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Abstract: The Bronnikov model of nonlinear electrodynamics is investigated in general relativity.
The magnetic black hole is considered and we obtain a solution giving corrections to the
Reissner-Nordström solution. In this model spacetime at r → ∞ becomes Minkowski’s spacetime.
We calculate the magnetic mass of the black hole and the metric function. At some parameters of the
model there can be one, two or no horizons. The Hawking temperature and the heat capacity of black
holes are calculated. We show that a second-order phase transition takes place and black holes are
thermodynamically stable at some range of parameters.
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1. Introduction

The black hole (BH) physics is similar to ordinary thermodynamics. This analogy can help in
understanding the theory of quantum gravity. The semiclassical analysis of a BH radiation shows that
the initial state information is hidden inside of the event horizon [1]. Some questions appeared on
the information loss paradox and the unitary of the theory. To answer these questions a backreaction
and quantum gravity effects should be taken into account. In addition, the semiclassical calculations
do not work for light black holes. The effects of quantum gravity can correctly describe the short
distance behavior. At the same time, to avoid the short distance singularity, one can consider regular
black holes. A study of regular black holes without singularities allows us to treat the minimum
size as the Planck length. Not to search for quantum gravity, we concentrate here on the regular BH
thermodynamics. Regular black hole solutions may be obtained by coupling general relativity and
nonlinear electrodynamics (NLED).

Bardeen, Carter and Hawking [2] (see also [3]) suggested that BH is a thermodynamic object
which obeys four laws of black hole mechanics. Thus, we can study such thermodynamic properties of
black holes as phase transitions, the thermal stability, the black hole evaporation and others. Originally
Davies and Hut [4,5] investigated BH phase transitions. The BH thermodynamics phase transitions
can be investigated with the aid of the heat capacity in the canonical ensemble. The BH is unstable if
the heat capacity becomes negative. When the discontinuities of the heat capacity occur, the phase
transitions take place.

The attractive feature of NLED is that an upper limit on the electric field at the origin of point-like
particles takes place [6–10]. In some models of NLED [6–12] the self-energy of charges is finite
when definite conditions for the Lagrangian are satisfied [13,14]. Quantum corrections to classical
electrodynamics also lead to NLED [15–17]. In addition, general relativity with NLED explains the
universe inflation [18–26]. In the early universe, the initial singularities can also be avoided in NLED
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models [22]. In this paper we investigate BH solutions in the framework of Bronnikov’s model of
NLED [27]. The correspondence principle holds in this model because at the weak field limit NLED
is transformed into Maxwell’s electrodynamics. It was shown in [27] that the model includes the
existence of a regular magnetic BH and monopoles. The theorem proven by [27] allows us to have
a nontrivial case when the electric charge equals zero and the magnetic charge q 6= 0 so that the
magnetic field is equal to B = q/r2 and spacetime possesses a regular center. The entire mass of the
BH has the electromagnetic origin.

The thermodynamics of black holes and phase transitions are studied in this paper. In [28,29]
similar issues of the BH thermodynamics were discussed. Some aspects of black hole physics were
studied in [30–48].

The paper is organized as follows. Field equations and energy-momentum tensor are described
in Section 2. In Section 3 general relativity with NLED is studied. We obtain the asymptotic of the
metric and mass functions at r → 0 and r → ∞. Corrections to the Reissner-Nordström (RN) solution
are found. In Section 4 we calculate the Hawking temperature and the heat capacity of black holes.
It was demonstrated that the second-order phase transition takes place in black holes. We find the
range where black holes are stable. We made a conclusion in Section 5.

The metric signature is given by η = diag(−1, 1, 1, 1) and we explore the units with c = 1,
ε0 = µ0 = 1.

2. Field Equations of NLED

In this section we consider field equations in Minkowski’s spacetime. Let us study NLED,
proposed in [27], with the Lagrangian density

L = − F
cosh2 4

√
|βF|

, (1)

where F = (1/4)FµνFµν = (B2 − E2)/2, the field tensor is defined as Fµν = ∂µ Aν − ∂ν Aµ and the
parameter β has the dimension of (length)4. The modified model was proposed and investigated in [47].
At the weak field limit, βF � 1, the Lagrangian density (1) becomes Maxwell’s Lagrangian density,
L → −F , and as result, the correspondence principle holds. Field equations found from Equation (1),
by the variation of the action corresponding to Lagrangian density (1) with respect to the 4-potential Aµ,
are given by

∂µ (LF Fµν) = 0, (2)

where

LF = ∂L/∂F =
|βF|1/4 tanh 4

√
|βF|

2 cosh2 4
√
|βF|

− 1
cosh2 4

√
|βF|

. (3)

With the help of Equation (1) one obtains the electric displacement field D = ∂L/∂E

D = εE, ε = −LF . (4)

We find the magnetic field from the relation H = −∂L/∂B,

H = µ−1B, µ−1 = −LF = ε. (5)

Making use of Equations (4) and (5) one can represent field Equation (2) as the Maxwell equations

∇ ·D = 0,
∂D
∂t
−∇×H = 0. (6)
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From the identity ∂µ F̃µν = 0, where F̃µν is the dual tensor, we obtain the second pair of nonlinear
Maxwell’s equations

∇ · B = 0,
∂B
∂t

+∇× E = 0. (7)

The relation, followed from Equations (4) and (5), is

D ·H = (ε2)E · B. (8)

Because D ·H 6= E · B, according to the criterion of [49], the dual symmetry is broken. In classical
electrodynamics and in Born-Infeld electrodynamics the dual symmetry occurs but in QED, due to
quantum corrections, the dual symmetry is violated.

The symmetrical energy-momentum tensor can be found from the relation

Tµν = LF F α
µ Fνα − gµνL. (9)

From Equations (1), (3) and (9) one obtains the energy-momentum tensor trace

T ≡ Tµ
µ =

2F 4
√
|βF| sinh 4

√
|βF|

cosh3 4
√
|βF|

. (10)

As T 6= 0, the scale invariance is broken. At β = 0 NLED (1) becomes Maxwell’s electrodynamics,
T = 0, and the scale invariance is recovered.

3. Magnetized Black Holes

The action of general relativity with NLED is given by

I =
∫

d4x
√
−g
(

1
2κ2 R + L

)
, (11)

where κ2 = 8πG ≡ M−2
Pl , G is the Newton constant and MPl is the reduced Planck mass. The stability

of a black hole with action (11) was studied in [36]. We investigate the magnetically charged black hole,
and therefore, E = 0, B 6= 0. The Einstein and the electromagnetic field equations follow from
action (11),

Rµν −
1
2

gµνR = −κ2Tµν, (12)

∂µ

(√
−gLF Fµν

)
= 0. (13)

We use the line element with the spherical symmetry

ds2 = − f (r)dt2 +
1

f (r)
dr2 + r2(dϑ2 + sin2 ϑdφ2), (14)

and the metric function is given by [27]

f (r) = 1− 2GM(r)
r

. (15)

The mass function is defined as follows:

M(r) =
∫ r

0
ρM(r)r2dr =

∫ ∞

0
ρM(r)r2dr−

∫ ∞

r
ρM(r)r2dr, (16)
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with ρM being the magnetic energy density and mM =
∫ ∞

0 ρM(r)r2dr is the magnetic mass of the
black hole. From Equation (9) at E = 0 we find the magnetic energy density

ρM = T 0
0 = −L =

F
cosh2 4

√
|βF|

, (17)

where F = B2/2 = q2/(2r4), and q is a magnetic charge. It is convenient to introduce the
dimensionless parameter x = 21/4r/(β1/4√q). Then using Equations (16) and (17) one obtains
the mass function

M(x) = mM −
q3/2

23/4β1/4 tanh
(

1
x

)
. (18)

The mass function presented by Equation (18) has the same form as the solution given in [27].
We calculate the magnetic mass of the black hole

mM =
∫ ∞

0
ρM(r)r2dr =

q3/2

23/4β1/4 . (19)

Making use of Equations (15) and (18) one finds the metric function

f (x) = 1− 1− tanh (1/x)
bx

, (20)

with b =
√

β/(
√

2Gq). With the help of Equation (20) we obtain the asymptotic of the metric function
at r → ∞

f (r) = 1− 2GmM
r

+
Gq2

r2 −
G
√

βq3

3
√

2r4
+

Gβq4

15r6 +O(r−8). (21)

Equation (21) gives the corrections to the RN solution which are in the order ofO(r−4). At r → ∞,
f (∞) = 1, and the spacetime becomes flat. It is easy to verify that

lim
x→0+

f (x) = 1. (22)

Equation (22) shows that the black hole is regular without conical singularity. The RN solution is
recovered at β = 0. The plot of the function f (x) is represented in Figure 1 for different parameters
b =

√
β/(
√

2Gq).
According to Figure 1 at b > 0.27846 there are no horizons. There is one horizon at b ' 0.27846

and the extreme singularity holds. When b < 0.27846 we have two horizons. The horizons xh are
defined by the equation f (xh) = 0. Then from Equation (20) we come to the equation

b =
1− tanh(1/xh)

xh
. (23)

The plot of the function b(xh) is represented in Figure 2.
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Figure 1. The plot of the function f (x). The dashed-dotted line corresponds to b = 0.1, the solid line
corresponds to b = 0.27846 and the dashed line corresponds to b = 1.
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Figure 2. The plot of the function b(xh).

From Equation (23) we obtain the inner x− and the outer x+ horizons of the black hole which are
given in Table 1.
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Table 1. The inner and outer horizons of the black hole.

b 0.05 0.1 0.15 0.2 0.25 0.27 0.2784

x− 0.4453 0.5654 0.6864 0.8347 1.0714 1.2680 1.5350

x+ 18.9453 8.8784 5.4589 3.6705 2.4554 1.9702 1.5946

It follows from Equations (10) at F = q2/(2r4) that at r → ∞ the energy-momentum trace
becomes zero. As a result, in accordance with Equation (12) the Ricci scalar R = κ2T vanishes and
spacetime becomes flat.

Let us discuss the equation of state of the BH inside the Cauchy horizon. From the expression for
the pressure p = L+ (E2 − 2B2)LF/3 and Equation (17) we obtain the equation of state (for E = 0)
p = −ρM − 4FLF/3. This equation holds for any radius r. At r → 0, inside the Cauchy horizon,
p → 0, ρM → 0, and FLF → 0. As a result, the equation of state for a de Sitter spacetime p = −ρ

at r → 0 is not the case for the BH described by the present model. However, regular black holes
proposed by [30,37,48] possess a de Sitter center. Thus, the geometry of the BH at r → 0 in Bronnikov’s
model is different compared to other models of regular black holes.

4. Thermodynamics and Phase Transitions

We will study the possible phase transitions and thermal stability of magnetized black holes.
Let us calculate the Hawking temperature which is given by

TH =
κS
2π

=
f ′(rh)

4π
, (24)

where κS is the surface gravity and rh is the horizon. Making use of Equations (15) and (16) we obtain
the relations as follows:

f ′(r) =
2GM(r)

r2 − 2GM′(r)
r

, M′(r) = r2ρM, M(rh) =
rh
2G

. (25)

It follows from Equation (20) that

f ′(x) =
1

bx2 −
1

bx3 coth2(1/x)
− tanh(1/x)

bx2 .

Then one can verify that indeed this equation leads to (25) taking into account b =√
β/(
√

2Gq), x = 21/4r/(β1/4√q), F = q2/(2r4) and Equations (17)–(19). With the help of
Equations (17) and (23)–(25), we find the Hawking temperature

TH =
1

27/4πβ1/4√q

(
1
xh
− 1

x2
h [1− tanh(1/xh)] cosh2(1/xh)

)

=
1 + b

27/4πβ1/4√qxh

(
1− 2

(1 + b)xh

)
. (26)

The plot of the function TH(xh) is given in Figure 3.
The Hawking temperature becomes zero at xh ' 1.56 (b = 0.27846) corresponding to the extreme

case. At xh > 1.56 the Hawking temperature is positive and the black hole is stable. When xh < 1.56 the
Hawking temperature becomes negative and the black hole is unstable. The maximum of the Hawking
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temperature holds at x+ ' 2.95 and the heat capacity is singular. At this point the second-order phase
transition takes place. We calculate the heat capacity from the relation

Cq = TH

(
∂S

∂TH

)
q
=

TH∂S/∂rh
∂TH/∂rh

=
2πrhTH

G∂TH/∂rh
. (27)

The entropy obeys the Hawking area low S = A/(4G) = πr2
h/G. In Figures 4 and 5 one can find

the plots of the function GCq/(
√

βq) vs. the horizon xh for different values of xh.
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Figure 3. The plot of the function TH
√

qβ1/4 vs. horizons xh.
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Figure 5. The plot of the function CqG/(
√

βq) vs. x+.

According to Figures 4 and 5 the heat capacity possesses a discontinuity at x+ ' 2.95, and
therefore, the second-order phase transition of the black hole occurs. When 1.56 ≤ xh < 2.95 the black
hole is stable and at x+ > 2.95 the heat capacity becomes negative and the black hole is unstable.

5. Conclusions

We have investigated the Bronnikov model of NLED which at the weak field limit becomes
Maxwell’s electrodynamics and the correspondence principle holds. NLED coupled with the
gravitational field was considered. The magnetized black holes were studied and we obtained the
metric and the mass functions. At r → ∞ we obtained corrections to the RN solution that are in the
order of O(r−4). Physical values of the theory depend on the parameter of NLED β. The Hawking
temperature and the heat capacity of black holes were calculated and we demonstrated that
second-order phase transitions take place in black holes for definite parameters β. The thermodynamic
stabilities of black holes were studied and it was shown that in the range 1.56 ≤ x+ < 2.95 the black
holes are stable. In the framework of the non-commutative model with two horizons [50], similar
phase transitions can happen. Phase transitions may appear also in alternative theories of gravity [51].
It should be mentioned that in models of black holes with two horizons the Hawking temperature is
connected with each horizon. This leads in some models to the existence of a minimal and maximal
temperature in the black body radiation [52]. The author of [53] found conditions in Massive Gravity
for an observer to hold in the order to agree with the black-hole temperature. Within the Generalized
Uncertainty Principle, authors of [54] have shown that there can exist a black hole remnant with a
mass MPl corresponding to a maximal temperature MPl . There also exists a minimum length lPl .

Funding: This research received no external funding.
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