this series does not converge; in this case we take,

for N è 2,

JV       7
ZD,   —   <X„ COS Vira   ,  „a. _rav

-7T~-- (z     — z   ) •
y=o      2l sm vira

Then with w(z, z) = wi(z, z) — v2(z, z) = u(z, z) — Vi(z, z) — v2(z, z) we get

Aw(z, z) = 0    for 0 ^ \z\ < r0,

w(x, x) = 0   for x > 0 ,

w(x, x) = o(\x\  a)    for x < 0 .

If a is rational, the preceding method fails precisely for those terms of v2(z, z) for

which sin vira = 0. We now indicate how to modify v2(z, z) in this case. Let a — p/q,

gcd (p, q) = 1, and let us concentrate first on the problem of finding a function

v2 = (z, z) which is harmonic, vanishes on the positive real axis, and on the negative

real axis satisfies, for some integer k ^ 0,

vi(x, x) = (bkq — akq cos kqira)rkq = (bkq — akq cos kpir)rkp .

It happens that the introduction of terms in log z and log z will give such a function

vi(z, z). In fact, we take

(—1)*"
vi(z, z) =    27|_.    (bkq — akq cos kpir) (zkp log z - zkp log z) .

For the general case, where k now varies over the positive integers, we take
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,   _. v^ bv — a, cos vira , „      _„.
Vi(Z, Z)  = ¿_, -r-r-:- (z   — Z )

7„n^ »=0;»j*0(mod 4) ¿IWCiVWa

[iV/p]   /_ 1 \*P

+    22        o    ■      (&*4 — akq COS fcp7r) (zkp log Z — Zkp log z) .
A_0 ¿5«

Then as before 10(2, 2) = u(z, 2) — !>i(z, 2) — v2(z, z) satisfies

Aw(z, 2) = 0    for 0 ^ |z| < r0,

w(x, x) = 0   for x > 0 ,

w(x,x) = o(\x\  ")    for a; < 0.

In both cases we have constructed a function v(z, z) such that w(z, z) = u(z, z) —

v(z, z) has derivatives at the origin of order ^ [Na]. Thus w(z, z) has a Taylor ex-

pansion at the origin and we can write

(7) w(z,z) = '2:^l„,,/"zn + 0(|zO.
777,71-0

Since w(z, z) is harmonic, real-valued, and vanishes on the positive x-axis, we can

rewrite (7) in the form

[iVa]-l

w(z,z) =    22   An(zn - zn) + o(\z\lNa])
7/.= U

where An = A„o — Aon and all the other Amn's vanish. There is no other information

about the An's which is obtainable without turning to global considerations of the

original differential equation and its domain. Indeed, if An' are arbitrary pure

imaginary numbers then

[Na]-1

w(z,z) =    22   An'(zn-zn)
77=0

satisfies all the properties listed for w(z, z).

We now set W(z, z) = w(zlla, zl/a) and V(z, z) = v(zlla, zUa), and get

[jVa]-l

W(z,z) =    22   An(zn'a - ?'") + o(\z\[Na],a)
77=0

where W(z, z) = Í7(z, z) — V(z, z). The function W(z, z) is the function QN men-

tioned in the introduction, and V(z, z) + W(z, z) is the function Pn.

For the case of the Neumann boundary condition for u(z, z) we proceed in

exactly the same way. Since the calculations are somewhat more tedious but

intrinsically no more difficult, we merely state the results. In particular let us re-

strict ourselves to the case a = 1/n, n an integer. Let dU/dn = ^1 = 22>~o a"r" on

Ti, and dU/dn = ¥j = 22^=o brr' on IV If n is odd we set

jV-1 . JV-1   .

v(z, z) = 22 7T~^ (br-i - a„_iC)(z" + z") +  22 IT1 (z  ~ z")
i/=l;>^0(mod 77)  ¿V&r v=l       ¿V

[JV/77]

+   22 nAk(z"k log z + znk log z)
A = l

where
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S, = sin (v/n — l)ir,       C, = cos (v/n — l)ir

zAk = {

If n is even, n = 2m, set

2irnkAk = (-l)í:-1(6„,._i + (-l)V-i) -

K(Z, Z)   = ¿_, -7TÖ- (2   + « )
>»i7Í0,777(mod 71, ; OSi-SiV-l ¿PO,,

7 [TV/77] 1 / 1\Í7

. V-> Oy-1    /  v    ,    -vn V^   Qnft-1  T   (.—t;  Oti^-I

v=77i(mod 77);77lgi-SJV-l 2eO„ ;,„] 2«,

JV-1

X (znk log z + znk log z) — 22 7F1 (2" - 2") •

Then there are constants Am such that the function W = U — V satisfies

[jV-1 In]

W(z, z) =    22   An(zmn + zmn) + o(zN) .

771=0

Example. Let a = 3/2, p = 3, q = 2, F = 0, $! = af2 + ßr\ $2 = yr2 + 8r\

Then a2 = a, a4 = (3, 62 = 7, 64 = 5.

Set

!>!(*,*)  =   J[a(*' + Z3) + ß(z* + Z6)]

and

Fi(z,z) = |[a(z2 + z2) + ß(zA + z4)]

^2(2, 2) =  — -—; (7 — a COS Sir) (z   log Z — Z  log g)

+ ^ (8 - ß)(z" log z-z" log z)

and

7,(«,ï) = v2(za,za) = vi(z'"p,zq/p) = vi(z2ß,z2ß)

it 1   -\           y + 01 2   . 1, * 1     _N   1   5 — ß 2  , 4. _4.       .Vi(z, z) =-5-7- -5- (z log z - z log z) + -r-T- — (z log z - z log z) .

Then W(z, z) = U - Vi - 72 satisfies

W(z,z) =0   onTi U r2

AW = 0   in D .

Thus w(z, z) = W(z2n, z2/3) satisfies

Aw = 0    for 0 < |z| < r0, lim z > 0

and

w = 0    for lim z = 0, — r0 < .r < r0.

So w(z) is analytic on 0 ^ \z\ < r0, and

00

w(z,z) = 'YjAm(zm — zm) .
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Then W(z, z) = w(z3/2, z3/2) = 22Lo Am(ziml2 - ziml2), so W differs from a C4 func-

tion by the polynomial Q(z,z) = A i(z312 — z3lr). By picking a mesh size h and getting an

approximation to W, one may be able to get an approximation A i1 to A \. Then, with

a mesh size hi < h, one could get an approximation to Wi = W — Ai^z3'2 — z3/2),

and then get an approximation Ai2 to Ai1. It is not known whether this process

works, but in some cases, where great accuracy is needed near the corner, it may

be worth attempting.
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