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Matthias Röger · Reiner Schätzle

On a modified conjecture of De Giorgi

Abstract We study the Γ -convergence of functionals arising in the Van der Waals-Cahn-Hilliard

theory of phase transitions. The corresponding limit is given as the sum of the area and the Willmore

functional. The problem under investigation was proposed as modification of a conjecture of De Giorgi

and partial results were obtained by several authors. We prove here the modified conjecture in space

dimensions n = 2, 3.

Keywords Γ -limit · Willmore surfaces · Cahn-Hilliard theory · Geometric measure theory.

Mathematics Subject Classification (2000) 49 J 45 · 49 Q 15 · 35 J 60

1 Introduction

In 1991 De Giorgi stated the following conjecture (see [dG91] Conjecture 4).

Conjecture 1.1 (De Giorgi) Consider for Ω ⊂ Rn, λ > 0 functionals Gp : L1(Ω)→ R, p > 0, defined

by

Gp(u) :=
∫

Ω

[(∆u
p
− p sinu

)2

+ λ
][ |∇u|2

p
+ p(1− cosu)

]
dx

if u ∈W 2,1(Ω), Gp(u) :=∞ if u ∈ L1(Ω) \W 2,1(Ω). Then there exists a constant k ∈ R depending

only on n, such that for any u = 2πXE with E ⊂ Ω, ∂E ∩Ω ∈ C2,

Γ (L1(Ω))− lim
p→∞

Gp(u) = 8
√

2λHn−1(∂E ∩Ω) + k

∫
∂E∩Ω

|H∂E |2 dHn−1,

where H∂E denotes the mean curvature vector of ∂E.
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In the context of the Van der Waals-Cahn-Hilliard theory of phase transitions a modification of De

Giorgis conjecture for closely related functionals was proposed by several authors and has drawn

much attention, due to both the widespread use of that theory and the mathematical interest in the

conjecture. See for example [BePa93], [LoMa00], [BeMu04] and the references therein.

To describe the problem setting, we consider a set Ω ⊂ Rn, let W (t) := (1− t2)2 be a standard

double well potential and define for ε > 0 functionals Fε : L1(Ω)→ R by

Fε(u) :=
∫
Ω

(ε
2
|∇u|2 +

1
ε
W (u)

)
dLn +

∫
Ω

1
ε

(
− ε∆u+

1
ε
W ′(u)

)2

dLn (1.1)

if u ∈ L1(Ω) ∩W 2,2(Ω) and Fε(u) :=∞ if u ∈ L1(Ω) \W 2,2(Ω).

Further we put σ :=
∫ 1

−1

√
2W , and for X = 2XE − 1 with E ⊆ Ω and ∂E ∩Ω ∈ C2 we define

F(X ) := σHn−1(∂E ∩Ω) + σ

∫
∂E∩Ω

|H∂E |2 dHn−1. (1.2)

The aim of this paper is to prove, in small space dimensions, the proposed modification of De Giorgis

Conjecture 1.1, as stated in the following theorem.

Theorem 1.2 (Modified De Giorgi Conjecture) Let n = 2, 3. For any X = 2XE − 1 with

E ⊂ Ω, ∂E ∩Ω ∈ C2,

Γ (L1(Ω))− lim
ε→0

Fε(X ) = F(X ) (1.3)

holds.

Compared to the original conjecture of De Giorgi the structure of the approximate functionals Fε is

different in the choice of the double well potential and, more importantly, in the the second term of

Fε, where instead of the ‘energy density’ ε
2 |∇u|

2 + 1
εW (u) the factor 1

ε appears.

The Γ -convergence of the first part of the functionals Fε to the first term of F , which is basically

the area functional, was already proved by Modica and Mortola [MoMor77], see also [Mo87]. The

second part of F is up to a constant identical to the Willmore functional.

The modified De Giorgi conjecture as stated above was investigated by several authors. Bellettini

and Paolini [BePa93] (see also [BeMu04]) proved the limsup-estimate necessary for the Gamma-

convergence (1.3). Loreti and March considered in [LoMa00] the gradient flows corresponding to the

functionals Fε, F and proved the convergence as ε→ 0 by formal asymptotic expansions.

The liminf-estimate belonging to (1.3) turns out to be the difficult part in the proof of the Modified

De Giorgi Conjecture and only recently partial results were obtained. In [BeMu04] Bellettini and

Mugnai proved the Gamma-convergence for rotationally symmetric data in R2 and Moser proved in

[Mos04] the liminf-estimate in three space dimensions if the data are monotone in one direction. The

lower-semicontinuity of F , which is a necessary condition for F being a Γ -limit, follows from a recent

result of the second author in [Sch04], where the lower semi-continuity of the Willmore functional

under weak convergence of currents is proved.

To prove the Modified De Giorgi Conjecture in space dimensions n = 2, 3 for general data we

combine the approach of Hutchinson and Tonegawa in [HT00], [T02] with arguments used by Chen
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in [C96]. As limit of appropriately defined energy measures we obtain a rectifiable varifold whose

multiplicity is an integer multiple of σ. This limit varifold has a weak mean curvature and satisfies

the liminf estimate for its integrated squared mean curvature. The major challenge to derive these

results is the control of the so called discrepancy measures, which is much more delicate here than

in [HT00], [T02] and which requires a careful analysis and some additional arguments. The liminf

estimate for the Willmore functional of ∂E is then deduced using a Theorem from [Sch04], relating

the mean curvature of the limit varifold to the local geometry given by ∂E.

In the following paragraph we fix some notation and state the liminf estimate, that is the remain-

ing part for the proof of the Modified De Giorgi Conjecture. Auxiliary estimates and in particular

a refined version of a Theorem from [C96] are given in section 3. The rectifiability of the limit of

the energy measures and the liminf estimate for this varifold limit is proved in section 4. The last

paragraph deals with the integrality up to a factor σ of this limit which finally enables us, using the

above mentioned result from [Sch04], to deduce the liminf estimate.

2 The liminf estimate

Since the limsup estimate corresponding to the Modified De Giorgi Conjecture was already estab-

lished in [BePa93], Theorem 1.2 follows if we prove the following Theorem.

Theorem 2.1 (Modified De Giorgi conjecture; liminf estimate) Let n = 2, 3, E ⊆ Ω with

∂E ∩Ω ∈ C2 , X = 2XE − 1 and consider (uε)ε>0 ⊂ L1
loc(Ω) with uε → X in L1

loc(Ω). Then

F(X ) ≤ lim inf
ε→0

Fε(uε).

2

By a standard approximation argument it is sufficient to consider uε ∈ C2(Ω), ε > 0. We let

vε ∈ C0(Ω) such that

−ε∆uε +
1
ε
W ′(uε) = vε in Ω. (2.1)

As in [HT00], [T02], [C96] we define energy measures µε and discrepancy measures ξε, in addition

we define measures αε corresponding to the second term in the functionals Fε,

µε :=
(ε

2
|∇uε|2 +

1
ε
W (uε)

)
Ln, (2.2)

ξε :=
(ε

2
|∇uε|2 −

1
ε
W (uε)

)
Ln, (2.3)

αε :=
1
ε
v2

εLn. (2.4)

Observe that ξε measures the deviation of the somehow ‘ideal situation’ of equipartition of energy

ε/2|∇uε|2 = ε−1W (uε). To prove Theorem 2.1 we can assume that lim infε→0 Fε(uε) < ∞ and,

eventually restricting ourselves to a subsequence, that

µε(Ω) + αε(Ω) ≤ C (2.5)
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and

µε → µ, ξε → ξ, αε → α weakly∗ in C0
0 (Ω)∗. (2.6)

A major difficulty in proving the rectifiablility and integrality of µ is the control of the discrepancy

measures ξε.

Anticipating the results from Chapter 4 and Chapter 5 we prove Theorem 2.1.

Proof of Theorem 2.1:

First we get by [MoMor77] (see also [Mo87])

ν = Hn−1b∂∗E ≤ σ−1µ, (2.7)

and ν is a unit-density, in particular an integral (n−1)−varifold even without assuming regularity

for ∂E .

By Theorem 4.1, we get that µ is rectifiable and∫
Ω

|Hµ|2 dµ ≤ α(Ω) ≤ lim inf
ε→0

αε(Ω) =

= lim inf
ε→0

∫
Ω

1
ε

(
− ε∆uε +

1
ε
W ′(uε)

)2

dLn <∞. (2.8)

By Theorem 5.1, σ−1µ is integral and, as ∂E is assumed to be smooth, we can apply [Sch04]

Corollary 4.3 to obtain

H∂E = Hν = Hσ−1µ ν − almost everywhere. (2.9)

Combining (2.7) - (2.9) yields

σ

(
Hn−1(∂E ∩Ω) +

∫
∂E∩Ω

|H∂E |2 dHn−1

)
≤ µ(Ω) +

∫
Ω

|Hµ|2 dµ ≤

≤ lim inf
ε→0

µε(Ω) + lim inf
ε→0

∫
Ω

1
ε

(
− ε∆uε +

1
ε
W ′(uε)

)2

dLn ≤

≤ lim inf
ε→0

Fε(uε).

This proves the theorem.

///

3 Auxiliary Estimates

In this section we prove some estimates we need later. The next lemma, which is a refined version of

a result in [C96], is an important step to control the discrepancy measures and the key to improve

a monotonicity formula for the measures µε that we derive in section 4.
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Lemma 3.1 ([C96] Theorem 3.6)

Let n = 2, 3, 0 < δ ≤ δ0, 0 < ε ≤ % ,

%0 := max(2, 1 + δ−Mε)%,

uε ∈ C2(B%0(0)), vε ∈ C0(B%0(0)),M universal large and

−ε∆uε +
1
ε
W ′(uε) = vε in B%0(0).

Then

%1−n

∫
B%(0)

(ε
2
|∇uε|2 −

1
ε
W (uε)

)
+
≤ Cδ%1−n

∫
B2%(0)

(ε
2
|∇uε|2 +

1
ε
W (uε)

)
+

+Cδ−Mε%1−n

∫
B%0 (0)

v2
ε + Cδ−M%1−n

∫
B%0 (0)∩[|uε|≥1]

1
ε
W ′(uε)2 + C(ε/%)δ.

2

Compared to Theorem 3.6 in [C96] this lemma makes dependences on the small parameter δ

explicit. We give the proof of Lemma 3.1 at the end of this section.

Lemma 3.2 ([C96] Lemma 4.3)

Let n = 2, 3, 0 < δ ≤ δ0, R(δ) = δ−5, ω(δ) = c0δ
24, U ∈ C2(BR), V ∈ C0(BR), BR = Bn

R(0) ⊆ Rn

satisfying
−∆U +W ′(U) = V in BR,

|U | ≤ 2 in BR,

‖ V ‖L2(BR)≤ ω.

Then ∫
B1

(1
2
|∇U |2 −W (U)

)
+
≤ Cδ (3.1)

and for τ = δ1/(2n+3)∫
B1/2

(1
2
|∇U |2 −W (U)

)
+
≤ Cτ

∫
B1/2

(1
2
|∇U |2 +W (U)

)
+

∫
B1/2∩[|U |≥1−τ ]

1
2
|∇U |2. (3.2)

Proof:

We may assume that U, V are smooth and consider

−∆Ψ = −V in BR,

Ψ = 0 on ∂BR.

Putting ΨR(x) = Ψ(Rx), VR(x) = R2V (Rx) we see that

−∆ΨR = −VR in B1,

ΨR = 0 on ∂B1,

hence by standard elliptic L2-theory we obtain

‖ ΨR ‖W 2,2(B1)≤‖ VR ‖L2(B1)≤ CR−n/2+2ω.
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Rescaling yields

‖ Ψ ‖L2(BR) +R ‖ ∇Ψ ‖L2(BR) +R2 ‖ D2Ψ ‖L2(BR)

= Rn/2 ‖ ΨR ‖W 2,2(B1)

≤ CR2ω (3.3)

and by the embeddings W 2,2(B1) ↪→ C0,1/2(B1) ↪→ L∞(B1) and W 1,2(B1) ↪→ L6(B1) as n ≤ 3, we

get

‖ Ψ ‖L∞(BR) = ‖ ΨR ‖L∞(B1)

≤ C ‖ ΨR ‖W 2,2(B1) ≤ CR−n/2+2ω ≤ 1, (3.4)

due to our choice of ω. Moreover the inequality

‖ ∇Ψ ‖L6(BR) = Rn/6−1 ‖ ∇ΨR ‖L6(B1) ≤ CRn/6−1 ‖ ΨR ‖W 2,2(B1)

≤ CR−n/3+1ω (3.5)

holds. Next we see that ‖ ∆U ‖L2(BR)≤ CRn/2 and putting UR(x) = U(Rx) we obtain by Friedrich’s

Theorem

‖ UR ‖W 2,2(B1/2) ≤ C
(
‖∆UR‖L2(B1) + ‖UR‖L2(B1)

)
≤ C

(
R−n/2+2‖∆U‖L2(BR) + 1

)
≤ CR2.

By the embedding W 1,2(B1/2) ↪→ L6(B1/2), as n ≤ 3, we get further

‖∇U‖L6(BR/2) = Rn/6−1‖∇UR‖L6(B1/2)

≤ CRn/6−1‖UR‖W 2,2(B1/2)

≤ CRn/6+1. (3.6)

Now we put U0 := U + Ψ ∈W 2,2(BR) and see by (3.4) and the assumptions on U that

|U0| ≤ 3, (3.7)

−∆U0 = −W ′(U) (3.8)

holds. As
1
2
|∇U |2 −W (U) =

1
2
|∇U0 −∇Ψ |2 −W (U0 − Ψ)

≤
(1
2

+ ς
)
|∇U0|2 −W (U0) + C|Ψ |+

(1
2

+
1
ς

)
|∇Ψ |2, (3.9)

we see by (3.4), (3.5), (3.9) for 0 < β ≤ 1∫
B1

(1
2
|∇U |2 −W (U)

)
+

≤
∫
B1

(1
2
|∇U0|2 −W (U0)

)
+

+
∫
B1

(
β|∇U0|2 + C|Ψ |+ (

1
2

+
1
β

)|∇Ψ |2
)

≤
∫
B1

(1
2
|∇U0|2 −W (U0)

)
+

+ C
(
β +R−n/2+2ω +

1
β
R−2n/3+2ω2

)
. (3.10)
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Choosing β = R−n/3+1ω ≤ δ ≤ 1 and observing that R−n/2+2ω ≤ Rω ≤ δ as n ≥ 2, we see∫
B1

(1
2
|∇U |2 −W (U)

)
+
≤

∫
B1

(1
2
|∇U0|2 −W (U0)

)
+

+ Cδ

and for proving (3.1) it suffices to show∫
B1

(
1
2
|∇U0|2 −W (U0)

)
+

≤ Cδ. (3.11)

To this end, we put

V0 := −∆U0 +W ′(U0)

= −∆Ψ −∆U +W ′(U)

+W ′′(U)Ψ +
1
2
W ′′′(U)Ψ2 +

1
6
W (iv)(U)Ψ3

= W ′′(U)Ψ +
1
2
W ′′′(U)Ψ2 +

1
6
W (iv)(U)Ψ3.

By (3.4)-(3.7) we obtain

‖V0‖L∞(BR) ≤ CR−n/2+2ω ≤ 1 (3.12)

and

‖∇V0‖L6(BR/2) ≤ C
(
‖∇U‖L6(BR/2)‖Ψ‖L∞(BR) + ‖∇Ψ‖L6(BR)

)
≤ C

(
Rn/6+1−n/2+2ω +R−n/3+1ω

)
≤ CR−n/3+3ω. (3.13)

By (3.7), (3.8), |U | ≤ 2 and standard elliptic Lp-theory we get for any B1(x) ⊆ BR

‖U0‖W 2,p(B1/2(x)) ≤ Cp for all 1 < p <∞

and hence

‖∇U0‖L∞(BR−1(0)) ≤ C. (3.14)

Next we put

H :=
1
2
|∇U0|2 −W (U0)−G(U0)− ϕ, (3.15)

for some smooth G : R→ R and ϕ ∈W 2,2(BR), chosen below. We calculate

∆H = |D2U0|2 +∇U0 · ∇∆U0 −∆ϕ−

−
(
W ′ +G′

)
∆U0 −

(
W ′′ +G′′

)
|∇U0|2.

Using ∆U0 = W ′(U0)− V0 and |∇U0|2 = 2(H +W +G+ ϕ) we proceed

∆H = |D2U0|2 −∇U0 · ∇V0 +
(
W ′ +G′

)
V0 −∆ϕ−

−W ′(W ′ +G′
)
− 2G′′(H +W +G+ ϕ).
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From the definition of H we see

∇H = D2U0∇U0 −
(
W ′ +G′

)
∇U0 −∇ϕ

and

|∇U0|2|D2U0|2 ≥ |D2U0∇U0|2

=
∣∣∇H +

(
W ′ +G′

)
∇U0 +∇ϕ

∣∣2
≥ 2

(
W ′ +G′

)
∇U0 · ∇(H + ϕ) +

(
W ′ +G′

)2|∇U0|2,

hence in BR ∩
[
∇U0 6= 0

]
∆H − 2(W ′ +G′)∇U0

|∇U0|2
∇H + 2G′′H

≥
(
W ′ +G′)2 −W ′(W ′ +G′

)
− 2G′′(W +G)+

+
2(W ′ +G′)∇U0

|∇U0|2
∇ϕ− 2G′′ϕ−

−∆ϕ−∇U0 · ∇V0 +
(
W ′ +G′

)
V0

=
(
G′

)2 +
(
G′W ′ − 2G′′(W +G)

)
+

+
2(W ′ +G′)∇U0

|∇U0|2
∇ϕ− 2G′′ϕ−

−∆ϕ−∇U0 · ∇V0 +
(
W ′ +G′)V0.

Now we choose in (3.15) G = Gδ, where

Gδ(r) := δ
(
1 +

r∫
−3

exp
(
−

t∫
−3

|W ′(s)|+ δ

2(W (s) + δ)
ds

)
dt

)
.

Recalling (3.7) we obtain

δ ≤ Gδ(U0) ≤ Cδ,

0 < G′δ(U0) ≤ δ (3.16)

0 < −G′′δ (U0) = G′δ(U0)
|W ′(U0)|+ δ

W (U0) + δ
≤ C, (3.17)

and calculate

G′δW
′ − 2G′′δ (W +Gδ) = G′δ

(
W ′ +

|W ′|+ δ

W + δ
(W +Gδ)

)
≥ δG′δ,

as Gδ ≥ δ. Therefore

∆H − 2(W ′ +G′δ)∇U0

|∇U0|2
∇H + 2G′′δH

≥
(
G′δ)

2 + δG′δ +
2(W ′ +G′δ)∇U0

|∇U0|2
∇ϕ− 2G′′δϕ

−∆ϕ−∇U0 · ∇V0 +
(
W ′ +G′δ

)
V0 (3.18)
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in BR ∩
[
∇U0 6= 0

]
. Next we choose ϕ to be the solution of the Dirichlet problem

−∆ϕ =
∣∣∇U0 · ∇V0 −

(
W ′ +G′δ

)
V0

∣∣ in BR/2,

ϕ = 0 on ∂BR/2.

We observe that ϕ ≥ 0 and by (3.7), (3.12)-(3.14), (3.16) we see

‖∆ϕ‖L6(BR/2) = ‖∇U0 · ∇V0 −
(
W ′ +G′δ)V0‖L6(BR/2)

≤ C
(
R−n/3+3ω +Rn/6−n/2+2ω

)
≤ CR−n/3+3ω,

hence putting ϕR(x) = ϕ(Rx/2) by standard elliptic Lp-theory we obtain

‖ϕR‖W 2,6(B1) ≤ C‖∆ϕR‖L6(B1)

≤ CR2−n/6‖∆ϕ‖L6(BR/2)

≤ CR−n/2+5ω.

By the embedding W 2,6(B1) ↪→W 1,∞(B1) as n ≤ 3, we get

‖ϕ‖L∞(BR/2) + ‖∇ϕ‖L∞(BR/2) = ‖ϕR‖W 1,∞(B1)

≤ C‖ϕR‖W 2,6(B1)

≤ CR−n/2+5ω. (3.19)

Next, if H > 0 then ∇U0 6= 0 and |W ′(U0)|2 ≤ CW (U0) ≤ C|∇U0|2 thus by (3.16) we obtain

|
(
W ′ +G′δ

)
(U0)∇U0|

|∇U0|2
≤ C

(
1 +

δ

|∇U0|

)
.

From (3.18) together with (3.16)-(3.19) we get in BR/2 ∩ [H > 0]

∆H ≥
(
G′δ

)2 + δG′δ +
2(W ′ +G′δ)∇U0

|∇U0|2
(
∇H +∇ϕ

)
≥

(
G′δ

)2 + δG′δ − C
(
|∇H|+ |∇ϕ|

)
(1 +

δ

|∇U0|
)

≥
(
G′δ

)2 + δG′δ − C(1 +
δ

|∇U0|
)
(
|∇H|+R−n/2+5ω

)
. (3.20)

Next we calculate by (3.7)

G′δ(U0) ≥ δ exp
(
−

3∫
−3

|W ′(s)|+ δ

2(W (s) + δ)
ds

)
(3.21)

and
3∫

−3

|W ′(s)|+ δ

2(W (s) + δ)
ds ≤

0∫
−3

∣∣ d
ds

log
(
W (s) + δ

)∣∣ ds+ 3

= 3 + log
(
W (3) + δ

)
+ log

(
1 + δ

)
− 2 log δ

≤ C − log δ2
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for δ < 1. Therefore

G′δ(U0) ≥ c0δ
3

and by (3.20)

∆H ≥ c0(δ6 + δ4)− C
(
1 +

δ

|∇U0|
)(
|∇H|+R−n/2+5ω

)
(3.22)

in BR/2 ∩ [H > 0] ∩ [∇U0 6= 0]. Now we assume that

η := sup
B1

H ≥ δ > 0. (3.23)

We choose λ ∈ C2
0 (BR/2) with 0 ≤ λ ≤ 1, λ = 1 on BR/4 and |Djλ| ≤ CR−j for j = 1, 2. Then there

exists x0 ∈ BR/2 such that

(λH)(x0) = max
{
(λH)(x) : x ∈ BR/2

}
≥ η > 0.

As H ≤ C in BR−1 by (3.14), we get

λ(x0) ≥ c0η for some c0 > 0. (3.24)

Further we obtain

H(x0) ≥ (λH)(x0) ≥ η ≥ δ > 0 (3.25)

and

|∇U0(x0)|2 ≥ 2H(x0) ≥ 2η ≥ 2δ > 0. (3.26)

Next ∇(λH)(x0) = 0, hence

|∇H(x0)| ≤ λ(x0)−1|∇λ(x0)|H(x0)

≤ C(Rη)−1. (3.27)

Finally

0 ≥ ∆(λH)(x0)

= λ(x0)∆H(x0) + 2∇λ(x0) · ∇H(x0) +∆λ(x0)H(x0),

hence by (3.14), (3.23), (3.24), (3.27)

∆H(x0) ≤ λ(x0)−1
(
CR−1|∇H(x0)|+ CR−2

)
≤ Cη−1

(
R−2η−1 +R−2

)
= CR−2η−1(1 + η−1)

≤ CR−2δ−1η−1. (3.28)

On the other hand we obtain by (3.16), (3.22), (3.25)- (3.27) that

∆H(x0) ≥ δ4 − C
(
(Rη)−1 +R−n/2+5ω

)
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holds. Combining this inequality with (3.28) we obtain, as R−n/2+5ω � δ4

1
2
δ4 ≤ δ4 − CR−n/2+5ω

≤ CR−1η−1(1 +R−1δ−1),

hence

η ≤ CR−1δ−4(1 +R−1δ−1)

≤ Cδ.

In any case, assuming (3.23) or not, we arrive at

H ≤ Cδ in B1

and (3.15), (3.16), (3.19) yield

1
2
|∇U0|2 −W (U0) = H +Gδ(U0) + ϕ

≤ Cδ + CR−n/2+5ω

≤ δ,

which implies (3.11) and (3.1).

If |U | ≥ 1 − τ on B1/2 then (3.2) is immediate. Otherwise there is x0 ∈ B1/2 with |U(x0)| < 1 − τ .
By standard elliptic estimates we get

‖U‖C0,1/2(B1) ≤ ‖U‖W 2,2(B1)

≤ C
(
‖∆U‖L2(B2) + ‖U‖L2(B2)

)
≤ C.

Therefore |U | ≤ 1− τ/2 and W (U) ≥ τ2/4 in Bc0τ2(x0) ⊆ B1 and∫
B1/2(0)

W (U) ≥
(
c0τ

2
)n τ2

4
= c0τ

2(n+1).

Recalling τ2n+3 = δ we get from (3.1)∫
B1/2

(1
2
|∇U |2 −W (U)

)
+
≤ Cδ

= Cττ2n+2

≤ Cτ

∫
B1/2

(1
2
|∇U |2 +W (U)

)
which yields (3.1).

///
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Proposition 3.3 For n = 2, 3, ε > 0, uε ∈ C2(Bε/4(0)), vε ∈ C0(Bε/4(0)) ,

−ε∆uε + ε−1W ′(uε) = vε in Bε/4(0),

we have

|uε(0)| ≤ 1 + Cε−n ‖ (|uε| − 1)+ ‖L1(Bε/4(0)) +Cε1−n/2 ‖ vε ‖L2(Bε/4(0)) .

Proof:

After rescaling u(x) = uε(εx), v(x) = εvε(εx) it suffices to prove the claim for ε = 1. We see

−∆(u− 1)+ ≤ v+ in B1/4(0)

and consider the Dirichlet problem

−∆ψ = v+ in B1/4(0),

ψ = 0 on ∂B1/4(0).

Then the difference (u− 1)+ − ψ is subharmonic, hence(
(u− 1)+ − ψ

)
(0) ≤ C‖(u− 1)+‖L1(B1/4(0)) + C‖ψ‖L1(B1/4(0)).

By the Sobolev embedding W 2,2(B1/4(0)) ↪→ L∞(B1/4(0)), as n ≤ 3, and elliptic estimates, we get

‖ψ‖L∞(B1/4(0)) ≤ C‖ψ‖W 2,2(B1/4(0))

≤ C‖v+‖L2(B1/4(0))

and

u(0) ≤ 1 + C‖(u− 1)+‖L1(B1/4(0)) + C‖v‖L2(B1/4(0)).

By symmetry the proposition follows.

///

The next two propositions give us control over ‘error terms’ as for example appearing in the estimate

in Lemma 3.1.

Proposition 3.4 ([C96] Lemma 4.4)

For n = 2, 3, 0 ≤ δ ≤ δ0, Ω ⊆ Rn, ε > 0, uε ∈ C2(Ω), vε ∈ C0(Ω) ,

−ε∆uε +
1
ε
W ′(uε) = vε in Ω,

and Ω′ ⊂⊂ Ω, 0 < r ≤ d(Ω′, ∂Ω) , we have∫
[|uε|≥1−δ]∩Ω′

(
ε|∇uε|2 +

1
ε
W (uε) +

1
ε
W ′(uε)2

)
≤

≤ Cδ
∫

[|uε|≤1−δ]∩Ω

ε|∇uε|2 + Cε

∫
Ω

v2
ε + C(δr−1 + δ2r−2)εLn(Ω) + Cr−2ε

∫
[|uε|≥1]∩Ω

W ′(uε)2.
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Proof:

As in [C96] Lemma 4.4, we define g(t) := W ′(t) for |t| ≥ 1 − δ choose t0 = 1/
√

3, that is

W ′′(±t0) = 4(3t20 − 1) = 0, and set δ0 = (1 − t0)/2 . We put g(t) = 0 for |t| ≤ t0 and g to

be linear in [−1 + δ,−t0] and [t0, 1− δ] . Clearly |g| ≤ |W ′| .
For η ∈ C1

0 (Ω), 0 ≤ η ≤ 1, η = 1 on Ω′, |∇η| ≤ Cr−1 , we get∫
vεg(uε)η2 =

∫ (
− ε∆uε +

1
ε
W ′(uε)

)
g(uε)η2 =

=
∫
εg′(uε)|∇uε|2η2 + 2

∫
ε∇uεg(uε)η∇η +

∫
1
ε
W ′(uε)g(uε)η2. (3.29)

We calculate∣∣∣ ∫
vεg(uε)η2

∣∣∣ ≤ ε

2

∫
Ω

v2
ε +

∫
1
2ε
g(uε)2η2 ≤ ε

2

∫
Ω

v2
ε +

1
2ε

∫
W ′(uε)g(uε)η2. (3.30)

As g(1− δ) = |W ′(1− δ)−W ′(1)| ≤ Cδ , we see |g(t)|, |g′(t)| ≤ Cδ for |t| ≤ 1− δ . Therefore∣∣∣2 ∫
ε∇uεg(uε)η∇η

∣∣∣ ≤ 2δ
∫

[|uε|≤1−δ]

ε|∇uε|η|∇η|+
∣∣∣2 ∫

[|uε|≥1−δ]

ε∇uεW
′(uε)η∇η

∣∣∣ ≤

≤ Cδ
∫

[|uε|≤1−δ]

ε|∇uε|2 + εδr−1Ln(Ω) + τ

∫
[|uε|≥1−δ]

ε|∇uε|2η2 + Cετ−1r−2

∫
[|uε|≥1−δ]

W ′(uε)2 (3.31)

for τ > 0 . As g′(t) = W ′′(t) ≥ c0 for |t| ≥ 1− δ , we obtain from (3.29) - (3.31)

c0

∫
[|uε|≥1−δ]

ε|∇uε|2 +
1
2ε

∫
W ′(uε)g(uε)η2 ≤

≤ Cδ
∫

[|uε|≤1−δ]

ε|∇uε|2 + τ

∫
[|uε|≥1−δ]

ε|∇uε|2η2 +
ε

2

∫
Ω

v2
ε+

+ε
(
δr−1 + Cδ2r−2τ−1

)
Ln(Ω) + Cετ−1r−2

∫
[|uε|≥1]

W ′(uε)2.

Choosing τ = c0/2 , we get∫
[|uε|≥1−δ]∩Ω′

(
ε|∇uε|2 +

1
ε
W ′(uε)2

)
≤ Cδ

∫
[|uε|≤1−δ]

ε|∇uε|2+

+Cε
∫
Ω

v2
ε + Cε

(
δr−1 + δ2r−2

)
Ln(Ω) + Cεr−2

∫
[|uε|≥1]

W ′(uε)2.

As W (t) ≤ CW ′(t)2 for |t| ≥ 1− δ , the assertion follows.

///
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Proposition 3.5 For n = 2, 3, Ω ⊆ Rn, ε > 0, uε ∈ C2(Ω), vε ∈ C0(Ω) ,

−ε∆uε +
1
ε
W ′(uε) = vε in Ω,

and Ω′ ⊂⊂ Ω, 0 < r ≤ d(Ω′, ∂Ω) , we have∫
[|uε|≥1]∩Ω′

W ′(uε)2 ≤ Ck(1 + r−2kε2k)ε2
∫
Ω

v2
ε + Ckr

−2kε2k

∫
[|uε|≥1]∩Ω

W ′(uε)2 ∀k ∈ N0.

Proof:

We choose

Ω′ = Ω′k ⊂⊂ Ω′k−1 ⊂⊂ . . . ⊂⊂ Ω′0 = Ω

with d(Ω′l, ∂Ω
′
l−1) ≥ r/k for l = 1, . . . , k, put

Il :=
∫

[|uε|≥1]∩Ω′l

W ′(uε)2 for l = 0, . . . , k,

and see by Proposition 3.4 for δ = 0

Il ≤ Cε2
∫
Ω

v2
ε + Ck2r−2ε2Il−1 for l = 1, . . . , k,

and the result follows by induction.

///

We are now in the position to prove Lemma 3.1.

Proof of Lemma 3.1:

First we consider 0 < ε ≤ % = 1. For 0 < δ ≤ δ0, we choose R = R(δ2n+3) = δ−10n−15 � 1,

ω = ω(δ2n+3) = c0δ
25(2n+3) � 1 as in Lemma 3.2. Let {xi}i∈I ⊆ B1(0), I ⊂ N be a maximal

collection of points satisfying

min
i 6=j∈I

|xi − xj | ≥
ε

2
.

Since ε ≤ 1 we have

B1(0) ⊆
⋃
i∈I

Bε/2(xi) ⊆ B3/2(0), (3.32)

∑
i∈I

XBε(xi) ≤ CnXB2(0), (3.33)

∑
i∈I

XB2Rε(xi) ≤ CnR
nXB1+2Rε(0). (3.34)

For i ∈ I and x ∈ B2R(0) we put

Ui(x) := uε(xi + εx),

Vi(x) := εvε(xi + εx).

Observing that

xi + εx ∈ B1+2Rε(0) ⊆ B1+δ−M ε(0) ⊆ B%0(0)



15

for M ≥ 10n+ 16 and δ0 ≤ 1/2, we see that

−∆Ui +W ′(Ui) = Vi in B2R(0). (3.35)

We decompose I in

I1 :=
{
i ∈ I : ‖vε‖L2(B2Rε(xi)) < εn/2−1ω

and ‖(|uε| − 1)+‖L1(B2Rε(xi)) < c0ε
n
}
,

I2 := I \ I1.

For i ∈ I1 we see

‖Vi‖L2(B2R(0)) = ε−n/2‖εvε‖L2(B2Rε(xi)) < ω ≤ c0,

‖(|Ui| − 1)+‖L1(B2R(xi)) = ε−n‖(|uε| − 1)+‖L1(B2Rε(xi)) < c0,

hence by Proposition 3.3

‖Ui‖L∞(BR(0)) ≤ 1 + Cc0 ≤ 2,

if c0 is small enough. Then Lemma 3.2 yields∫
B1/2(0)

(1
2
|∇Ui|2 −W (Ui)

)
+

≤Cδ
∫

B1/2(0)

(1
2
|∇Ui|2 −W (Ui)

)
+

+
∫

B1/2(0)∩[|Ui|≥1−δ]

1
2
|∇Ui|2.

Transferring back to uε and vε this reads∫
Bε/2(xi)

(ε
2
|∇uε|2 −

1
ε
W (uε)

)
+

≤Cδ
∫

Bε/2(xi)

(ε
2
|∇uε|2 −

1
ε
W (uε)

)
+

∫
Bε/2(xi)∩[|uε|≥1−δ]

ε

2
|∇uε|2.

Summing over i ∈ I1, recalling (3.32)-(3.34) and using Proposition 3.4 we get∑
i∈I1

∫
Bε/2(xi)

(ε
2
|∇uε|2 −

1
ε
W (uε)

)
+

≤Cδ
∫

B3/2(0)

(ε
2
|∇uε|2 +

1
ε
W (uε)

)
+ C

∫
B3/2(0)∩[|uε|≥1−δ]

ε

2
|∇uε|2

≤Cδ
∫

B2(0)

(ε
2
|∇uε|2 +

1
ε
W (uε)

)
+ Cε

∫
B2(0)

v2
ε+

+ Cε

(
δ +

∫
B2(0)∩[|uε|≥1]

W ′(uε)2
)
. (3.36)
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For i ∈ I2, we get from (3.35) and local elliptic estimates∫
B1/2(0)

|∇Ui|2 ≤ C

∫
B1(0)

(
W ′(Ui)2 + U2

i + V 2
i

)
≤ C + C

( ∫
B1(0)∩[|Ui|≥1]

W ′(Ui)2 +
∫

B1(0)

V 2
i

)
.

As i ∈ I2 and W ′(t)2 ≥
(
|t| − 1

)6

+
, we have

c0 ≤
( ∫

B2R(0)

(
|Ui| − 1

)
+

)6

+ ω−2

∫
B2R(0)

V 2
i

≤ CR5n

∫
B2R(0)∩[|Ui|≥1]

W ′(Ui)2 + ω−2

∫
B2R(0)

V 2
i

hence ∫
B1/2(0)

|∇Ui|2 ≤ C

(
R5n

∫
B2R(0)∩[|Ui|≥1]

W ′(Ui)2 + ω−2

∫
B2R(0)

V 2
i

)
.

Transferring back to uε and vε and summing over i ∈ I2, we obtain by (3.32)-(3.34)

∑
i∈I2

∫
Bε/2(xi)

ε|∇uε|2

≤CRn
(
R5n

∫
B1+2Rε(0)

1
ε
W ′(uε)2 + εω−2

∫
B1+2Rε(0)

v2
ε

)

≤Cδ−M
( ∫

B1+δ−M ε(0)

1
ε
W ′(uε)2 + ε

∫
B1+δ−M ε(0)

v2
ε

)

for M large enough, as R and ω are proportional to powers of δ. Combining with (3.36) and using

(3.32)-(3.34) we obtain∫
B1(0)

(ε
2
|∇uε|2 −

1
ε
W (uε)

)
+

≤Cδ
∫

B2(0)

(ε
2
|∇uε|2 +

1
ε
W (uε)

)
+ Cδ−Mε

∫
Bmax(2,1+δ−M ε)(0)

v2
ε

+ Cδ−M

∫
Bmax(2,1+δ−M ε)(0)

1
ε
W ′(uε)2 + Cεδ.

For arbitrary %, we put Uε/%(x) := uε(%x), vε/%(x) := %vε(%x) and see that

− ε
%
∆Uε/% +

%

ε
W ′(Uε/%) = Vε/%
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in Bmax(2,1+δ−M ε)(0). Rescaling and applying the case % = 1, we get

%1−n

∫
B%(0)

(ε
2
|∇uε|2 −

1
ε
W (uε)

)
+

=
∫

B1(0)

( ε
2%
|∇Uε/%|2 −

%

ε
W (Uε/%)

)
+

≤Cδ
∫

B2(0)

(
ε

2%
|∇Uε/%|2 +

%

ε
W (Uε/%)

)
+ Cδ−Mε%−1

∫
Bmax(2,1+δ−M ε)(0)

V 2
ε/%

+ Cδ−M

∫
Bmax(2,1+δ−M ε)(0)∩[|Uε/%|≥1]

%

ε
W ′(Uε/%

)2 + C
ε

%
δ

=Cδ%1−n

∫
B2%(0)

(
ε

2
|∇uε|2 +

1
ε
W (uε)

)
+ Cδ−Mε%1−n

∫
B%0 (0)

v2
ε

+ Cδ−M%1−n

∫
B%0 (0)

1
ε
W ′(uε)2 + C

ε

%
δ.

///

For further use we finally prove some bounds for local Lp norms of uε.

Proposition 3.6 Consider uε ∈ C2(Ω), vε ∈ C0(Ω) satisfying (2.1)-(2.5). Then for all Ω′ ⊂⊂ Ω

‖ uε ‖Lp(Ω′)≤ C(Ω′, p) ∀1 ≤ p <∞,
‖ uε ‖L∞(Ω′)≤ C(Ω′, β)ε−β ∀β > 0

holds.

Proof:

Let Ω′ ⊂⊂ Ω′′ ⊂⊂ Ω, x0 ∈ Ω′, r = min(d(Ω′, ∂Ω′′), 1) , hence Br(x0) ⊂⊂ Ω′′ . For t ≥ 2 , we see

W ′(t) = 4t(t2 − 1) ≥ 24,

hence

−∆(uε − 2)+ ≤ ε−1(vε −
1
ε
)+ in Ω. (3.37)

Clearly ∫
Br(x0)

(uε − 1)2+ ≤
∫

Ω′′

(uε − 1)2(uε + 1)2 ≤ C(Ω′)ε. (3.38)

Further for 1 ≤ q < 2∫
Br(x0)

(vε −
1
ε
)q
+ ≤ Ln

(
Ω′′ ∩ [vε >

1
ε
]
)1−q/2( ∫

Ω′′

|vε|2
)q/2

≤

≤
(
ε2

∫
Ω′′

|vε|2
)1−q/2( ∫

Ω′′

|vε|2
)q/2

≤ ε2−q

∫
Ω′′

|vε|2 ≤ C(Ω′)ε3−q,

hence ∥∥∥ε−1(vε −
1
ε
)+

∥∥∥
Lq(Br(x0))

≤ C(Ω′)ε3/q−2. (3.39)
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We consider
−∆ψ = ε−1(vε − 1

ε )+ in Br(x0),

ψ = 0 on ∂Br(x0),

and see

−∆((uε − 2)+ − ψ) ≤ 0 in Br(x0),

hence

sup
Br/2(x0)

(
(uε − 2)+ − ψ

)
≤ Cnr

−n
(
‖ (uε − 2)+ ‖L1(Br(x0)) + ‖ ψ ‖L1(Br(x0))

)
. (3.40)

By (3.37), we get for 1 < q < 2

‖ ψ ‖W 2,q(Br(x0))≤ C(Ω′, q)ε3/q−2.

For q = 3/2 and the Sobolev embedding W 2,3/2(Br(x0)) ↪→ Lp(Br(x0)) for 1 ≤ p <∞, as n ≤ 3 ,

we see

‖ ψ ‖Lp(Br(x0))≤ C(Ω′, p),

hence by (3.38) and (3.40)

‖ uε,+ ‖Lp(Br/2(x0))≤ C(Ω′, p).

For q = 3/(2− β) > 3/2 and the Sobolev embedding W 2,q(Br(x0)) ↪→ L∞(Br(x0)) , we see

‖ ψ ‖L∞(Br(x0))≤ C(Ω′, β)ε−β ,

hence again by (3.38) and (3.40)

‖ uε,+ ‖L∞(Br/2(x0))≤ C(Ω′, β)ε−β .

Covering Ω′ appropriately and by symmetry, we obtain

‖ uε ‖Lp(Ω′)≤ C(Ω′, p) ∀1 ≤ p <∞,
‖ uε ‖L∞(Ω′)≤ C(Ω′, β)ε−β ∀β > 0.

///

4 Rectifiability

In this section we prove that the limit µ of the energy measures is rectifiable. The line of arguments

follows [HT00], [T02] but whereas their proofs are based on an L∞-bound on the discrepancy mea-

sures we can only use an L1-control over ξε, which requires substantial changes in the proofs and

additional arguments.

Theorem 4.1 µ as in (2.6) is a rectifiable (n− 1)−varifold with

θn−1
∗ (µ) ≥ θ̄ on spt µ

for some universal θ̄ > 0 and weak mean curvature in L2
loc(µ) with

|Hµ|2µ ≤ α.

2
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We prove this theorem in several steps and start with the important monotonicity formula.

Lemma 4.2 (Monotonicity formula, [T02] Lemma 3.1)

d

d%

(
%1−nµε(B%(0))

)
=

= − 1
%n
ξε(B%(0)) +

1
%n+1

∫
∂B%(0)

ε(y∇uε(y))2 dHn−1(y) +
1
%n

∫
B%(0)

vε(y)(y∇uε(y)) dy

for B%(0) ⊂⊂ Ω .

Proof:

We multiply (2.1) by ∇uεη where η ∈ C1
0 (Ω,Rn) and get∫

vε∇uεη =
∫ (
− ε∆uε +

1
ε
W ′(uε)

)
∇uεη =

=
∫
ε∂iuε∂jiuεηj +

∫
ε∂iuε∂juε∂iηj +

∫
1
ε
∂jW (uε)ηj =

= −
∫ (ε

2
|∇uε|2 +

1
ε
W (uε)

)
div η +

∫
ε∂iuε∂juε∂iηj . (4.1)

Choosing ηj(y) = yjφτ (|y|) with φτ = 1 on [0, %], φτ = 0 on [% + τ,∞[ and φ′τ ≤ 0 , we get for

r(y) := |y| ∫ (
rφ′τ + nφτ ) dµε −

∫
ε
φ′τ
r

(y∇uε)2 −
∫
ε|∇uε|2φτ = −

∫
vε(y∇uε)φτ .

Letting τ → 0 yields

−(n− 1)µε(B%(0)) + %µε(∂B%(0)) =

= −ξε(B%(0)) +
1
%

∫
∂B%(0)

ε(y∇uε)2 +
∫

B%(0)

vε(y∇uε).

Multiplying by %−n , the result follows.

///

In small dimensions n = 2, 3 , we can estimate the integral of the last two terms.

Proposition 4.3 For n = 2, 3, 0 < r ≤ 1, Br(0) ⊂⊂ Ω , we get
r∫

0

[
%−1−n

∫
∂B%(0)

ε(y∇uε)2 + %−n

∫
B%(0)

vε(y∇uε)
]

d% ≥ − 1
4(n− 1)2

αε(Br(0)).

Proof:

We calculate
r∫

0

%−1−n
( ∫

∂B%

ε(y∇uε)2 dHn−1(y)
)

d% =
∫

Br(0)

ε
(y∇uε)2

|y|n+1
dy

and
r∫

0

%−n

∫
B%(0)

|vε(y∇uε)| d% =

r∫
0

∫
|y|<%

%−n|vε(y∇uε)| dy d% =
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=
∫

Br(0)

r∫
|y|

%−n|vε(y∇uε)| d% dy ≤ 1
n− 1

∫
Br(0)

|vε(y∇uε)|
|y|n−1

dy ≤

≤ 1
4(n− 1)2

∫
Br(0)

1
ε
v2

ε +
∫

Br(0)

ε
(y∇uε)2

|y|2n−2
dy.

Observing 2n− 2 ≤ n+ 1 , as n ≤ 3 , the estimate follows.

///

Using results from section 3 we prove now that the positive part of the discrepancy measures

vanishes in the limit ε→ 0.

Proposition 4.4

ξε,+ → 0,

in particular ξ ≤ 0 .

Proof:

For B2% ⊆ Ω′ ⊂⊂ Ω and 0 < ε ≤ δM , 0 < δ ≤ δ0 , we see by Lemma 3.1, Proposition 3.5 and 3.6

ξε+(B%) ≤

≤ Cδµε(B2%) + Cδ−Mε2αε(B2%) + Cδ−M

∫
B2%∩[|uε|≥1]

1
ε
W ′(uε)2 + Cεδ%n−2 ≤

≤ C(Ω′)δ + C(Ω′)δ−Mε2 + Cεδ%n−2,

hence

lim sup
ε→0

ξε,+(B%) ≤ C(Ω′)δ

and ξε,+(B%)→ 0 .

///

An immediate consequence of the monotonicity formula and the last proposition is an upper

bound on density ratios of µ.

Proposition 4.5 For Ω′ ⊂⊂ Ω, r0(Ω′) := min(1, d(Ω′, ∂Ω)/2) , we have

r1−nµ(Br(x)) ≤ C(Ω′) for x ∈ Ω′, 0 < r ≤ r0.

Proof:

For x ∈ Ω′, 0 < r ≤ r0 , we see by the monotonicity formula, Lemma 4.2, and Proposition 4.3

r1−n
0 µε(Br0(x)) ≥ r1−nµε(Br(x))−

r0∫
r

%−nξε(B%(x)) d%− 1
4(n− 1)2

αε(Br0(x)).

Letting ε→ 0 along our subsequence and observing ξ ≤ 0 by Proposition 4.4, we get

r1−nµ(Br(x)) ≤ r1−n
0 µ(Br0(x)) +

1
4(n− 1)2

α(Br0(x))

and the proposition follows.
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///

To obtain further estimates on density bounds we improve the monotonicity formula by combining

Lemma 4.2 with the estimate proved in Lemma 3.1.

Proposition 4.6 For B3r1−β (x) ⊂⊂ Ω, β > 0, ε ≤ s ≤ % ≤ r ≤ 1 , we get

%−nξε,+(B%(x)) ≤ C%−1+γ%1−nµε(B2%(x))+

+Cβε
2%−Mγ−nαε(B3%1−β (x)) + ε%γ−2

(
C + Cβ

∫
B3r1−β (x)∩[|uε|≥1]

W ′(uε)2
)

(4.2)

and

r1−nµε(Br(x)) ≥ s1−nµε(Bs(x))− C
r∫

s

%−1+γ%1−nµε(B2%(x)) d%

−Cβε
2

r∫
s

%−Mγ−nαε(B3%1−β (x)) d%−
(
C + Cβ

∫
B3r1−β (x)∩[|uε|≥1]

W ′(uε)2
)
εγ − Cαε(Br(x)), (4.3)

where 0 < γ < 1/M < 1/2 with M from Lemma 3.1.

Proof:

First we apply Lemma 3.1 with δ = %γ , ε ≤ % ≤ r for 0 < γ < 1/M < 1/2 . Observing that

δ−Mε ≤ %1−Mγ ≤ 1 holds we get

%−nξε,+(B%(x)) ≤ C%−1+γ%1−nµε(B2%(x))+

+Cε2%−Mγ−nαε(B2%(x)) + Cε−1%−Mγ−n

∫
B2%(x)∩[|uε|≥1]

W ′(uε)2 + Cε%γ−2.

By Proposition 3.5 with r := d(B2%(x), ∂B3%1−β (x)) = 3%1−β − 2% ≥ %1−β∫
B2%(x)∩[|uε|≥1]

W ′(uε)2 ≤ Ckε
3αε(B3%1−β (x)) + Ck%

−2k(1−β)ε2k

∫
B3%1−β (x)∩[|uε|≥1]

W ′(uε)2 ≤

≤ Ckε
3αε(B3%1−β (x)) + Ckε

2kβ

∫
B3%1−β (0)∩[|uε|≥1]

W ′(uε)2,

hence for 2kβ ≥ 5 we obtain (4.2).

Plugging into the monotonicity formula, Lemma 4.2, we obtain

d

d%

(
%1−nµε(B%(x))

)
≥

≥ −C%−1+γ%1−nµε(B2%(x))− Cβε
2%−Mγ−nαε(B3%1−β (x))−

−Cβε%
γ−2

(
1 +

∫
B3%1−β (0)∩[|uε|≥1]

W ′(uε)2
)

+

+%−1−n

∫
∂B%(x)

ε((y − x)∇uε)2 dHn−1(y) + %−n

∫
B%(x)

vε((y − x)∇uε) dy.

Integration over 0 < ε ≤ s ≤ r yields (4.3) by Proposition 4.3
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///

Under suitable assumptions on the error terms we can further simplify (4.3).

Proposition 4.7 Let B3r1−β (x) ⊂⊂ Ω, 0 < β0, β ≤ 1/2, 0 < ε ≤ s ≤ r ≤ 1 , with

∫
B3r1−β (x)∩[|uε|≥1]

W ′(uε)2 ≤ Λ,

αε(B%(x)) ≤ Λ%β0 for 3s1−β ≤ % ≤ 3r1−β , n = 3,

αε(B3r1−β (x)) ≤ Λ for n = 2.

Then

s1−nµε(Bs(x)) ≤ Cβ0r
1−nµε(Br(x)) + Cβ0,β(1 + Λ).

Proof:

Putting

f(%) := %1−nµε(B%(x)) for s ≤ % ≤ r,

we see

f(t) ≤ 2n−1f(r) for r/2 ≤ t ≤ r

and get from Proposition 4.6 (4.3) with r replaced by r/2 for γ = c0β0 with c0 small enough and

any s ≤ t ≤ r/2

2n−1f(r)− f(t) ≥ (r/2)1−nµε(Br/2(x))− t1−nµε(Bt(x)) ≥

≥ −C
r/2∫
t

%−1+γf(2%) d%− Cβε
2

r/2∫
ε

Λ%−Mγ−n+β0(1−β) d%− Cβ(1 + Λ)εγ − CΛ ≥

≥ −C
r∫

2t

%−1+c0β0f(%) d%− Cβ(1 + Λ).

Together

f(t) ≤ 2n−1f(r) + Cβ(1 + Λ) +

r∫
2t

C%−1+c0β0f(%) d% for s ≤ t ≤ r

2
.

By Gronwall’s lemma

f(t) ≤ exp(Cβ0r
c0β0)

(
2n−1f(r) + Cβ(1 + Λ)

)
,

which is the assertion, when the closed balls are replaced by open balls. Approximating t↘ s gives

the full assertion.

///

The next lemma gives an important lower estimate on density ratios.
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Lemma 4.8 There exists θ̄ > 0 such that for any open set Ω′ ⊂⊂ Ω and appropriate r1 = r1(Ω′),

0 < r1(Ω′) := min(c0, d(Ω′, ∂Ω)/2) ≤ r0(Ω′) := min(1, d(Ω′, ∂Ω)/2) for c0 > 0 small enough, we

have

r1−nµ(Br(x)) ≥ θ̄ − Cα(Br(x)) for x ∈ spt µ ∩Ω′, 0 < r ≤ r1.

In particular

θn−1
∗ (µ) ≥ θ̄ω−1

n−1

almost everywhere with respect to µ in Ω .

Proof:

We consider 0 ∈ spt µ ∩Ω′ and choose β = β(r0) > 0 such that

3
(
r0/4

)1−β ≤ r0.

For x ∈ Br/2(0), 0 < r ≤ r0 ≤ 1 , we see Br(x) ⊆ B3r0/2(0) ⊂⊂ Ω and get by Proposition 3.6 and

4.6 (4.3) with r replaced by r/4 that

(r/4)1−nµε(Br/4(x)) ≥ s1−nµε(Bs(x))− C
r/4∫
s

%−1+γ%1−nµε(B2%(x)) d%−

−Cβε
2

r/4∫
s

%−Mγ−nαε(B3%1−β (x)) d%− Cβ(Ω′)εγ − Cαε(Br/4(x)), (4.4)

where 0 < γ < 1/M < 1/2 with M from Lemma 3.1.

Next we seek a point x ∈ Br/2(0) satisfying

ε1−nµε(Bε(x)) ≥ 2θ̄0 > θ̄0 ≥ Cβε
2

r/4∫
ε

%−Mγ−nαε(B3%1−β (x)) d% (4.5)

for some universal θ̄0 > 0 . We consider x ∈ Br/2(0) with |uε(x)| ≤ 1 − τ for some 0 < τ < 1 .

If ε1−nµε(Bε(x)) ≤ 1 , we see

ε−n

∫
Bε(x)

u4
ε ≤ C

(
1 +

∫
Bε(x)

ε−nW (uε)
)
≤ C.

As for n ≤ 3

‖ εvε(x+ ε.) ‖2L2(B1(0))
≤ Cε2−n

∫
Bε(x)

v2
ε ≤ Cαε(Bε(x)) ≤ C,

we see by elliptic estimates

‖ uε(x+ ε.) ‖C0,1/2(B1/2(0))
≤ C ‖ uε(x+ ε.) ‖W 2,2(B1/2(0))≤ C,

hence

|uε| ≤ 1− τ/2 on Bc0τ2ε(x)



24

for c0 � 1 small enough and

ε1−nµε(Bε(x)) ≥ ε−n

∫
Bc0τ2ε(x)

W (uε) ≥ c0τ2n+2 := 2θ̄0 > 0.

For c0 � 1 this is also true in case ε1−nµε(Bε(x)) ≥ 1 , and we get

ε1−nµε(Bε(x)) ≥ 2θ̄0 for x ∈ Br/2(0) ∩ [|uε| ≤ 1− τ ]. (4.6)

By Proposition 3.4 and 3.6, we get for τ small enough

µε(Br/4(0)) = µε

(
Br/4(0) ∩ [|uε| < 1− τ ]

)
+ µε

(
Br/4(0) ∩ [|uε| ≥ 1− τ ]

)
≤

≤ Cµε

(
Br/2(0) ∩ [|uε| ≤ 1− τ ]

)
+ Cε2αε(Br/2(0)) + Cε(τrn−1τrn−2) + Cr−2ε,

hence, as 0 ∈ spt µ , for ε→ 0 along the subsequence

0 < µ(Br/4(0)) ≤ lim inf
ε→0

µε(Br/4(0)) ≤ lim inf
ε→0

Cµε

(
Br/2(0) ∩ [|uε| ≤ 1− τ ]

)
and

lim inf
ε→0

ε−1Ln
(
Br/2(0) ∩ [|uε| ≤ 1− τ ]

)
≥

≥ lim inf
ε→0

c0τ
−2

∫
Br/2(0)∩[|uε|≤1−τ ]

1
ε
W (uε) =

= lim inf
ε→0

c0τ
−2(µε − ξε)

(
Br/2(0) ∩ [|uε| ≤ 1− τ ]

)
>

> − lim sup
ε→0

c0τ
−2ξε

(
Br/2(0) ∩ [|uε| ≤ 1− τ ]

)
≥ 0 (4.7)

by Proposition 4.4.

To estimate the integral in (4.5), we define for 0 < % ≤ r0 the convolution

wε,%(x) := %−n
(
χB%(0) ∗

1
ε
v2

ε

)
(x) = %−nαε(B%(x))

and see wε,% ∈ L1(Br0/2(0)) with

‖ wε,% ‖L1(Br0/2(0))≤
∫

Br0/2+%(0)

1
ε
v2

ε ≤ αε(B3r0/2(0)) <∞.

Putting wε :=
∫ r0

0
wε,% d% , we see

‖ wε ‖L1(Br0/2(0))≤ r0αε(B3r0/2(0)) <∞

and calculate
r/4∫
ε

%−Mγ−nαε(B3%1−β (x)) d% =

=

3(r/4)1−β∫
3ε1−β

(t/3)(−Mγ−n)/(1−β)αε(Bt(x))t1/(1−β)−13−1/(1−β)(1− β)−1 dt ≤
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≤ C
3(r/4)1−β∫
3ε1−β

t(−Mγ−n+β)/(1−β)αε(Bt(x)) dt ≤

≤ Cε(−Mγ−(n−1)β)/(1−β)

r0∫
0

wε,%(x) d% = Cε(−Mγ−(n−1)β)/(1−β)wε(x).

Choosing Mγ < 1/2 and β < (2(n− 1))−1 , we get

lim sup
ε→0

ε−1Ln

(
Br/2(0) ∩

[
Cβε

2

r/4∫
ε

%−Mγ−nαε(B3%1−β (x)) d% ≥ θ̄0
])
≤

≤ lim sup
ε→0

ε−1Cβε
2−(Mγ+(n−1)β)/(1−β)θ̄0

−1 ‖ wε ‖L1(Br0/2(0))≤

≤ lim sup
ε→0

ε1−(Mγ+(n−1)β)/(1−β)Cβ θ̄0
−1
r0αε(B3r0/2(0)) = 0.

Combining with (4.6) and (4.7), we see for ε small enough that x ∈ Br/2(0) satisfying (4.5) exists.

For such x , we claim

(r/2)1−nµε(Br/2(x)) ≥ 21−nθ̄0 − Cγr
γ − Cβ(Ω′)εγ − Cαε(Br/4(x)). (4.8)

If not, we put

s := sup{ε ≤ % ≤ r/2 | %1−nµε(B%(x)) ≥ 2θ̄0 }.

Clearly ε ≤ s ≤ r/4 , as we assume that (4.8) is not satisfied, and

s1−nµε(Bs(x)) ≥ 2θ̄0,

%1−nµε(B%(x)) ≤ 2θ̄0 ∀s ≤ % ≤ r/2.

Then we obtain from (4.4) and (4.5)

2n−1(r/2)1−nµε(Br/2(0)) ≥ (r/4)1−nµε(Br/4(0)) ≥

≥ 2θ̄0 − C
r/4∫
s

2θ̄0%−1+γ d%− θ̄0 − Cβ(Ω′)εγ − Cαε(Br/4(x)) ≥

≥ θ̄0 − Cγr
γ − Cβ(Ω′)εγ − Cαε(Br/4(x))

which yields (4.8).

As Br/2(x) ⊆ Br(0) , we get from (4.8) for ε→ 0 along the subsequence

r1−nµ(Br(0)) ≥ lim sup
ε→0

21−n(r/2)1−nµε(Br/2(x)) ≥ 41−nθ̄0 − Cγr
γ − Cα(Br(0)).

Approximating r′ ↗ r , we get for 0 < r ≤ r1(Ω′) ≤ r0(Ω′) that

r1−nµ(Br(0)) ≥ c0θ̄0 − Cα(Br(0)),

which yields the first estimate of the proposition.
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This implies θn−1
∗ (µ, x) ≥ θ̄ω−1

n−1 for x ∈ spt µ∩Ω with α({x}) = 0 . As {x ∈ Ω | α({x}) > 0 }
is countable and µ({x}) = 0 for any x ∈ Ω by Proposition 4.5, as n ≥ 2 , we see

µ({x ∈ Ω | α({x}) > 0 }) = 0

and

θn−1
∗ (µ) ≥ θ̄ω−1

n−1

almost everywhere with respect to µ in Ω .

///

Revisiting the monotonicity formula Lemma 4.2 we can prove that the full discrepancy vanishes

in the limit.

Proposition 4.9 ([T02] Proposition 4.3)

|ξε| → 0 and ξ = 0.

Proof:

We recall ξ ≤ 0 by Proposition 4.4. First we show

θn−1
∗ (|ξ|) = 0 in Ω. (4.9)

If not, there exists 0 < %0, δ < 1 such that B%(x) ⊂⊂ Ω and

%1−n|ξ|(B%(x)) ≥ δ ∀0 < % ≤ %0.

By monotonicity formula, Lemma 4.2, we get

d

d%

(
%1−nµε(B%(x))

)
≥

≥ −%−nξε(B%(x)) + %1−n

∫
B%(x)

ε(y∇uε)2 dy + %−n

∫
∂B%(x)

vε(y∇uε) dHn−1(y).

Integrating from r to %0 , we get by Proposition 4.3

%0∫
r

%−nξε,−(B%(x)) d% ≤ %1−n
0 µε(B%0(x)) +

1
4(n− 1)2

αε(B%0(x))

+

%0∫
r

%−nξε,+(B%(x)) d%.

Letting ε→ 0 along the subsequence recalling ξε,+ → 0 by Proposition 4.4 and 4.5 we get

∞ > %1−n
0 µ(B%0(x)) +

1
4(n− 1)2

α(B%0(x)) ≥
%0∫

r

%−n|ξ|(B%(x)) d% ≥ δ log(%0/r).

Letting r → 0 , we get a contradiction to δ > 0 and conclude (4.9).
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By Lemma 4.8, we know θn−1
∗ (µ, x) ≥ θ̄ω−1

n−1 for µ almost all x ∈ Ω , hence for such x

Dµ|ξ|(x) = lim inf
%→0

|ξ|(B%(x))
µ(B%(x))

≤

≤ lim inf
%→0

%1−n|ξ|(B%(x))
(

lim inf
%→0

%1−nµ(B%(x))
)−1

≤ θn−1
∗ (|ξ|, x)θ̄−1ωn−1 = 0.

As clearly |ξε| ≤ µε , hence |ξ| ≤ µ , we get by differentiation theorem for measures, see [Sim]

Theorem 4.7, that |ξ| = Dµ|ξ| · µ = 0 , in particular ξε → ξ = 0 . Finally Proposition 4.4 implies

|ξε| = ξε,+ + ξε,− = −ξε + 2ξε,+ → 0.

///

We expect the measures µε roughly to describe the position of the transition layers of uε. We

incorporate more detailed geometric information by assigning a normal direction and a generalized

varifold Vε to µε. The first variation of Vε is determined by vε and the discrepancy measures.

Proposition 4.10 We choose borel-measurable functions νε : Ω → ∂B1(0) extending ∇uε/|∇uε|
on ∇uε = 0 and consider the generalized varifold Vε := µε ⊗ νε that is∫

Ω×G(n,n−1)

φ(x, S) dVε(x, S) =
∫
Ω

Φ(x, νε(x)) dµε(x) for φ ∈ C0
0 (Ω ×G(n, n− 1)).

Then the first variation of Vε is given by

(δVε)(η) = −
∫
vε∇uεη dLn +

∫
νT

ε Dη νε dξε for η ∈ C1
0 (Ω,Rn).

Proof:

By definition

(δVε)(η) =
∫

Ω×G(n,n−1)

divSη(x) dVε(x, S) =
∫
Ω

(
div η − νT

ε Dη νε

)
dµε =

=
∫
Ω

(
div η − νT

ε Dη νε

)(ε
2
|∇uε|2 +

1
ε
W (uε)

)
dLn.

Integration by parts yields

(δVε)(η) = −
∫
Ω

ε∇uε

(
D2uε +

1
ε
W ′(uε)

)
η dLn −

∫
Ω

ε∇uεDη ∇uT
ε dLn +

∫
Ω

νT
ε Dη νε dξε =

= −
∫
Ω

ε∇uε

(
D2uε +

1
ε
W ′(uε)

)
η dLn +

∫
Ω

ε∇uεη∆uε dLn+

+
∫
Ω

ε∇uεD
2uεη dLn +

∫
Ω

νT
ε Dη νε dξε =

=
∫
Ω

(
− ε∆uε +

1
ε
W ′(uε)

)
∇uεη dLn +

∫
Ω

νT
ε Dη νε dξε,

and the assertion follows, as vε = −ε∆uε + 1
εW

′(uε) .
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///

We are now prepared to proof the rectifiability of µ.

Proof of Theorem 4.1:

As ‖ Vε ‖= µε is locally uniformly bounded in Ω , we may assume after passing to a further

subsequence

Vε → V,

where V is a generalized varifold in Ω . Clearly

µV ← µVε
= µε → µ. (4.10)

By Proposition 4.10, we conclude for η ∈ C1
0 (Ω,Rn) with supp η ⊆ U ⊂⊂ Ω that

|(δV )(η)| ← |(δVε)(η)| ≤
( ∫

supp η

1
ε
v2

ε

)1/2( ∫
η2ε|∇uε|2

)1/2

+
∫
|Dη| d|ξε|.

By Proposition 4.9, we see ε|∇uε|2 = µε − ξε → µ , hence

|(δV )(η)| ≤ α(U)1/2
( ∫

η2 dµV

)1/2

.

We conclude that V has generalized mean curvature HV ∈ L2
loc(µV ) and

|HV |2µV ≤ α. (4.11)

By (4.10) and Lemma 4.8, we see θn−1
∗ (µV ) = θn−1

∗ (µ) > 0 almost everywhere with respect to

µ = µV . Then by standard rectifiability theorem, see [Sim] Theorem 42.4, V respectively µ = µV

are rectifiable, hence HV = Hµ and by (4.10) and (4.11)

|Hµ|2µ ≤ α.

///

5 Integrality

The task of this section is to prove that σ−1µ is integral.

Theorem 5.1 σ−1µ with µ as in (2.6) is an integral (n− 1)−varifold.

Proof:

We have to prove that θn−1(µ, x0) ∈ N for µ− almost all x0 ∈ Ω . As we already know by Theorem

4.1 that µ is rectifiable, we may assume that Tx0µ = θT exists with θ > 0 and T ∈ G(n, n − 1) .

Writing x0 = 0 for simplicity this means

ζ%,#µ→ θHn−1bT

weakly as varifolds and where ζ%(x) := %−1x . Choosing a subsequence %k → 0 and εk → 0

appropriate and small enough, we get

ζ%k,#µεk
→ θHn−1bT
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weakly∗ as Radon measures,

ε̃k := εk/%k → 0,

αεk
(B%(0)) ≤ α(B2%(0)) + %n−2

k for %k ≤ % ≤ %0,

with B2%0(0) ⊂⊂ Ω , as lim supε→0 αε(B%(0)) ≤ α(B%(0)) for fixed 0 < % ≤ %0 .

Putting ũε̃k
(x) := uεk

(%kx), ṽε̃k
(x) := %kvεk

(%kx) for x ∈ B%0/%k
(0) , we see

−ε̃k∆ũε̃k
+ 1

ε̃k
W ′(ũε̃k

) =: ṽε̃k
in B%0/%k

(0),

µ̃ε̃k
:=

(
ε̃k

2 |∇ũε̃k
|2 + 1

ε̃k
W (uε̃k

)
)
Ln = ζ%k,#µεk

→ θHn−1bT,

ξ̃ε̃k
:=

(
ε̃k

2 |∇ũε̃k
|2 − 1

ε̃k
W (uε̃k

)
)
Ln,

α̃ε̃k
:= 1

ε̃k
ṽ2

ε̃k
Ln.

By the above assumptions we get further for 1 ≤ R ≤ %0/%k

α̃ε̃k
(BR(0)) = %3−n

k αεk
(BR%k

(0)) ≤ %3−n
k

(
α(B2R%k

(0)) + %n−2
k

)
.

Assuming α({x0}) = 0 for n = 3 , which is true on a co-countable set of Ω , and hence for

µ− almost all x0 ∈ Ω by Proposition 4.5 as n ≥ 2 , we get lim sup
k→∞

α̃ε̃k
(BR(0)) = 0 and

αε̃k
→ 0.

Therefore we have reduced the theorem to the special situation of the following proposition.

///

Proposition 5.2 Assume in (2.1) - (2.6) with B4(0) ⊂⊂ Ω additionally that

µ = θHn−1bT for some θ > 0, T ∈ G(n, n− 1),

α = 0.

Then

σ−1θ ∈ N.

2

We proceed as in [HT00] and [T02], carefully adapting their proofs to our situation with less control

on the discrepancy measures. Proposition 5.4 states a kind of multilayer monotonicity, as it was

already used in the proof of Allard’s Integral Compactness Theorem in [All72]. Proposition 5.4 will

follow by induction from the following result.

Proposition 5.3 ([HT00] Lemma 5.4)

Assume (2.1) - (2.5) and consider X ⊆ {0}×]t1 + d, t2 − d[⊆ Rn consisting of no more than

N ∈ N elements with ∪x∈XB3R1−β (x) ⊆ Ω,−∞ ≤ t1 < t2 ≤ ∞, 0 < ε ≤ d ≤ R ≤ 1/2, 0 < β ≤ 1/2 ,

satisfying

(Γ + 1)diam X < R for some Γ ≥ 1, (5.1)

|x− y| > 3d for x 6= y ∈ X, (5.2)
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∫
B3R1−β (x)∩[|uε|≥1]

W ′(uε)2 ≤ Λ for some Λ <∞, (5.3)

R∫
d

%−n

∣∣∣∣ ∫
B%(x)∩[yn=tj ]

(
(yn − xn)(

ε

2
|∇uε|2 +

1
ε
W (uε))− ε∂nuε((y − x)∇uε)

)
dHn−1(y)

∣∣∣∣ d%

≤ ω for j = 1, 2, (5.4)

for some ω > 0 ,

|ξε|(B%(x)) +
∫

B%(x)

ε|∇uε|2
√

1− ν2
ε,n ≤ ω%n−1 for d ≤ % ≤ R, (5.5)

where νε = ∇uε/|∇uε| for ∇uε 6= 0 ,

αε(B%(x)) ≤ Λ%β0 for 3d1−β ≤ % ≤ 3R1−β , n = 3,

αε(B3R1−β (x)) ≤ Λ for n = 2,
(5.6)

for some 0 < β0 ≤ 1/2 ,

R1−nµε(B2R(x)) ≤ Λ (5.7)

for all x ∈ X .

Then putting St′

t := [t < yn < t′]

d1−nµε(Bd(x)) ≤

≤ R1−nµε(BR(x) ∩ St2
t1 ) + Cβ0,β

(
(1 + Λ)Rc0β0 + ω

)
for all x ∈ X. (5.8)

Further if X consists of more than one point, there exists t3 ∈]t1, t2[ such that

|xn − t3| > d for all x ∈ X, (5.9)

R̃∫
d

%−n

∫
B%(x)∩[yn=t3]

∣∣∣∣(yn − xn)(
ε

2
|∇uε|2 +

1
ε
W (uε))− ε∂nuε((y − x)∇uε)

∣∣∣∣ dHn−1(y) d%

≤ 6N2Γω for all x ∈ X, (5.10)

where R̃ = Γ diam X , and denoting X+ := X ∩ St3
t1 , X− := X ∩ St2

t3 both are non-empty and

R̃1−n
(
µε(∪x∈X−BR̃(x) ∩ St3

t1 ) + µε(∪x∈X+BR̃(x) ∩ St2
t3 )

)
≤

≤ (1 + 1/Γ )n−1R1−nµε(∪x∈XBR(x) ∩ St2
t1 ) + Cβ0,β

(
(1 + Λ)Rc0β0 + ω

)
. (5.11)
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Proof:

We derive a weighted monotonicity formula from (4.1) choosing η(y) := (y − x)φδ(|y − x|)χ(yn),

where φ′δ ≤ 0,

φδ =

1 on [0, %],

0 on [%+ δ,∞[
and

χδ = 1 on [t1 + δ, t2 − δ],
χδ = 0 on ]−∞, t1] ∪ [t2,∞[,

χ′δ ≥ 0 on [t1, t1 + δ],

χ′δ ≤ 0 on [t2 − δ, t2].

As in Lemma 4.2 we get then for x ∈ X, 0 < % ≤ R that∫ (
|y − x|φ′δχδ + nφδχδ) dµε −

∫
ε
φ′δχδ

|y − x|
((y − x)∇uε)2 −

∫
ε|∇uε|2φδχδ =

= −
∫
vε((y − x)∇uε)φδχδ −

∫
(yn − xn)φδχ

′
δ dµε +

∫
ε∂nuε((y − x)∇uε)φδχ

′
δ.

Letting δ → 0 and multiplying by %−n yields

d

d%

(
%1−nµε(B%(x) ∩ St2

t1 )
)

= − 1
%n
ξε(B%(x) ∩ St2

t1 )+

+
1

%n+1

∫
∂B%(x)∩S

t2
t1

ε((y − x)∇uε)2 dHn−1(y) +
1
%n

∫
B%(x)∩S

t2
t1

vε((y − x)∇uε) dy+

+
2∑

j=1

(−1)j 1
%n

∫
B%(x)∩[yn=tj ]

(
(yn − xn)(

ε

2
|∇uε|2 +

1
ε
W (uε))− ε∂nuε((y − x)∇uε)

)
dHn−1(y) d%.

From Proposition 4.7 and (5.3), (5.6), we get

%1−nµε(B%(x)) ≤ Cβ0,β(1 + Λ) for d ≤ % ≤ 2R. (5.12)

Applying Lemma 3.1, Proposition 3.5 as in Proposition 4.6 (4.2) with δ = %γ , ε ≤ % ≤ R ≤ 1 for 0 <

γ < 1/M < 1/2 and observing t1 < xn < t2 , we get using (5.3), (5.6), (5.12)

%−nξε,+(B%(x)) ≤ Cβ0,β(1 + Λ)%−1+γ + CβΛε
2%−Mγ−3+β0(1−β) + ε%γ−2(1 + Λ).

Integrating from % ≥ d ≥ ε to R ≤ 1 , we obtain using Proposition 4.3 with (y∇uε) replaced by

(y∇uε)χS
t2
t1

for γ = c0β0,

R1−nµε(BR(x) ∩ St2
t1 ) ≥ %1−nµε(B%(x) ∩ St2

t1 )+

−Cβ0,β(1 + Λ)Rc0β0 − CβΛε
β0(1−β)−Mγ − C(1 + Λ)εγ − Cα(BR(x))− 2ω.

For c0 = 1/(4M) < 1/8 and γ = c0β0 = β0/(4M) < 1/M , hence β0(1 − β) −Mγ ≥ β0/4 , this

yields by (5.6)

R1−nµε(BR(x) ∩ St2
t1 ) ≥ %1−nµε(B%(x) ∩ St2

t1 )

−Cβ0,β(1 + Λ)Rc0β0 − Cβ(1 + Λ)εc0β0 − CΛRβ0 − 2ω for d ≤ % ≤ R, x ∈ X. (5.13)

Observing that Bd(x) ⊆ St2
t1 , we obtain (5.8).
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If X consists of more than one point, we can choose x± ∈ X such that x+,n−x−,n > diam X/N

and that there is no element of X in {0}×]x−,n, x+,n[ . Let t̃1 := x−,n + (x+,n − x−,n)/3 and

t̃2 := x+,n − (x+,n − x−,n)/3 . For x ∈ X, y ∈ B%(x), d ≤ % ≤ R̃ we calculate

|(yn − xn)(
ε

2
|∇uε|2 +

1
ε
W (uε))− ε∂nuε((y − x)∇uε)| ≤

≤
∣∣∣ε
2
|∇uε|2 −

1
ε
W (uε)

∣∣∣%+ ε|∇uε|2 |(yn − xn)− νε,n(y − x) · νε|

≤
∣∣∣ε
2
|∇uε|2 −

1
ε
W (uε)

∣∣∣%+ ε|∇uε|2%(1− ν2
ε,n +

√
1− ν2

ε,n)

and estimate by (5.5)

t̃2∫
t̃1

R̃∫
d

%−n

∫
B%(x)∩[yn=t]

∣∣∣∣(yn − xn)(
ε

2
|∇uε|2 +

1
ε
W (uε))− ε∂nuε((y − x)∇uε)

∣∣∣∣ dHn−1(y) d% dt =

=

R̃∫
d

%−n

∫
B%(x)∩S

t̃2
t̃1

∣∣∣∣(yn − xn)(
ε

2
|∇uε|2 +

1
ε
W (uε))− ε∂nuε((y − x)∇uε)

∣∣∣∣ dy d% ≤

≤
R̃∫

d

%1−n

∫
B%(x)

(∣∣∣ε
2
|∇uε|2 −

1
ε
W (uε)

∣∣∣ + ε|∇uε|2(1− ν2
ε,n +

√
1− ν2

ε,n)
)

dy d% ≤ 2R̃ω.

Therefore there exists t3 ∈]t̃1, t̃2[ satisfying

R̃∫
d

%−n

∫
B%(x)∩[yn=t3]

∣∣∣∣(yn − xn)(
ε

2
|∇uε|2 +

1
ε
W (uε))− ε∂nuε((y − x)∇uε)

∣∣∣∣ dHn−1(y) d% ≤

≤ 2NR̃ω/(t̃2 − t̃1) ≤ 6N2Γω for all x ∈ X,

as t̃2 − t̃1 ≥ diam X/(3N) = R̃/(3NΓ ) , hence conclude (5.10). As

t3 − x−,n ≥ t̃1 − x−,n = (x+,n − x−,n)/3 > d

and likewise

x+,n − t3 ≥ x+,n − t̃2 = (x+,n − x−,n)/3 > d

by (5.2), we get (5.9).

We put X+ := {x ∈ X : xn ≥ t3, X− := {x ∈ X : xn < t3. Clearly X± 6= ∅ , as x± ∈ X± , and

(∪x∈X−BR̃(x) ∩ St3
t1 ) + (∪x∈X+BR̃(x) ∩ St2

t3 ) ⊆ BR̃+diam X(x0) ∩ St2
t1

for any x0 ∈ X . Observing 6d ≤ R̃ + diam X = (Γ + 1)diam X < R by (5.1), (5.2), as X has

at least two elements, this yields (5.13)

R̃1−n
(
µε(∪x∈X−BR̃(x) ∩ St3

t1 ) + µε(∪x∈X+BR̃(x) ∩ St2
t3 )

)
≤

≤ R̃1−nµε(BR̃+diam X(x0) ∩ St2
t1 ) =
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= (1 + 1/Γ )n−1(R̃+ diam X)1−nµε(BR̃+diam X(x0) ∩ St2
t1 ) ≤

≤ (1 + 1/Γ )n−1
(
R1−nµε(BR(x0) ∩ St2

t1 ) + Cβ0,β

(
(1 + Λ)Rc0β0 + ω

))
≤

≤ (1 + 1/Γ )n−1R1−nµε(∪x∈XBR(x) ∩ St2
t1 ) + Cβ0,β

(
(1 + Λ)Rc0β0 + ω

)
,

which is (5.11).

///

Starting with t1 = −∞, t2 = ∞ , and choosing Γ large and ω, ε small, we inductively use

Proposition 5.3 to separate each element of X in a horizontal strip and get the following multilayer

monotonicity.

Proposition 5.4 ([HT00] Lemma 5.5)

For N ∈ N, δ > 0, 0 < β0, β ≤ 1/2, Λ <∞ there exists ω = ω(N, δ, β0, β, Λ) > 0 satisfying:

Assume (2.1) - (2.5) and consider X ⊆ {0} × R ⊆ Rn consisting of no more than N ∈ N
elements with ∪x∈XB3R1−β (x) ⊆ Ω, 0 < ε ≤ d ≤ R ≤ ω , satisfying

diam X < ωR (5.14)

|x− y| > 3d for x 6= y ∈ X, (5.15)∫
B3R1−β (x)∩[|uε|≥1]

W ′(uε)2 ≤ Λ, (5.16)

|ξε|(B%(x)) +
∫

B%(x)

ε|∇uε|2
√

1− ν2
ε,n ≤ ω%n−1 for d ≤ % ≤ R, (5.17)

where νε = ∇uε/|∇uε| for ∇uε 6= 0 ,

αε(B%(x)) ≤ Λ%β0 for 3d1−β ≤ % ≤ 3R1−β , n = 3,

αε(B3R1−β (x)) ≤ Λ for n = 2.
(5.18)

µε(B2R(x)) ≤ Λ. (5.19)

for c0 � 1 universal small enough, and all x ∈ X .

Then ∑
x∈X

d1−nµε(Bd(x)) ≤ (1 + δ)R1−nµε(∪x∈XBR(x)) + δ. (5.20)

2

The next proposition allows, under the assumption of small discrepancy and tilt-excess, to identify

transition layers and a definite amount of energy within such layers.
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Proposition 5.5 ([HT00] Lemma 5.6)

For τ, δ > 0, Λ <∞ there exists ω = ω(δ, τ, Λ) > 0, 1 < L = L(δ, τ) <∞ satisfying:

Assume (2.1) - (2.5) with Ω = B4Lε(0) and

|uε(0)| ≤ 1− τ, (5.21)

|ξε|(B4Lε(0)) +
∫

B4Lε(0)

ε|∇uε|2
√

1− ν2
ε,n ≤ ω(4Lε)n−1. (5.22)

where νε = ∇uε/|∇uε| for ∇uε 6= 0 ,

αε(B4Lε(0)) ≤ Λ(4Lε)n−3 (5.23)

µε(B4Lε(0)) ≤ Λ(4Lε)n−1. (5.24)

Then

|u(0, t)| ≥ 1− τ/2 for all Lε ≤ |t| ≤ 3Lε, (5.25)∣∣∣ 1
ωn−1(Lε)n−1

µε(BLε(0))− σ
∣∣∣ ≤ δ. (5.26)

∣∣∣ Lε∫
−Lε

1
ε
W (uε(0, t)) dt− σ/2

∣∣∣ ≤ δ. (5.27)

Proof:

We may assume ε = 1 after rescaling. By (5.23), we see
∫

B4L(0)
v2 ≤ Λ(4L)n−3.

We consider the solution of the ordinary differential equation

q′0(t) =
√

2W (q0(t)) for t ∈ R,
q0(0) = u(0).

We note that limt→±∞ q0(t) = ±1 and

∞∫
−∞

1
2
|q′0(t)|2 dt =

∞∫
−∞

W (q0(t)) dt =
1
2

∞∫
−∞

q′0(t)
√

2W (q0(t)) dt =
1
2

1∫
−1

√
2W = σ/2.

On Rn , we write q(x) := q0(xn) and choose L > 1 large enough depending on τ, δ > 0 such

that
|q(0, t)| ≥ 1− τ/3 for all L ≤ |t| ≤ 3L,∣∣∣ 1

ωn−1Ln−1

∫
BL(0)

(1
2
|∇q|2 +W (q)

)
− σ

∣∣∣ ≤ δ/2,
∣∣∣ L∫
−L

W (q(0, t)) dt− σ/2
∣∣∣ ≤ δ/2,

(5.28)

whenever |q(0)| ≤ 1− τ .

For any x ∈ B3L(0) , we get from the monotonicity formula, Lemma 4.2, Lemma 4.3, (5.22) and

(5.23) that

L1−nµ(BL(x))− µ(B1(x)) ≥
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≥ −
L∫

1

%−nω(4L)n−1 d%− α(BL(x)) ≥ −CωLn−1 − CLn−3 ≥ −C,

if ωLn−1 ≤ 1 , and by (5.24)

µ(B1(x)) ≤ C(1 + Λ).

By Proposition 3.3, we get

‖ u ‖L∞(B1/2(x))≤ 1 + C

∫
B1(x)

(|u| − 1)+ + C

∫
B1(x)

|v|2 ≤

≤ C(1 + µ(B1(x)) + α(B1(x)) ≤ C(1 + Λ).

As −∆u+W ′(u) = v , we get by standard elliptic estimates and covering

‖ u ‖W 2,2(B3L(0))≤ C(Λ,L). (5.29)

If there is no ω > 0 such that (5.25) and (5.26) are satisfied, there are ωj → 0 and uj , vj as

above, but not satisfying all (5.25) - (5.27). By (5.29), we get after passing to a suitable subsequence

that uj → u weakly in W 2,2(B3L(0)) and vj → v weakly in L2(B3L(0)) . By the Sobolev embedding

W 2,2(BL(0)) ↪→ C0(BL(0)) , as n ≤ 3 , we see uj → u uniformly on B3L(0) .

Writing ∇ = (∇′, ∂n) for the gradient, we get from (5.22)∫
B3L(0)

∣∣∣1
2
|∇u|2 −W (u)

∣∣∣ ≤ lim inf
j→∞

∫
B3L(0)

∣∣∣1
2
|∇uj |2 −W (uj)

∣∣∣ ≤ lim inf
j→∞

|ξj |(B3L(0))| = 0

and ∫
B3L(0)

|∇′u| ≤ lim inf
j→∞

∫
B3L(0)

|∇′uj | ≤ lim inf
j→∞

∫
B3L(0)

|∇uj |2
√

1− ν2
j,n = 0,

where νj = ∇uj/|∇uj | for ∇uj 6= 0 . Therefore |∇u|2 = 2W (u) and u(y, t) = u0(t) for some

u0 ∈W 2,2(]−3L, 3L[) ↪→ C1,1/2(]−3L, 3L[) and |u′0| =
√

2W (u0) . As |u0(0)| ≤ 1− τ by uniform

convergence, we see |u0| < 1 and |u′0| > 0 . After reflection (y, xn) 7→ (y,−xn) , if necessary, which

does neither affect the assumptions nor the conclusions of the proposition, we may assume u′0 > 0 ,

hence u′0 =
√

2W (u0) . This yields u0 = q0 and u = q . By uj → u = q uniform and strong in

W 1,2(B3L(0)) , we conclude by (5.28) that uj satisfies (5.25) - (5.27) for j large enough which is

a contradiction, and the proposition follows.

///

We are now ready to finish the proof of the integrality of µ.

Proof of Proposition 5.2:

Let N ∈ N be the smallest integer with N > σ−1θ and 0 < δ ≤ 1 be small. We assume

T = Rn−1 × {0} and let π : Rn → T be the orthogonal projection. In the proof of Theorem

4.1, we have seen that the limit of Vε = µε ⊗ νε → V is rectifiable and µV = µ . Therefore

V = Hn−1bT ⊗ δT and

lim
ε→0

∫
B4(0)

ε|∇uε|2
√

1− ν2
ε,n = 0. (5.30)



36

By Proposition 3.4 and 3.6, we can fix τ > 0 such that for ε > 0 small enough∫
[|uε|≥1−τ ]∩B4(0)

1
ε
W ′(uε)2 ≤ δ, (5.31)

in particular by Proposition 4.9 for ε ≤ ε(δ) small enough

µε

(
[|uε| ≥ 1− τ ] ∩B4(0)

)
≤ |ξε|(B4(0)) + 2

∫
[|uε|≥1−τ ]∩B4(0)

1
ε
W (uε) ≤ 3δ. (5.32)

Next we choose 0 < ω ≤ ω(N, δ, 1/2, 1/2, C), ω(δ, τ, C) ≤ 1, L = L(δ, τ), β0 = β = 1/2 as in

Proposition 5.4 and 5.5, where C is the constant in (2.5) corresponding to Ω = B4(0). We define

Aε := {x ∈ B1(0) | |uε(x)| ≤ 1− τ,
∀ε ≤ % ≤ 3 : |ξε|(B%(x)) +

∫
B%(x)

ε|∇uε|2
√

1− ν2
ε,n ≤ ω%n−1,

αε(B%(x)) ≤ ω%β0 . }

By Besicovitch’s covering theorem, we can cover [|uε| ≤ 1 − τ ] − Aε with countably many closed

balls with bounded overlap

[|uε| ≤ 1− τ ]−Aε ⊆ ∪∞i=1B%i
(xi)

with ε ≤ %i ≤ 3

|ξε|(B%i
(xi)) +

∫
B%i

(xi)

ε|∇uε|2
√

1− ν2
ε,n ≥ ω%n−1

i

or

αε(B%i
(xi)) ≥ ω%β0

i .

When ε is such small that αε(B4(0))� ω , we may additionally assume

αε(B%(xi)) ≤ ω%β0 for %i ≤ % ≤ 3.

From Proposition 4.7 and (5.31), we get

µε(B%i
(xi)) ≤ C%n−1

i .

As the overlap is bounded and by (5.32), we obtain

µε(B1(0)−Aε) ≤ 3δ +
∞∑

i=1

C%n−1
i ≤

≤ 3δ + Cω−1
(
|ξε|(B4(0)) +

∫
B4(0)

ε|∇uε|2
√

1− ν2
ε,n + αε(B4(0))

)
≤ 4δ (5.33)

for ε ≤ ε(δ) small enough using Proposition 4.9, (5.30) and α = 0 .

We see by Proposition 5.4 for N = 1 and Proposition 5.5

R1−nµε(BR(x)) ≥ σωn−1 − Cδ for Lε ≤ R ≤ ω, x ∈ Aε. (5.34)

As µε(Ω − {|xn| ≤ ζ})→ 0 for ζ > 0 , we see for δ small enough

Aε ⊆ {|xn| ≤ ζε} (5.35)
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with ζ(ε)→ 0 for ε→ 0 .

Next consider y ∈ B1(0)∩ T and a maximal subset X = {y} × {t1 < . . . < tK} ⊆ Aε ∩ π−1(y)

with |x−x′| ≥ 3Lε for x 6= x′ ∈ X . If K ≥ N , we conclude by Proposition 5.4 with d = Lε,R = ω

and (5.34) observing diam X ≤ 2ζ(ε) that

Nσωn−1 − CNδ ≤ (1 + δ)R1−nµε(BR+ζε(y)) + δ.

As

lim sup
ε→0

R1−nµε(BR+ζε(y)) ≤ R1−nµ(BR(y)) = θωn−1

and Nσ > θ , this leads to a contadiction for ε, δ small enough, and we conclude

K ≤ N − 1. (5.36)

As X is maximal, we infer from Proposition 5.5 (5.25)

Aε ∩ π−1(y) ⊆ {y} × ∪K
k=1]tk − Lε, tk + Lε[.

and from (5.27)
tk+Lε∫

tk−Lε

1
ε
W (uε(y, t)) dt ≤ σ/2 + δ for k = 1, . . . ,K,

hence by (5.36) ∫
π−1(y)∩Aε

1
ε
W (uε) dH1 ≤ (N − 1)σ/2 + (N − 1)δ. (5.37)

This yields∫
B1(0)∩Aε

1
ε
W (uε) dLn ≤

∫
B1(0)∩T

∫
π−1(y)∩Aε

1
ε
W (uε) dH1 dLn−1 ≤ (N − 1)σωn−1/2 + Cδ,

hence by (5.33)

µε(B1(0)) ≤ 2
∫

B1(0)∩Aε

1
ε
W (uε) dLn + |ξε(B1(0))|+ µε(B1(0)−Aε) ≤

≤ (N − 1)σωn−1 + Cδ.

As lim infε→0 µε(B1(0))→ µ(B1(0)) = θωn−1 , we conclude

θ ≤ (N − 1)σ + Cδ.

As δ > 0 was arbitrary and N − 1 ≤ σ−1θ, θ > 0 , we arrive at

σ−1θ = N − 1 ∈ N,

and the proposition is proved.

///
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