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0. The problem of the bunching of traffic on roads has long been recognized and
has been the subject of study from different points of view [1], [3] etc. All models
presented have been developed under the assumption that vehicles are moving on
a two-lane road at different speeds and with overtaking partially restricted, either
by presence of other vehicles in the overtaking lane or by highway factors, such as
bends, hills, obstructions etc. or by unnecessary caution in overtaking on the part
of some drivers. In this paper we give a bunching model which assumes that over-
taking is prohibited, caused by a one-lane road or a traffic sign (for example).

In [2] Rényi considers the following traffic model: Vehicles enter a highway at
the same entrance and at time instants (T}, i = ..., —1,0, 1, ...>, forming a homo-
geneous Poisson process of intensity A. Thus 2 is the rate at which vehicles enter the
highway per unit of time and it is supposed that there are no junctions or exits. It is
supposed in this model that the vehicle entering at time T; will choose the velocity V;
and will travel all the time at this constant velocity. The random variables {(V,, i =
= _.,—1,0,1,...> are independently and identically distributed (i,i.d.) and also
independent of the process (T;» with cumulative distribution function (c.d.f.) F(v) =
= P(V; < v) satisfying the conditions F(0) = 0 and

[0 s,
(

) v

i.c. the mean value of V™" is finite. In reality the positive lower limit to the velocity
(a) is such that F(a) = 0 ensures that those conditions hold. From the assumptions
of Rényi’s model it is clear that each vehicle can overtake anytime and anywhere
without changing its velocity.

The given model is modified in this paper in the following manner: we suppose
that if a vehicle A approaches a slower vehicle B ahead of it, vehicle 4 has to slow
down to the velocity of vehicle B and can never overtake it. The cars leave the section
of highway on which the above assumptions hold true in bunches, provided that

*) The paper was written while the author was staying at the Transportation Research Institute,
Prague-Chuchle.
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a single vehicle without another one close behind or in front is considered a bunch
of size one.

In order to handle our results more easily, it is supposed that the highway section
under consideration is of unit length. Then the random variables X; = V;"! give
the passage time over the section without any restriction for the i-th vehicle. The
assumptions about (V;» imply that (X,> are (i.i.d.) random variables with (c.d.f.)

G(x)=1—F(§+O).

Let us denote by t;,., the time interval between the arrival of two consecutive
vehicles, the i-th and the (i + 1)-st, at the beginning of the section, i.e.

Tivr = Lip1 — 15

From Rényi’s assumptions it follows that (z;, i = .., —1,0,1,...) are (i.i‘d.)
with an exponential distribution.

Some probabilistic properties of the traffic model described are given in the next
sections of this paper. The probability that a randomly chosen vehicle does not reach
any other vehicle, i.e. that this vehicle travels through the section free of the influence
of other vehicles and that it is by the end of this section the leading car of a bunch,
is given in the first part.

In the second part the probability is expressed that the given car will leave the
section in the (n + 1)-st place of a bunch, n = 0, 1, ... . Then the probability distri-
bution of bunch size under modified Rényi conditions is obtained. The fourth part
deals with joint probability distribution of bunch size, the time interval between
their departures, and their final velocities. The analysed model is described in terms
of a semi-Markov process in the last part of this paper.

1. The randomly chosen vehicle indexed by zero leaves the observed highway
section as the leading car of a bunch if the following inequalities hold:

(1.1) X_{—1 <X,
X_y = (10 + 72y) < Xg,
X._.; — (TO + T_1 R T—i—l) <X0 N
Let us denote the probability of this system of inequalities under the condition
X, = x by the symbol P(x). If 7, = 1 then (1.1) becomes
(1.2) X_ 1 <Xo+t,

X, —11<X,+1t,

X ;= (1o 4+ 1oy) < X + 8,
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The probability of (1.2) under the condition X, = x equals
G(x + 1) P(x + 1)

due to the independence of the random variables under consideration. From the
assumption of a Poisson input we obtain that the probability density function of
random variables 7; is for each i

f(t) = Aexp(—2At) for t=0,
f(Hy =0 for t<0.
So

(1.3) P(x) = Af Cexp (-~ ) G(x + 1) P(x + 1) dt.
]
Let us denote

(1.4) R(x) = exp (—ix) P(x),
then (1.3) yields
R(x) = 4 [ “R(3) 6(3) dy

X

and thus

RO — R 6(x) -

We obtain from this differential equation

(1.5) R(x) = Cexp (~/1 F(x)) .
where A
(L.6) I'(x) = J AG(’y') dy .

Putting (1.5) into (1.4) we obtain
(1.7) P(x) = Cexp (—UI'(x) — x)).

But, as can be seen from (1.1), P(+00) = 1 since the vehicle with zero velocity has
the unit probability of catching up with any car on his journey. So

(1.8) C = lim exp (+HI(x) — x)) = exp (—pu),

X + o0

where p is the mean value of the passage time,

(1.9) = E(X,-) .

Putting (1.8) into (1.7) we get

(1.10) P(x) = exp (= A + I'(x) — x))
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and the desired probability that the randomly chosen vehicle does not catch up with
another, is

(1.11) P = rexp (=Au + I'(x) — x)) dG(x)

0

using (c.d.f.) G(x) of the passage time.

The same result follows immediately from Rényi’s theorem [2, p. 312], which
states that the instants when a given car overtakes cars travelling at lower speeds
form a homogeneous Poisson process with the intensity

7+ (vg) = f =l (),

o v
where v, is the velocity of the given car. The properties of Poisson process imply

(1.12) P(x) = exp (—2(x)) ,

where

(L13)  2alx) = (x5t = 4 J (v = x)d6() = Au + I(x) - %)

X

and this is the same result as (1.10).

2. Now we know the probability that the randomly chosen vehicle will be the
leading car in a bunch. We shall compute the probability that a given car leaves the

highway section in the (n + 1)-st place of a bunch where n = 0, 1,.... It can be
seen that the car leaves a one-way road as (n + 1)-st if both of the following con-
ditions are satisfied: .

A. The n-th vehicle ahead of the given one, indexed by zero, does not catch up with
any other again.

B. The next vehicles, i.e. the first, the second, ..., including the given one, would
overtake the zero car if overtaking were possible.

For n = 0 only condition A remains because the given car becomes the zero car.
Condition B may be expressed by the following system of inequalities

(2.1) T+ Xy =X,
T+ T+ Xy =X,
T+, + .+, + X, 2 X,
forn=1,2,....
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Let us denote the probability of (2.1) under the condition X, = x by Q,(x) and let

us define, in agreement with our previous remark,
(2.2) Qo(x) = 1.
The system (2.1) under the condition t; = ¢ can be rewritten as

(2.3) X, £X,—t,
T, + X, £ X —t,

L, +13+ ..+, + X, S X, —t.

From now on, let us assume that G(x) is continuous. If the probability of (2.1) under

the conditions 7, = t and X, = x is denoted by Q,(x, 1), then (2.3) implies

0x, 1) = G{x — 1) Qpy(x — 1)
forn=12,....

For the same reason as (1.3),

(24 Q.(x) = ijexp (=) Glx — 1) @, y(x — 1) dt
forn=1,2,....

Defining
(2.5) R,(x) = exp {Ax) Q.(x)

forn =0,1.2,...,(24) and (2.2) imply

R,(x) = Aj G(y)R,_(y)dy. for n =12 ..

0
and

Ro(x) = exp (Ax).
Let us denote

(2.6) R(x, z) = nioz" R,(x) = exp (Ax) + z4 j‘x G(y) R(y, z) dy .

0

Then in a way similar to the method used in the previous section we get

(2.7) R(x, z) = exp (4z I'(x)) . (l + 2 J‘:exp (2y = 2z 1(y)) dy) ,

where I'(x) is given by the relation (1.6).
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Putting (2.7) back into (2.5) and (2.6) we obtain

(2.8) 0,(x) = :%exp (—Ax) l:F"(x) + /IJ-xexp (Ay) [r(x) = r(»J dy]

9}
forn=0,1,2,....

Let P,y 4(x) (n =0, 1, 2, ...) denote the probability that the vehicle comes in the
(n + 1)-st place in a bunch under the condition that the speed of the leading vehicle
of this bunch equals x~*. Following conditions 4 and B and using (1.12) and (2.8),
we conclude

©9) Puvs) = exp (24 1) T [0 2 [[exp () [ = 1O 0]
for n =0,1,2,....
Similarly to (1.11),

n

(210) PIH = exp (“}’l‘) /1_' .
n:

0

. j “exp (~47() [r"(x) y j “exp () [1(x) = TO)T dy] 4G(x)

for n = 0,1, ... is the probability that a randomly chosen vehicle comes in the
(n + 1)-st place in a bunch. Obviously (1.10) or (1.11), and (2.9) or (2.10) for n
equal to zero are identical.

3. Because P,y given by the relation (2.10) is the probability that a randomly
chosen vehicle leaves in the (n + 1)-st place of a bunch, it can be expected that for
a large number N of passing vehicles, NP, vehicles are in the (n + 1)-st place of
bunches. Thus the number of bunches with sizes greater or equal to (n + 1) is the
same. Similarly NP,,, is proportional to the number of bunches greater or equal
ton + 2. So N(P,,H_ — P,,”) is proportional to the number of bunches of size equal

o0

exactly to n + 1 and ), N(P,,; — P,,,) to the number of all bunches. Then the
n=0

probability of the appearance of a bunch with exactly n + 1 members is

(3]) Pn+1 =(Pn+1 7Pn+2)’P1_I;
using (2.10) we obtain

3 prvs = [ o (ia(9) (0431 = 00 (9609 [ v (~aatopaats)) -

(33) | - :z (1 n i 1)' fwexp(;,l(p(v; - x)) dG();),

0
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where

W= J RS <F”(x) + j :e*v[r(x) )] dy - () +

0

iy J Ar(x) — FO)] dy> d46(x)
0
forn=0,1,....

The same result can be obtained if we realize the fact that P,y — P, is the
probability that the randomly chosen vehicle is at the end of a bunch with exactly

n + 1members. Then Y (P,, — P,.,)is the probability that the randomly chosen
n=0

vehicle leaves the section as the last vehicle in a bunch and this also leads us to the
relation (3.1).

The distribution (3.3) would be similar to some of those presented in [3] but its
complicated form does not permit their easy comparison.

Let us now compute the generating function of the distribution (3.3). Using (3.2),

. . j eI Q,(x) — Oy () AG(x)
H(Z) — OZ"+JPn+1 ="=ZO Zn+1 0 B .

n=

Jwexp (—2r(x)) dG(x)

0

From (2.5) and (2.6) we can see that

”ZOZ"+1(QH()C) - Qn+1(x)) = exp(—lx) (Z — 1) R(x, z) +1,

and putting this into the relation above, we have

J (2 = 1) R(x, 2) exp (=4 I(x)) dG(x)
G4 - R

J “exp (= A(I(x) — x)) dG(x)

0

where Ag(x) is taken from (1.13). We can obtain the moments of the random variable
with this probability distribution and get

Lt [ e (A0 - 1) dy d6(y)
(3.5) E(N) = (0122“)) = - ‘E’JJ‘O, e
== '[ e (AT ~ ) d()
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and

(3.6) - E(N?) = (0'2:1(21))::[* (igg—))zﬂ:

¢z

— 2+ f:(” 6(x) + 1) (1 + ﬁeXp(_a(r(y) ~ ) dy)dG(x) y

><< I “exp (= AI(x) = x)) dG(x))_l .

[}

Moments of higher orders can be obtained in the usual way.

4. Not only the size of bunches but also the time intervals between their arrivals
and their speed at the end of a one-lane road may be a valuable information about
the traffic flow.

If the following system of conditions on random variables is satisfied, then the
zero car will be caught up by exactly n others (n = 0, 1, ...) and the interval between
this bunch and the next one is in the interval <7, 7 + di):

(4.1) Ty + Xy = Xo»
T+ T+ X =X,

oyt F+ L, X, S2X,,
Ty 1 €EXXg = Xpgy +1T—7y — 0. =1, Xg = Xy +T+Hdl — 1, — ... — 7,

forn = 0,1, ..., where X, is the random variable representing the time of passage
for the leading vehicle of the next bunch. If we add the requirement that the zero car
should catch up with no other, then (4.1) are conditions for the arrival of a bunch
of size (n + 1), followed by a time interval from f, 7 + df) and by the next bunch
with the leaving speed X,..

Let us denote the probability of the system (4.1) under the conditions X, = x,
X, .1 = X by the symbol Q,(x, i/X) di. It is clear that

(4.2) Qo(x, /X)di = Aexp(—A(x — X + 7))df for 72X —x
and thus iexp(—Ax —x +17) for i2zX~—x

is the conditional probability density function of the time interval behind the vehicle
which has not been caught up by any other.
Under the conditions 7, = , X, = x and X, 4 = X, (4.1) becomes
Xl ..~<: X — 15
Ty + X2 é x —t ’

T2+...+T,,+Xn§x_l’

L €Xx—t—X4fi-t,—... —t,x—t—X+1+dl -1, — ... -1,

n
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and the probability of this system is similar to that in the previous section, namely

G(x — 1) Q,_4(x — t,7/X) di

forn=1,2,...and T2 X —x + 1.
So
x—=x+i
(43)  Qfx. 7/x)di = AJ. exp (= 21) G(x — 1) Q,—4(x — 1,1/X) di dt
0
for n =1,2,....

For the sake of simplicity let us now assume that the probability density function
g(x) of the random variables X; exists. Let us remove the condition X, ., = X from
(4.2) and (4.3) and denote the resulting probability distributions by Q,(x, 7, X); then
we have recurrent formula

(4.4) Qo(x. 1, %) = Aexp(—Ax — X + 1) g(X) for X —T=x,
=0 for X —1>x
and
x—-xX+i
O 1. 5) = 4 J exp (= 1) G(x — 1) Qy_i(x — 1.1, %) dt
0
for x —f1=<x,
=0 for x —1>x
for n =1,2,....

Q,(x, 7, X) can be computed by using once again the generating function
(4.6) R(x,z) = Y z"R(x,1,X),
n=0

where R,(x, 1, X) is defined analogously to (2.5). Putting (4.4) and (4.5) in this
generating function, we obtain
R(x.2) = dexp (=% + 1) + ZAJ'

X-

] G(y) R(y, z)dy ,

where x = max {0, X — 7}.
From this equation it follows that

R(x, z) = 2exp (Az(I(x) — I'(% = D)) exp (= A(~ % + 1) 9(%)

which together with (4.6) implies

o0

@7 Y 0 x, 1 x) =exp(Az(I(x) — I (% — ©))) Aexp (= A(x — X + 1)) 9(X) -

n=0
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Thus
(48) 005 F) = ’}' (P(x) — T(% = D) Loxp (—ix — % + 1)) g(%)

for n=20,1,... and X — 7 < «x.

The quantity Q,,(x, f, )?) is the conditional joint probability distribution of the
number of vehicles which have caught up with a given one, of time interval between
this and the next bunch and of the passage time of the leading car in the next bunch
under the condition that the time of passage of the given car is X, = x.

To connect these results with Part 2 of this paper, some relations between Q,(x)
given by (2.8) and Q,(x, 7, X) given by (4.9) should be noted. It can be seen that

(4.11) 0,(x) = Qpii(x) = H_ 0.(x, 7, X) dx di

for each x €(0, +co)and n =0, 1,....

Then certainly

PEA(x) = Pi(x) ﬂ 0,(x. 7, %) d% di =
= P (0fx) — Quesl)) =

= P,y (x) = Pyialx)

gives the probability that the zero car travelling at the speed x~
of a bunch with n = 0, 1, ... members.

! is the leading car

5. Since the quantity Q,(x, 7, X) given by the relation (4.8) can be considered as
the conditional joint probability distribution of the size of the i-th bunch, of the
(i + 1)-stlapse of time Ty, (i.e. the time interval between the i-th and the (i + 1)-st
bunches), of the passage time X, , for the leading car of the (i + 1)-st bunch, under
the condition that X; = x (i.e. the passage time for the first car of the i-th bunch
being known), we can obtain the conditional joint probability distribution of the
triplet (N4 1, Tis1, Xi+1) under the condition (N; = m, T; = t, X; = x), (i.e. the
distribution of the time intervalahead of a bunch, of its sizeand of the passage time for
its first car). We find:

P(N; = n. Ty €8T+ dI), Xy (X, % + dX)[X; = x) x
(5.1) S ST - ( =mXiy = X)‘ i =
P(N, = n/X; = x)

= P(Njpy = m, T e<ii+di), X;, €KX+ dX)N;, =n, T, =1, X, = x).
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Let us denote the right hand side of (5.1) by the symbol S(m, #, ¥/n, x) di dX. With
regard to (2.8) and (4.8), we obtain

(52) S(m, 7, %/n, x) di dx =
= Q¥ 1, X) AT dX(Q, - 1(x) = Qu(x) ™" (Qu= () — Qu(¥)) =

= T~ T = e ()

1 (x) (1 - ’;) i J () — T (1 = 1) + T() dy
P (1= ) [P O (0 ) o) oy

0

X

If we observe a bunch with the leading car passage time x and of the size n, then
S(m, i, X[n, x) di dX is the probability of the time space T e (7, ¥ + di) which follows,
of the size N = m, and of the leading car passage time X e (X, X + dx). When we
know this conditional distribution, we can find the stationary distribution.

The process of departures of bunches from the given highway section can be
characterized as follows. At the instant of the departure of the i-th bunch, let us define
the state to be the pair (X; = x, N; = n). A random time is spent in this state after
which a transition is made to the state (X,-+1 =XN;yy = m). The probability of the
state (X;+; = X, N;uy = m) depends on the current state (X; = x, N; = n) but is
independent of all previous states. Furthermore, T; depends on the current state as
well as on the next one but, given these states, it is independent of the previous T’s
and states. Thus the given process is a semi-Markov process

(NG X Ti=....—1,0,1,..}
with the state space {1, 2, ...} x {x; x > 0}.
Let us define
(5.3) Ay ofF, X[x) dX =

=P(Nipy =m, X; 1 €<%, X+ dX), Tiyy SIN;=n, X; = x)
and

(5.4) Ap (0, X[x)dX =
=P(Niyy=m, X;y1€(%, X +dX), Tiyy < ©/N; =n, X;=x) =
= A, .(X[x)dx.

A, (%[x) is the one step transition probability function for the underlying Markov
chain. The stationarity distribution for {N;, X} is characterized as follows:

Am(g)d)? B P(Ni+1 = m, Xi+l E(f,f + d.’—C))
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is the stationary distribution if

(5.5) Z A (F)dx =1 and A,(3) =0
m=1
and if
(5.6) An(X)dx = Z (A m(X/x) dX A,(x))dx for m=1,2,....
o n=1

By the same argument as in Part 3 we conclude

<)

(5.7)  Afx)dx = Py(x) g(x) dx(Qor(x) Qn(X))< f Py(u) g(u) 1)

o

which is in agreement with (3.2). This implies that
PA(x) () ( f Py(u) o(u) du)
0

is the probability density of the random variable representing the passage time of the
leading car of a bunch. Thus the distribution of the speed at which a bunch departs

can be obtained and compared with F(v).
The stationary distribution 4,(x) dx given by (5.7) clearly fulfils (5.5). Condition

(5.6) implies

A,(F) d5 = j

& P (x (Qn 1( ) Q,,(x))g(x)A (x/x) dx dx.
J\ Py(u) g(u) du
Using (5.2) we obtain

A,(X)dx = w Z P(x) Q,_(x, 7, X) dx g(x) di dx .
P (1) g(u) du xol<x

0

To verify (5.6) we have to show

f z P(x) Qu_s(x, 7, %) d¥ g(x) di dx = P(%) g(%) d.

n=1 Jz-5<x

By (4.10) this is equivalent to
J:O J_:eXp (-4I(x = 1) = (X - D)) g(x) dx di = 47" exp (= AL(X) — %))

But this equality is evidently valid, so that (5.6) holds. Thus A,(x) is the stationary
distribution of the bunch size and of the passage time for the first car in this bunch.
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Souhrn

O JEDNE MODIFIKACI RENYIOVA DOPRAVNIHO MODELU
PETR LANSKY

Je ddn pravd€podobnostni model pohybu vozidel po jednoproudé silnici za téchto
pfedpokladti: rychlosti vozidel pfi vstupu jsou navzdjem nezavisié ndhodné veliiny
a okamzZiky vstupu do daného useku silnice tvofi Poissoniiv proces. P¥i projizdéni
tohoto useku kazdé vozidlo dodrzuje svoji rychlost konstantni, pokud neni vozidly
predchdzejicimi nuceno ji sniZit. Jsou uvedeny pravdépodobnostni rozdéleni velikosti
a rychlosti shluki, které opoustéji sledovany uisek a cely proces vystupu je popsan
jako semi-markovovsky ndhodny proces.
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