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Abstract – A modified log-conformation formulation of viscoelastic fluid flows is pre-
sented in this paper. This new formulation is non-singular for vanishing Weissenberg
numbers and allows a direct steady numerical resolution by a Newton method. More-
over, an exact computation of all the terms of the linearized problem is provided. The
use of an exact divergence-free finite element method for velocity-pressure approxima-
tion and a discontinuous Galerkin upwinding treatment for stresses leads to a robust
discretization. A demonstration is provided by the computation of steady solutions
at high Weissenberg numbers for the difficult benchmark case of the lid driven cavity
flow. Numerical results are in good agreement, qualitatively with experiment mea-
surements on real viscoelastic flows, and quantitatively with computations performed
by others authors. The numerical algorithm is both robust and very efficient, as it
requires a low mesh-invariant number of linear systems resolution to obtain solutions
at high Weissenberg number. An adaptive mesh procedure is also presented: it alows
representing accurately both boundary layers and the main and secondary vorties.

Keywords – Johnson-Segalman viscoelastic fluid ; matrix logarithm ; Newton method ; incom-
pressible finite elements ; adaptive mesh ; lid-driven cavity

Introduction

The Johnson-Segalman [34] model is considered here, i.e. the upper convective derivative in the
Oldroyd-B [47] model is replaced by a mixed Gordon-Schowalter [25] derivative with a parame-
ter a ∈ [−1, 1]:

Daτ

Dt
=

∂τ

∂t
+ (u.∇)τ − τ ga(u)

T − ga(u) τ , (1)

for all symmetric tensor τ , where u is the velocity field and

ga(u) =
1 + a

2
∇u − 1− a

2
∇uT (2)

denotes a generalized gradient, with the convention ∇u =

(

∂ui
∂xj

)

16i,j6d

and d = 2, 3. Here,

a ∈ [−1, 1] denotes the parameter of the tensor derivative. Remark that ga(u) =W (u) + aD(u)
whereD(u) = (∇u+∇uT )/2 andW (u) = (∇u−∇uT )/2 are the symmetric and skew-symmetric
parts of the velocity gradient, respectively. When a = 1, then g1(u) = ∇u and the Gordon-
Schowalter derivative coincides with the usual upper-convected tensor derivative. When a = 0,
we obtain the corotational derivative and when a=−1, the lower convected derivative. Problems
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involving such tensor derivatives appear in non-Newtonian viscoelastic polymer melt flow problems
(see e.g. [57, 63]), in turbulence modeling with the Rij−ǫ Reynolds stress turbulence models, for
liquid crystals [20], fiber suspension [42] or active fluids [20], where a is related to the aspect ratio
of the particles in suspension. All these models introduce a relaxation time that multiplies the
tensor derivative. The corresponding dimensionless quantity is called the Weissenberg number.

The numerical computation of viscoelastic flows in non-trivial geometries has been founded as
a very challenging enterprise. The failure of numerical methods when the Weissenberg number
becomes large is known as the high Weissenberg number problem. In 1986, Keunings [36] observed
that the maximal Weissenberg number reached by all algorithms was mesh-dependent: he deduced
that this failure was due to a wrong numerical methodology. In 1987, Marchal and Crochet [45]
presented numerical simulations at high Weissenberg numbers obtained with an improved numer-
ical approach and pointed out the need of a mixed finite element methods and of an upwind
treatment of the stress transport terms. This was the starting point of many numerical computa-
tions of viscoelastic flows at higher Weissenberg numbers (see e.g. [22, 58] and [49] for a review of
this period). In 2000, in a review paper, Keunings [36] observed the progress accomplished, but
pointed out that the maximal Weissenberg number reached in most reported simulations was still
clearly decreasing with mesh refinement. He also concluded on the crucial role of benchmark flow
problems for future works.

In 2004, Fattal and Kupferman [17, 18] observed that some numerical instabilities are caused
by the failure of polynomial functions to approximate accurately the exponential growth of the
stress tensor, due to the presence of the deformation as a source term in the tensor transport
equation. The deformation source term takes its origin in the two last terms on the right-hand
side of the tensor derivative (1). The solution proposed by these authors was a change of unknown
that scale logarithmically with the stress tensor. Exploiting the fact that the conformation tensor
is symmetric positive definite, the stress transport equation was rewritten as an equation for
the matrix logarithm of the conformation tensor (the so-called log-conformation formulation).
Numerical experiments for the driven cavity benchmark showed that the maximal Weissenberg
number reached was no longer mesh-dependent [18]. This idea was a new starting point and many
improved numerical computations of viscoelastic flows were then performed (see e.g. [28, 15, 1]
and [10] for a recent review).

The main objective of the present paper is to bring some novelties in the challenging field of
numerical methods for viscoelastic fluid flows. These novelties develop in three main axes:

1. A new and different log-conformation formulation for viscoelastic models is proposed. This
formulation is non-singular when the Weissenberg number vanishes, while the original one,
as proposed by Fattal and Kupferman [17, 18], degenerates, due to the apparition of the
inverse of the Weissenberg number in the set of equations. With the present formulation,
the problem reduces nicely to the Navier-Stokes equations at zero Weissenberg number. This
is a major advantage, as it opens the door to continuation methods, starting smoothly at
zero Weissenberg number and progressively increasing.

2. The steady problem is directly solved by a Newton method, while, to our knowledge, all pre-
vious approaches with the log-conformation formulation were time-dependent (see e.g. [15]).
The derivation of a robust Newton solver for the strongly nonlinear steady log-formulation is
based on an exact computation of all the derivatives. Notice that previous Newton methods
relied on some finite difference methods for computing the Jacobian matrix, as the strong
non-linearities were considered non-differentiable [35, 15].

3. The discretization is based on an incompressible finite element method: the discrete velocity
field satisfies the divergence free relation exactly. This is a major advantage when dealing
with a transport equation: Recall that a non-zero divergence velocity field u introduces an
additional source term divu in the stress transport equation: this term can then generate
an exponential growth of the stresses, and then overrules all the benefits of using a log-
conformation formulation.
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The outline of the paper is as follow. Section 1 starts with a presentation of the Johnson-Segalman
model and its reformulation using the conformation tensor. Then the new non-singular log-
conformation formulation is presented. The first section ends with the variational formulation
of the steady problem. Section 2 begins with the space discretization using an incompressible
finite element method. Then, the upwind discretization of the transport term, based on the
discontinuous Galerkin method is presented. Then, the Newton method applied to the discrete
problem is introduced with special care to the derivation of highly nonlinear terms produced by
the log-conformation formulation. Section 2 ends with the Euler-Newton continuation algorithm.
Section 3 presents numerical computations on the bi-dimensional driven cavity flow. A specific
adaptive mesh procedure allows resolving accurately both boundary layers and secondary vorties.
Finally, two appendices ellaborate on the computation of some strongly nonlinear terms and their
derivatives.

1 Continuous setup

1.1 Conformation tensor formulation

Let Ω ⊂ R
d be a bounded open domain, d = 2, 3, and tf > 0 a final time. The Jonson-Segalman

problem writes :

(P1): find τ , u and p, defined in ]0, tf [×Ω, such that

λ
Daτ

Dt
+ τ − 2ηpD(u) = 0 in ]0, tf [×Ω

ρ
Du

Dt
− div ( τ + 2ηvD(u)− p.I) = 0 in ]0, tf [×Ω

divu = 0 in ]0, tf [×Ω

λ(τ − τΓ) = 0 on ]0, tf [×∂Ω−

u = uΓ on ]0, tf [×∂Ω
λτ(0) = λτ0 and u(0) = u0 in Ω

where
D

Dt
=

∂

∂t
+ u.∇u denotes the Lagrange derivative, λ > 0 is the relaxation time, ηp > 0 and

ηv > 0 are the polymer and solvent viscosities, respectively, ρ > 0 is the constant density, τ0, u0,
τΓ and uΓ are given initial and boundary conditions and ∂Ω− is the upstream boundary, defined
by ∂Ω− = {x ∈ ∂Ω; uΓ.n(x) < 0}. The total Cauchy stress tensor is σtot = −p I + 2ηvD(u) + τ .
When λ = 0, the problem reduces to the Navier-Stokes equations with a total viscosity ηv + ηp
and τ = 2ηpD(u).

Several studies published are concerned with the existence, uniqueness and regularity of a solution
for this problem. In 1985, Renardy [55] proved the existence of a solution to the steady problem.
In 1987, Guillopé and Saut [26] proved that there exists a unique strong solution local in time and
that this solution is globally defined when the data are small and the fluid is not too elastic (see
also [40] for a different approach). In 1998, Fernández-Cara, Guillén and Ortega [19] extended
this result to the large elasticity case and for an arbitrarily large but finite final time tf . In 2000,
Lions and Masmoudi [41] obtained an improved result (tf could be infinite) in the particular case
of a corotational derivative (a = 0). In 2005, Kupferman, Mangoubi, and Titi [37] obtained a
more explicit condition for the global in time existence of the solution when Ω = R

3.

The solution (τ,u, p) exhibits some important properties. Hulsen [32, p. 6, eqn(30)] (see also Kwon
and Leonov [38, p. 31, eqn (10)], Lee et al. [39, p. 383]) introduced the following definition of the
conformation tensor when both a and λ are non-zero:

c = τ +
ηp
aλ

I
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where I denotes the d × d identity matrix. Notice that c has the dimension of a stress and is
undefined when λ = 0 or a = 0. Also, the conformation tensor c admits an explicit expression
in integral form involving the unknown velocity field u [39, p. 385, eqn (3.29)]. From (1) we get
Da I

Dt
= −2aD(u) then

Daτ

Dt
=

Dac

Dt
− 2ηp

λ
D(u). Then, the Johnson-Segalman problem becomes:

(P2): find c, u and p, defined in ]0, tf [×Ω, such that

λ
Dac

Dt
+ c =

ηp
aλ
I in ]0, tf [×Ω (3a)

ρ
Du

Dt
− div (c+ 2ηvD(u)− p.I) = 0 in ]0, tf [×Ω (3b)

divu = 0 in ]0, tf [×Ω (3c)

λ(c− cΓ) = 0 on ]0, tf [×∂Ω− (3d)

u = uΓ on ]0, tf [×∂Ω (3e)

λc(0) = λc0 and u(0) = u0 in Ω (3f)

In 1990, Hulsen [32] showed that when the initial condition c0 in (3f) is symmetric definite pos-
itive, and when ∇u is bounded, then c remains symmetric definite positive at any time t > 0.
Notice that when λ = 0, the problem degenerates, due to the apparition of aλ in the denomi-
nator in the constitutive equation (3a). In the case of the upper convected derivative (a = 1),

Fattal and Kupferman [17, 18] introduced a change of variable ψ = log

(

aλ

ηp
c

)

, the so-called

log-conformation formulation. Nevertheless, when λ = 0 the expected solution is simply ψ = 0,
while the reformulated problem still degenerates due to a division by λ in the conservation of
momentum equation (see [17, p. 283], the last eqn of the page). This change of variable was then
applied in [11] to a generalized constitutive model covering the present Johnson-Segalman model
(a ∈ [−1, 1]), but the obtained problem still degenerated when λ = 0. The next paragraph presents
a slightly different change of variable that solves this degeneracy nicely. The new formulation will
no longer be singular when λ = 0. This opens the possibility of building a robust steady solver
based on the Newton method and a continuation algorithm, starting smoothly at λ = 0.

1.2 A new log-conformation formulation

In order to obtain a non-singular formulation, a different change of the logarithmic variable is
introduced:

χ =
ηp
aλ

log

(

aλ

ηp
c

)

=
ηp
aλ

log

(

I +
aλ

ηp
τ

)

(4a)

⇐⇒ c =
ηp
aλ

exp

(

aλ

ηp
χ

)

and τ =
ηp
aλ

(

exp

(

aλ

ηp
χ

)

− I

)

(4b)

Notice that both χ, c and τ have the dimension of stress. At the limit case aλ = 0, the new
variable χ is still well defined, as showed by a simple Taylor expansion of the matrix logarithm in
the vicinity of aλ = 0:

χ = τ −
(

aλ

ηp

)

τ 2 + . . .+
1

n

(

aλ

ηp

)n−1

τn + . . .

For instance, when λ = 0, then τ = 2ηpD(u) is the solution of the Johnson-Segalman model which
reduces to a Newtonian fluid and χ = τ = 2ηpD(u). For completeness, the derivation of the
present log-conformation formulation is provided here, since there are some subtle modifications
due to the different change of variable and the introduction of the the Gordon-Schowalter derivative
parameter a. The impatient reader can jump directly to the new formulation (8a)-(8f).
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The main technique of the present derivation of the log-conformation is related to the evolution of
the principal axes of the conformation tensor [33]. Recall that the symmetric positive definite ma-
trix c can always be diagonalized as c = qc̃qT where c̃ is diagonal and q is an orthogonal tensor,

i.e. qqT = qTq = I. For convenience, let us denote by τ̇ =
Dτ

Dt
=
∂τ

∂t
+ u.∇τ the Lagrangian

derivative of any tensor τ . Then ċ = q ˙̃cqT + qc̃q̇T + q̇c̃qT . Let us introduce r = qq̇T . By differ-
entiating qqT = I we get q̇qT + qq̇T = 0 which also writes rT = −r. Then r is skew-symmetric.
We also obtain q̇ = −rq and q̇T = −qT rT = qT r and then ċ = q ˙̃cqT − qc̃qT rT − rqc̃qT . Next,
let r̃ = qT rq. Note that r̃ is also skew-symmetric. We have r = qr̃qT and then

ċ = q
(

˙̃c− c̃r̃T − r̃c̃
)

qT (5a)

The generalized gradient introduced in (2) decomposes in this eigensystem as ga(u) = qg̃aq
T

where g̃a is not a priori diagonal, since in general c and ga(u) are not expected to share the
same eigenvectors. Then −cga(u)

T − ga(u)c = q
(

−c̃g̃T
a − g̃ac̃

)

qT and the Gordon-Schowalter
derivative (1) writes:

Dac

Dt
= q

(

˙̃c− c̃ (r̃+ g̃a)
T − (r̃+ g̃a) c̃

)

qT (5b)

The constitutive equation (3a) leads to

˙̃c =
ηp
aλ2

I − 1

λ
c̃+ (r̃+ g̃a) c̃+ c̃ (r̃+ g̃a)

T
(5c)

This is a tensorial equation. Let (ci)16i6d be the eigenvalues of c. Recall that c̃ is diagonal and
that its i-th diagonal entry is ci. Then, by taking the diagonal entries i = j, 1 6 i 6 d, of the
tensorial equation (5c), we get a differential equation for ci :

ċi =
ηp
aλ2

−
(

1

λ
− 2a d̃i,i

)

ci

where we have set d̃ = qTD(u)q = (d̃i,j)16i,j6d. The previous relation also writes

˙̃c =
ηp
aλ2

I −
(

I

λ
− 2a diag(d̃)

)

c̃ (5d)

Now, let us perform the change of variable (4a)-(4b). The problem will be rewritten in terms of
the variable

χ =
ηp
aλ

log

(

aλ

ηp
c

)

= q
ηp
aλ

log

(

aλ

ηp
c̃

)

qT = qχ̃qT

where χ̃ is the diagonal tensor with diagonal entries

χi =
ηp
aλ

log

(

aλ

ηp
ci

)

⇐⇒ ci =
ηp
aλ

exp

(

aλ

ηp
χi

)

, 1 6 i 6 d

Thus ˙̃χi =
ηp
aλ

˙̃ci
c̃i

and, since c̃, χ̃, ˙̃c and ˙̃χ are all diagonal:

˙̃χ =
ηp
aλ

˙̃cc̃−1

=
ηp
aλ

(

ηp
aλ2

I −
(

I

λ
− 2a diag(d̃)

)

c̃

)

c̃−1, from (5d)

= − 1

λ

{

ηp
aλ

(

I − aλ

ηp
c̃−1

)}

+
2ηp
λ

diag(d̃)

From (4a), we have c−1 =
aλ

ηp
exp

(

−aλ
ηp
χ

)

and then

˙̃χ = − 1

λ

{

ηp
aλ

(

I − exp

(

−aλ
ηp
χ̃

))}

+
2ηp
λ

diag(d̃)
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Then, replacing in (5a) the instances of c and c̃ by χ and χ̃ respectively, the Lagrangian derivative
of χ reads:

χ̇ = q
(

˙̃χ− χ̃r̃T − r̃χ̃
)

qT

= − 1

λ

{

ηp
aλ

(

I − exp

(

−aλ
ηp
χ

))}

+ q

(

2ηp
λ

diag(d̃)− χ̃r̃T − r̃χ̃

)

qT (5e)

Equivalently, this relation can be written

χ̇+ φa(χ,∇u) +
1

λ

{

ηp
aλ

(

I − exp

(

−aλ
ηp
χ

))}

= 0 (5f)

where we have introduced the notation:

φa(χ,∇u) = qφ̃aq
T

φ̃a = χ̃r̃T + r̃χ̃− 2ηp
λ

diag(d̃)

Note that φa(χ,∇u) is symmetric since diag(d̃) is diagonal and r̃χ̃+ χ̃r̃T is symmetric. Notice also
that both q and diag(d̃) are directly computable from χ and ∇u since q is the tensor containing
the eigenvectors of χ and d̃ = qTD(u)q. The computation of r̃χ̃+ χ̃r̃T is more technical. Let
us compute r̃ = (r̃i,j)16i,j6d. Since r̃T = −r̃ we have r̃i,i = 0. By taking the off-diagonal entries
i 6= j, 1 6 i, j 6 d, in (5c), we get

0 = ci(−r̃i,j + g̃a;j,i) + (r̃i,j + g̃a;i,j)cj

where we have used r̃j,i = −r̃i,j and set g̃a;i,j = w̃i,j + ad̃i,j and w̃ = qTW (u)q = (w̃i,j)16i,j6d.
When ci 6= cj we obtain by simple development:

r̃i,j =
g̃a;i,jcj + g̃a;j,ici

ci − cj
= −w̃i,j + a

(

ci + cj
ci − cj

)

d̃i,j = −w̃i,j +
a d̃i,j

tanh

(

aλ

ηp

(

χi − χj

2

))

Note that now r̃ is directly computable from χ and ∇u but is still undetermined when χi = χj

or aλ = 0. However, always when i 6= j and ci 6= cj :

φ̃a;i,j = χir̃j,i + r̃i,jχj = − (χi − χj) r̃i,j = (χi − χj) w̃i,j −









aλ

ηp

(

χi − χj

2

)

tanh

(

aλ

ηp

(

χi − χj

2

))









2ηpd̃i,j
λ

As lim
x→0

x

tanh(x)
= 1, we obtain:

φ̃a;i,j = −2ηp
λ
d̃i,j when χi = χj or aλ = 0

Finally φa(χ,∇u) is directly computable from χ and ∇u, in all cases. Note that when all

the eigenvalues of χ are equal, then φa(χ,∇u) = −2ηp
λ
D(u). Also, when a = 0, we have

φa(χ,∇u) = χW (u)−W (u)χ− 2ηp
λ
D(u). This suggests the introduction of a nonlinear form

κ(., .) such that

φa(χ,∇u) = χW (u)−W (u)χ+
ηp
λ
κ

(

aλ

ηp
χ, 2D(u)

)

− 2ηp
λ
D(u)
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Then (5f) becomes

λ (χ̇+ χW (u)−W (u)χ) + ηpκ

(

aλ

ηp
χ, 2D(u)

)

+
ηp
aλ

(

I − exp

(

−aλ
ηp
χ

))

= 2ηpD(u) (5g)

Let R
d×d
s denotes the set of d × d symmetric real matrix. The form κ(β,γ) is defined for all

β,γ ∈ R
d×d
s by

κ(β,γ) = qκ̃qT (6a)

κ̃i,j = κ̂

(

βi − βj
2

)

γ̃i,j , 1 6 i, j 6 d (6b)

where β̃ = qTβq = diag(βi) and γ̃ = qTγq. Here, κ̂(x) is defined for all x ∈ R by

κ̂(x) =

{

0 when x = 0

1− x

tanh(x)
otherwise (6c)

For convenience, let us define the following function, for all real µ > 0 and χ ∈ R
d×d
s

f(µ,χ) =







0 when µ = 0
exp(µχ)− I

µ
− χ otherwise

(7)

Note that the trace of λ f

(

aλ

ηp
, χ

)

represents a local free energy stored by the micro-scale me-

chanical system (see e.g [5, 69, 48]). This concept was recently used by Hu and Lelièvre [31, 7] for
stability estimates and is employed later in this paper for an automatic adaptive meshing purpose.

The new log-conformation formulation of the Johnson-Segalman problem is:

(P3): find χ, u and p, defined in ]0, tf [×Ω, such that

λ
D0χ

Dt
+ χ− f

(

aλ

ηp
, −χ

)

+ ηpκ

(

aλ

ηp
χ, 2D(u)

)

− 2ηpD(u) = 0 in ]0, tf [×Ω (8a)

ρ
Du

Dt
− div

(

χ+ f

(

aλ

ηp
, χ

)

+ 2ηvD(u)− p.I

)

= 0 in ]0, tf [×Ω (8b)

divu = 0 in ]0, tf [×Ω (8c)

λ(χ− χΓ) = 0 on ]0, tf [×∂Ω− (8d)

u = uΓ on ]0, tf [×∂Ω (8e)

λχ(0) = λχ0 and u(0) = u0 in Ω (8f)

where χ0, χΓ, u0 and uΓ are given. The functions f and κ are defined by (7) and (6a)-(6c),

respectively. The elastic stress τ is computed explicitly as τ = χ+ f

(

aλ

ηp
, χ

)

and the total

Cauchy stress tensor is σtot = −p I + 2ηvD(u) + τ .

Remark 1 (Limit λ = 0: Newtonian fluid)
When λ = 0, the problem reduces as expected to the Navier-Stokes equations with a total viscosity
ηv + ηp and χ = 2ηpD(u).

Remark 2 (Limit a = 0: corotational Johnson-Segalman fluid)
When a = 0, the present log-formulation of the problem reduces nicely to the corotational Johnson-
Segalman problem with τ = χ is the elastic stress, since f(0, .) and κ(0, .) both are zero, as showed
in the next two properties.
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Remark 3 (Corotational versus Gordon-Schowalter tensor derivatives)
Note the corotational derivative for χ in (8a). Thus, the present log-conformation formulation of
the general Johnson-Segalman model can be interpreted as a nonlinear perturbation with nonlinear
terms (f and κ) of the corotational Johnson-Segalman model. In the following section, we show
that the numerical treatment of corotational derivative is much simpler than in the general Gordon-
Schowalter case.

Property 1 (Regularity of f)
The function f defined by (7) is continuously differentiable and

f(0,χ) = f(µ, 0) = 0, ∀µ ∈ R
+, ∀χ ∈ R

d×d
s

Proof: This result follows from a simple Taylor expansion:

f(µ,χ) = µχ2

(

I

2
+
µχ

6
+ . . .+

(µχ)n

(n+ 2)!
+ . . .+

)

Property 2 (Skew symmetry of κ)
The function κ defined by (6a)-(6c) satisfies the following properties:

1. κ(., .) is nonlinear with respect to its first variable β and is linear with respect to its second
variable γ.

2. κ is traceless:
trκ(β,γ) = 0, ∀β,γ ∈ R

d×d
s

3. κ(β,γ) = 0 when β and γ are aligned, i.e. when they share the same eigensystem. As a
special case, κ(β,γ) = 0 when all eigenvalues of β are equal.

4. κ is skew-symmetric with respect to its first variable:

κ(β,γ) :β = 0, ∀β,γ ∈ R
d×d
s

The skew symmetry extends to

κ(β,γ) :σ = 0, ∀β,γ,σ ∈ R
d×d
s and β and σ share the same eigensystem (9)

5. κ is continuously differentiable everywhere and

κ(0,γ) = 0 and
∂κ

∂β
(0,γ) = 0, ∀γ ∈ R

d×d
s

Proof: Remark that, from (6a)-(6c), we have κ̃k,k = 0 for all k, 1 6 k 6 d which leads to
the traceless property. When β and γ are aligned then γ̃ is diagonal and then κ̃i,j = 0. The
skew-symmetry result can be shown by the following development:

κ(β,γ) :β = (qκ̃qT ) : (q β̃ qT )

=

d−1
∑

i,j,k,l,m=0

qi,j κ̃j,kql,k qi,mβmql,m

=

d−1
∑

j,k,m=0

δj,mδk,mκ̃j,kβm since

d−1
∑

i=0

qi,jqi,m = δj,m and

d−1
∑

l=0

ql,kql,m = δk,m

=

d−1
∑

k=1

κ̃k,kβk

= 0 since κ̃k,k = 0

When β = 0, then all eigenvalues of β are equal and then κ(0,γ) (point 3). The proof of the
differentiability of κ is postponed to appendix A.2, as it requires some technical developments.
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1.3 Variational formulation of the steady problem

Here, the variational formulation of the steady version of the log-conformation formulation (8a)-
(8f) of the Johnson-Segalman problem is considered. The inertia term (u.∇)u in the conser-
vation of momentum (8b) is neglected. This is a common assumption in such flow simulations
and the main difficulty is associated with the nonlinear terms related to the elasticity λ > 0.
Let us introduce three functional spaces: T = L2(Ω)d×d

s for square summable symmetric tensors,
V (uΓ) = {v ∈ H1(Ω)d; v = uΓ on ∂Ω} for velocities with square summable gradients which sat-
isfies the boundary condition, and Q = L2

0(Ω) = {q ∈ L2(Ω);
∫

Ω
q dx = 0} for square summable

pressures with zero average value. Next, let the following forms be defined for all χ, ξ ∈ T ,
u,v ∈ H1(Ω)d p, q ∈ L2(Ω):

t(u; χ, ξ) = λ

∫

Ω

((u.∇)χ) :ξ dx+ λ

∫

∂Ω

max(0,−uΓ.n)χ :ξ ds

+λ

∫

Ω

(χW (u)−W (u)χ) :ξ dx+ ηp

∫

Ω

κ

(

aλ

ηp
χ, 2D(u)

)

:ξ dx (10a)

l(ξ) = λ

∫

∂Ω

max(0,−uΓ.n)χΓ :ξ ds (10b)

a0(χ, ξ) =

∫

Ω

χ :ξ dx−
∫

Ω

f

(

aλ

ηp
,−χ

)

:ξ dx (10c)

b1(ξ,u) = −2ηp

∫

Ω

ξ :D(u) dx (10d)

b2(χ,v) = −
∫

Ω

χ :D(v) dx−
∫

Ω

f

(

aλ

ηp
,χ

)

:D(v) dx (10e)

c(u,v) = 2ηv

∫

Ω

D(u) :D(v) dx (10f)

d(u, q) = −
∫

Ω

q divu dx (10g)

The variational formulation writes

(FV ): find (χ,u, p) ∈ T × V (uΓ)×Q such that

t(u;χ, ξ) + a0(χ, ξ) + b1(ξ,u) = l(ξ), ∀ξ ∈ T (11a)

b2(χ,v)− c(u,v)− d(v, p) = 0, ∀v ∈ V (0) (11b)

−d(v, p) = 0, ∀q ∈ Q (11c)

The following properties are fundamental for solving the discrete problem and will admit a finite-
dimensional counterpart in the next section.

Property 3 (Skew-symmetry of t)
For all χ ∈ T and u ∈ V (0) such that divu = 0, we have

t(u; χ, χ) = 0 (12)

Proof: Integrating by part, we have
∫

Ω

((u.∇)χ) :χ dx = −
∫

Ω

((u.∇)χ) :χ dx−
∫

Ω

|χ|2 divu dx+

∫

∂Ω

|χ|2 u.n ds

and since u is divergence-free and vanishes on the boundary, the first term of the right-hand
side of (10a), which gives the expression of t(u;χ,χ), is zero. Next, from the skew-symmetry of
W (u) and the symmetry of χ we have (χW (u)−W (u)χ) :χ = 0. From property (9) we have

κ

(

aλ

ηp
χ, 2D(u)

)

:χ = 0 and hence get (12).
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Property 4 (Positivity of a0)
For all χ ∈ L2(Ω)d×d

s , we have

a0(χ, χ) > 0 (13)

Proof: From (10c) and the definition (7) of f , we have

a0(χ, χ) =
ηp
aλ

∫

Ω

(

I − exp

(

−aλ
ηp
χ

))

:χ dx

Note that σ :τ = tr(στ ) for all symmetric tensors σ and τ . Then, when aλ 6= 0:

a0(χ, χ) =
ηp
aλ

∫

Ω

tr

((

I − exp

(

−aλ
ηp
χ

))

χ

)

dx

As χ and exp

(

−aλ
ηp
χ

)

share the same eigensystem, if µ is an eigenvalue of χ then g(µ) is an

eigenvalue of χ− exp

(

−aλ
ηp
χ

)

χ where g(µ) = µ − exp(−aλµ/ηp)µ. An easy inspection of the

variation of g shows that g(µ) > 0 for all µ ∈ R. We then obtain the result (13).

Remark 4 (Corotational versus Gordon-Schowalter tensor derivatives (cont.))
Multiplying (1) by τ , integrating and rearranging we get

∫

Ω

Daτ

Dt
:τ dx =

1

2

d

dt

(∫

Ω

|τ |2 dx
)

− 2a

∫

Ω

tr(τ D(u) τ ) dx

When a 6= 0, there is no way of determining the sign of the last term on the right-hand side
of the previous relation. The corresponding term −a(τD(u) +D(u)τ ), supported by a 6= 0 in
the tensor derivative (1), acts as a source term in any tensorial transport problem involving the
general Gordon-Schowalter derivative, such as the initial and conformation formulations of the
Johnson-Segalman problem. This term is responsible for the observed exponential growth of the
stress tensor τ and the failure of numerical methods. There is no hope of obtaining either a skew-
symmetry or a positivity property for such problems, and this is especially true for the popular
upper-convected derivative (a = 1). On the contrary, the log-conformation formulation involves a
corotational tensor derivative of χ in (8a), leading to the skew-symmetry of t and the positivity of
a0. Properties 3 and 4 are definitive advantages of the present log-conformation formulation over
the initial and the conformation ones.

Note also that, when initially using a corotational derivative (a = 0), there is no need anymore for
the log-conformation formulation. In that case, the new formulation presented here nicely reduces
to the initial one with χ = τ while all the extra nonlinear terms disappear.

2 Discretization and numerical resolution

2.1 Space approximation

The main idea here is to replace the three spaces T , X, Q by some finite dimensional counterparts
Th ⊂ T , Xh ⊂ X, Qh ⊂ Q in the variational formulation (11a)-(11c). When λ = 0 (a Newtonian
fluid), a finite dimensional linear system is obtained, whose matrix has the following bloc structure:





A BT 0
B −C −DT

0 −D 0
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This linear system is often called the three field Stokes problem and the approximation space pairs
(Th, Xh) and (Xh, Qh) both need to satisfy a compatibility condition, known as the inf-sup or
Babuška-Brezzi condition [8, 23, 9]. There are many possible choices for Th, Xh and Qh, each of
them having some advantages and drawbacks. In this paper, we consider the following choice (see

macro-element technic
P2 continuous P1 discontinuous

u σ and p

Figure 1: Incompressible element for the three-field Stokes problem.

Fig. 1):

Th = {τh ∈ T ; τh|K ∈ P1, ∀K ∈ Th}
Xh = {vh ∈ (H1(Ω) ∩ C0(Ω))d; vh|K ∈ P2, ∀K ∈ Th}

Vh(g) = Xh ∩ V (πh(g))

Qh = {qh ∈ Q; qh|K ∈ P1, ∀K ∈ Th}

where Th is a finite element mesh of the flow domain Ω and h > 0 denotes the largest edge length
of the mesh. Notice that both Th and Qh contain discontinuous piecewise polynomials while Xh

elements are continuous. The discontinuous approximation of stresses has two advantages. On
one hand, D(Xh) ⊂ Th and then the compatibility condition between Th and Xh is satisfied for
the bi-linear form b1, as showed by Fortin and Pierre [23, 22]. On the other hand, it allows an
efficient treatment of the stress transport term by the discontinuous Galerkin method.

The discontinuous approximation of pressure also presents a major advantage. As div(Xh) ⊂ Qh,
it leads to an exact divergence-free approximation of the velocity: for any field vh ∈ Xh satisfying
d(vh, qh) = 0 for all qh ∈ Qh, we have divvh = 0 point-wise everywhere in Ω. The pair (Xh, Qh)
is known as the Scott-Vogelius lowest-order finite element approximation [65]. This is a major
advantage when dealing with a transport equation. The only drawback is that the pair (Xh, Qh)
does not satisfy the inf-sup condition for an arbitrary mesh. There exists a solution to this
however: Arnold and Qin [3] proposed a macro element technique applied to the mesh [3] that
allows satisfying the inf-sup condition: for any triangular finite element mesh, it is sufficient to
split each triangle in three elements from its barycenter (see Fig. 1). This technique has been
implemented for the present computations. Notice that the macro element technique extends to
quadrilateral meshes [3] and to the three-dimensional case [70].

Let us review and discuss some other possible choices for the discretization of the problem.

• A very popular choice consists in using staggered finite difference grids for the velocity-
pressure pair. With this choice the approximate velocity fields are also exactly divergence-
free, the finite-difference implementation is simple and this approximation also extends in
the mixed finite element context with the incompressible Raviart-Thomas finite element [24,
chap. 3]. For the stress approximation, there are several possibilities: in [57, p. 17], the
present author also used a staggered grid approximation (diagonal stress components at cell
centers and off-diagonal components at cell corners in the bi-dimensional case). With this
choice, the stress-velocity pair satisfies the inf-sup condition [57] and leads to a robust scheme
that is able to reach solutions at high Weissenberg numbers (see [58, 64]). In [18, p. 27],
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Fattal and Kupferman used a cell-centered approximation for all the stress components. As
they pointed out [18, p.29]:

”This implies that the rotational components of the system may be sensitive to
numerical instabilities. A natural remedy would have been to store the off-diagonal
elements of the stress tensor at cell corners. This cannot be done in our framework
as the log-conformation tensor is an entity whose tensorial nature is essential.”

See also point 6 of the discussion, p. 36 of the same paper. With this choice, it is not clear
whether the stress-velocity pair satisfies the inf-sup condition or not. Nevertheless, using
this approximation, Fattal and Kupferman were able to compute solutions for some high
Weissenberg numbers. A possible explanation for this success can be found in a paper by
Baranger and Sandri [4], who have shown that the stress-velocity compatibility condition
exhibited by [23] is only required when ηv/(ηv + ηp) ≪ 1, i.e. in the absence of the pure
viscous contribution. Otherwise, when ηv is not too small with respect to ηp, a much larger
class of discretization schemes is allowed. This last condition was fulfilled by Fattal and
Kupferman: all the computations presented by these authors used ηv = ηp.

• A classical choice is to use the Taylor-Hood P2−P1 continuous element [68] (see also [9,
p. 252]) for the velocity-pressure spaces (Xh, Qh) together with piecewise linear and dis-
continuous stresses. This choice of stress approximation was first introduced by A. and M.
Fortin [22]. Damanik [14, p. 25] recently used a variant for quadrilaterals meshes, com-
bining Q2 continuous velocities with P1 discontinuous pressures [9, p. 216] and a quadratic
continuous approximation for the stresses. As div(Xh) 6⊂ Qh, for these elements, the ap-
proximate velocity field are not exactly divergence-free. This is the main difference with
the Scott-Volelius element used in the present computation. We performed tests for both
the Taylor-Hood approximation and the Q2 − P1,d variant for quadrilaterals, together with
P1,d stresses, on the driven cavity problem and observed that the steady approximate solu-
tion presents some problems: for large dimensionless Weissenberg numbers (e.g. We = 1),
the divergence divuh does not converge anymore to zero with mesh refinement (h → 0).
This could be due to the low regularity of the velocity field in the boundary layers of the
cavity, especially at high Weissenberg numbers. This motivates the use the divergence-free
approximation for the velocity-pressure pair.

• Another possible choice is to use constant and discontinuous P0 stresses together with
the divergence-free Scott-Vogelius velocity-pressure space pair. Notice that we have now
D(Xh) 6⊂ Th. This choice was first suggested by Mangoubi and Boyaval [44, 6, 7] in a
theoretical paper, who were able to prove a nice stability property for the free energy. There
were no numerical experiment with this combination. Moreover, we also performed some
test on the driven cavity problem and observed that this choice is less robust and less precise
than choosing piecewise linear and discontinuous stresses as done here.

This discretization review is far from complete and exhaustive: there are many other possible ap-
proaches and some of them have already been tested. Nevertheless, note that the exact divergence-
free property for the approximation of the velocity field appears as an essential condition in such
flow simulations. Both the staggered finite difference method and the Scott-Vogelius finite element
one for the velocity-pressure pair satisfy this condition. The Scott-Vogelius finite element method
presents two additional advantages compared to the finite difference one: (i) it allows the same
approximation for all the stress components while satisfying the inf-sup condition and (ii) it is
more flexible when dealing with complex geometries or adaptive meshes.

2.2 Approximation of the transport term

Let us turn to the discretization of the nonlinear stress transport term by the discontinuous
Galerkin method. We introduce the following form, defined for all u ∈ H1(Ω)d and χ, ξ ∈
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L2(Ω)d×d
s such that χ|K , ξ|K ∈ H1(K)d×d

s for all element K ∈ Th:

th(u;χ, ξ) = λ
∑

K∈Th

∫

K

((u.∇)χ) :ξ dx+ λ
∑

S∈S
(i)
h

∫

S

[[χ]] :

(

θ

2
|u.n| [[ξ]]− (u.n) {{ξ}}

)

ds

+ λ

∫

∂Ω

max (0,−uΓ.n)χ :ξ ds+ λ

∫

Ω

(χW (u)−W (u)χ) :ξ dx

+

∫

Ω

κ

(

aλ

ηp
χ, 2D(u)

)

:ξ dx (14)

where S
(i)
h denotes the set of internal sides of the mesh Th, [[ξ]] is the jump of a piecewise

discontinuous tensor across a side and {{ξ}} is its average value [16, 62]. The three first terms
represent a discrete counterpart of the transport term that can not be defined globally since the
stress approximation is piecewise discontinuous. A term is weighted by a factor θ > 0. Choosing
θ = 0 corresponds to the so-called centered flux approximation, while θ > 0 is the upwind flux
approximation. The case of θ = 1, the most popular upwind discontinuous approximation scheme,
is considered here. The upwind technique is known as an efficient approach to avoid spurious
oscillations in the approximate solutions.

The discrete variational formulation of the problem writes:

(FV )h: find χh ∈ Th, uh ∈ Vh(uΓ) and ph ∈ Qh such that

th(uh;χh, ξh) + a0(χh, ξh) + b1(ξh,uh) = l(ξh), ∀ξh ∈ Th

b2(χh,vh)− c(uh,vh)− d(vh, ph) = 0, ∀vh ∈ Vh(0)

−d(uh, qh) = 0, ∀qh ∈ Qh

where the continuous tri-linear form t has simply been replaced by th and the functional spaces
by their finite dimensional counterpart.

Property 5 (Discrete generalized skew-symmetry)
For all χh ∈ Th and uh ∈ Vh(0) such that divuh = 0, we have

th(uh; χh, χh) > 0 (15)

with an equality when θ = 0.

Proof: Integrating by part on an element K leads to
∫

K

((uh.∇)χh) :χh dx = −
∫

K

χh : ((uh.∇)χh) dx+

∫

K

|χh|2 (uh.n) dx

since divuh = 0. Then
∑

K∈Th

∫

K

((uh.∇)χh) :χh dx =
1

2

∑

K∈Th

∫

∂K

|χh|2 (uh.n) ds =
1

2

∑

S∈S
(i)
h

∫

S

[[|χh|2]] (uh.n) ds

Note that for any discontinuous scalar field φ and ϕ across a side S we have
[[φϕ]] = [[φ]]{{ψ}}+ {{φ}}[[ϕ]]. Thus [[|χh|2]]/2 = [[χh]] :{{χh}} and

∑

K∈Th

∫

K

((uh.∇)χh) :χh dx =
∑

S∈S
(i)
h

∫

S

[[χh]] :{{χh}} (uh.n) ds

Using uh = 0 on ∂Ω and dealing with the two last terms of (14) as in the proof of property 3, we
obtain:

th(uh; χh, χh) =
θλ

2

∑

S∈S
(i)
h

∫

S

|[[χh]]|2 |uh.n| ds

which completes the proof.
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Property 6 (Discrete positivity)
For all χh ∈ Th, we have

a0(χh, χh) > 0 (16)

Proof: As Th ⊂ L2(Ω)d×d
s , this result is a direct consequence of property 4.

2.3 Newton method

Newton methods for the numerical resolution of steady viscoelastic flow problems started in the
early eighties with the work of Bézy, Crochet and Keunings [12, 13]. In 1992, Fortin and Zine [21]
proposed a quasi-Newton variant, where the Jacobian matrix was approximated instead of be-
ing completely recomputed at each iteration. After a long time, the Newton method approach
for viscoelastic fluid problems is now coming back. While previous works relied on some finite
difference methods for computing the Jacobian matrix, in 2009, Howell [30] computed exactly
the linearized steady Johnson-Segalman problem in its initial formulation. In 2010, Damanik et
al [15, 14] turned to a Newton method for the time-dependent log-conformation formulation. They
used a finite difference method for computing the Jacobian matrix. Let us quote a remark made
in the 2009 paper by Kane, Guénette, and Fortin [35, p. 45] for the log-conformation formulation:

”[...] there is no hope to fully linearize the constitutive equations for the Newtons
method without using some numerical tricks such as finite difference methods. The
bulk of the computations relies indeed on the calculation, at each Gauss node, of the
eigenvalues and eigenvectors of the conformation tensor which are not differentiable
functions”.

In the present paragraph, an exact expression of the derivatives for the fully linearized constitutive
equation is presented for the log-conformation formulation, without any trick such as finite dif-
ference methods for computing the Jacobian matrix. The present Newton method directly treats
the steady problem: by an obvious extension, it applies also to fully implicit time dependent
simulations.

The discrete problem can be put in a compact form:

find (χh,uh, ph) ∈ Th × Vh(uΓ)×Qh such that

F (λ; (χh,uh, ph)) = 0

where F is defined in variational form for all (ξh,vh, qh) by

〈F (λ; (χh,uh, ph)), (ξ,v, q)〉 = th(uh; χh, ξh) + a0(χh, ξh) + b1(ξh,uh)− l(ξh)

+ b2(χh,vh)− c(uh,vh)− d(vh, ph)

− d(uh, qh)

and where 〈., .〉 stands for the duality product induced by the L2 pivot space, i.e.
〈ϕ, φ〉 =

∫

Ω
ϕφ dx for all ϕ, φ defined in Ω. The function F has two variables λ ∈ R

+ and
U = (χh,uh, ph) ∈ Th ×Xh ×Qh. The λ variable will be used as a continuation parameter in

the next section. The Newton method defines the sequence
(

χ
(k)
h ,u

(k)
h , p(k)

)

k>0
by recurrence as:

• k = 0: let
(

χ
(0)
h ,u

(0)
h , p(0)

)

∈ Th × Vh(uΓ)×Qh being given.

• k > 0: let
(

χ
(k−1)
h ,u

(k−1)
h , p(k−1)

)

∈ Th × Vh(uΓ)×Qh being known.

Find (δχh, δuh, δph) ∈ Th × Vh(0)×Qh such that

∂F

∂U

(

λ;
(

χ
(k−1)
h ,u

(k−1)
h , p

(k−1)
h

))

.(δχh, δuh, δph) = −F
(

λ,
(

χ
(k−1)
h ,u

(k−1)
h , p

(k−1)
h

))
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and then defines

χ
(k)
h = χ

(k−1)
h + δχh, u

(k)
h = u

(k−1)
h + δuh and p

(k)
h = p

(k−1)
h + δph

At each step k > 0, this algorithm solves a linear subproblem involving the Jacobian
∂F

∂U
. The

Newton method has only local convergence properties, i.e. the initial value should be close enough
to the solution. In order to circumvent this limitation, a globalized Newton variant is used here. It
is based on a damping strategy, as described and implemented in the Rheolef free software FEM
library [61]. Note the absolute value function that appears in the upwind term in the definition (14)
of th:

sh(uh; χh, ξh) =
1

2

∑

S∈S
(i)
h

∫

S

[[χh]] : [[ξh]] |uh.n| ds

This term is not differentiable with respect to uh and neither is th nor F . Nevertheless, the
absolute value is convex and some tools from subdifferential calculus can be used to overcome this
new difficulty. Let us introduce the multi-valued sign function:

sgn(x) =







{1} when x > 0
[−1, 1] when x = 0
{−1} when x < 0

Then, the subdifferential of the absolute value function is sgn(x) and for all δwh,wh, uh,vh ∈ Xh,
we introduce a generalization of the partial derivative:

∂sh
∂uh

(uh; χh, ξh).(δuh) =
1

2

∑

S∈S
(i)
h

∫

S

[[χh]] : [[ξh]] sgn(uh.n) δuh.n ds

The Jacobian
∂F

∂U
can thus be defined as a multi-valued subgradient set. In 1993, Qi and Sun [54]

showed how the Newton method extends to this case: any element that belongs to this set rep-
resents a valid direction for the Newton correction step. Such a non-smooth Newton method was
successfully implemented for the steady Navier-Stokes equations with the discontinuous Galerkin
method and upwind scheme [62].

The multi-valued Jacobian
∂F

∂U
is defined for all (χh,uh, ph) ∈ Th × V (uΓ) × Qh, and

(δχh, δuh, δph) ∈ Th × V (0)×Qh (ξh,vh, qh) by

〈

∂F

∂U
(λ, (χh,uh, ph)) .(δχh, δuh, δph), (ξh,vh, qh)

〉

= a1(χh,uh; δχh, ξh) + b11(χh,uh; ξh, δuh)

+ b12(χh; δχh,vh) − c(δuh,vh) − d(vh, δph)

− d(δu, q)
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where

a1(χ,u; δχ, ξ) =
∂th
∂χ

(u; χ, ξ).(δχ) +
∂a

∂χ
(χ, ξ).(δχ)

= λt0,h(u; δχ, ξ) + sh(u; δχ, ξ) +

∫

∂Ω

δχ :ξ max(0, −uΓ.n) ds

+
aλ

ηp

∫

Ω

(

∂κ

∂β

(

aλ

ηp
χ, 2D(u)

)

:δχ

)

:ξ dx

+

∫

Ω

δχ :ξ dx+

∫

Ω

(

exp′
(

−aλ
ηp
χ

)

:δχ

)

:ξ dx

b11(χ,u; ξ, δu) = λt0,h(δu; χ, ξ) + λ
∂sh
∂u

(u; χ, ξ).(δu) + b1(ξ, δu)

+

∫

Ω

κ

(

aλ

ηp
χ, 2D(u)

)

:ξ dx

b12(χ; δχ,v) =
∂b2
∂χ

(χ,v).(δχ)

= −
∫

Ω

δχ :D(v) dx−
∫

Ω

(

exp′
(

aλ

ηp
χ

)

:δχ

)

:ξ dx

and where t0,h represents

t0,h(uh;χh, ξh) =
∑

K∈Th

∫

K

((uh.∇)χh) :ξh dx−
∑

S∈S
(i)
h

∫

S

[[χh]] :{{ξh}} (uh.n) ds

+

∫

Ω

(χhW (uh)−W (uh)χh) :ξh dx

Here exp′(χ) : δχ denotes the differential at δχ of the exponential of a d × d matrix. Recall
that when χ and δχ commute, then exp′(χ) : δχ = exp(χ) δχ while the general case is more

complex. Also,
∂κ

∂β
involves the derivatives of eigenvalues and eigenvectors of a d × d matrix

with respect to the matrix coefficients. Note that since κ is linear with respect to its second

variable γ we have
∂κ

∂γ
(β,γ) : δγ = κ(β, δγ). A key point of the present implementation of the

Newton method is the exact computation of both exp(χ), exp′(χ), κ(β,γ) and
∂κ

∂β
(β,γ). Indeed,

these computations can be performed explicitly: Rouvière [56, p. 297] proposes some tools for
the derivation of the exponential of a matrix, while Hairer and Wanner [27, p. 102] give some
formula for computing the derivative of eigenvalues and Magnus and Neudecker [43, p. 177] also
present the derivative of eigenvectors with respect to the coefficient of a matrix. Kane, Guénette,
and Fortin [35, p. 50] presented some explicit expressions for exp(χ) and exp′(χ) based on the
mapple software: these expressions contain some errors and we provide the correct expressions in
appendix A.1 for completeness. Appendix A.2 shows that κ is continuous and differentiable with
respect to the matrix coefficients and details for the first time the computation of these quantities.
Finally, the integrals involving nonlinear expressions are evaluated by a Gauss quadrature formula
with six interior nodes in a triangle: this formula is exact for polynomials whith degree lower or
equal to four. Numerical experiments with higher order of quadrature do not show significant
changes in the numerical results.

2.4 Euler-Newton continuation algorithm

The aim of the Euler-Newton continuation algorithm is to start from a previously computed
solution at a smaller λ (or dimensionless Weissenberg number), perform a prediction using an
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Euler scheme (as if λ was a pseudo-time) and then perform corrections using the Newton method.
This approach allows to reach high values of the λ parameter efficiently.

Let us denote U = (χh,uh, ph) ∈ Th × Xh × Qh, such that the approximate nonlinear problem
can be written in a concise form F (λ, U) = 0. In this paragraph, we introduce an Euler-Newton
continuation algorithm (see e.g. [52, p. 176] or [66]) that consists of two nested loops:

algorithm 1 (continuation)

• n = 0: Let (λ0, U0) be given. Compute

U̇0 = −
(

∂F

∂U
(λ0, U0)

)−1
∂F

∂λ
(λ0, U0)

• n > 0: Assume (λn, Un) and U̇n are known.

1) First choose a step ∆λn and set λn+1 = λn +∆λn.

2) Then, perform an Euler prediction by computing

w0 = Un −∆λn

(

∂F

∂U
(λn, Un)

)−1
∂F

∂λ
(λn, Un)

3) Then, perform a Newton correction step: for all k > 0, with Wk being known, compute

Wk+1 =Wk −
(

∂F

∂U
(λn+1,Wk)

)−1

F (λn+1,Wk)

Once the the correction loop has converged, set Un+1 =W∞.

4) Finally, compute

U̇n+1 = −
(

∂F

∂U
(λn+1, Un+1)

)−1
∂F

∂λ
(λn+1, Un+1)

The step ∆λn can either be fixed or chosen by adjusting the contraction ratio of the Newton

method [52, 66]. The previous algorithm requires the computation of
∂F

∂λ
, which is given by:

〈

∂F

∂λ
(λ, (χh,uh, ph)) , (ξh,vh, qh)

〉

= t0,h(uh;χh, ξh) + sh(uh;χh, ξh) +

∫

∂Ω

max(0,−uΓ.n)χh :ξh ds

+
a

ηp

∫

Ω

(

∂κ

∂χ

(

aλ

ηp
χh, 2D(uh)

)

:χh

)

:ξh dx

− a

ηp

∫

Ω

∂f

∂µ

(

aλ

ηp
, −χh

)

:ξh dx− a

ηp

∫

Ω

∂f

∂µ

(

aλ

ηp
, χh

)

:D(vh) dx

where

∂f

∂µ
(µ,χ) =



















χ2

2
when µ = 0

− 1

µ2
(exp (µχ)− I) +

1

µ
exp′ (µχ) :χ otherwise
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2.5 Automatic adaptive mesh

The anisotropic auto-adaptive mesh feature available in the Rheolef free software FEM library [61]
has been used in this paper. This feature is based on the free software bamg bidimensional
anisotropic mesh generator developed by Hecht [29]. Let us first summarize the principle of
the adaptive mesh procedure. Let Th be an initial mesh and U = (χh,uh, ph) ∈ Th × Xh × Qh

be the solution of the discrete nonlinear problem (FV )h associated to the mesh Th. Let φ be a
governing field to be suitably chosen from the solution U . For a piecewise linear interpolation of
φ, the interpolation error in the unitary direction d ∈ IR2 is estimated at any element K ∈ Th by:

eK,d = h2K,d

∣

∣

∣

∣

∂2φ

∂d2

∣

∣

∣

∣

in K

where hK,d is the length of K in the d direction and

∂2φ

∂d2
= dTH(φ)d and H(φ) =









∂2φ

∂x2
∂2φ

∂x∂y
∂2φ

∂x∂y

∂2φ

∂y2









Here H(φ) denotes the Hessian of φ. One possible way of adapting the mesh to the computation
of φ is to equi-distribute this error, i.e. to make it constant over all triangles and in all directions.
Let λ1, λ2 be the eigenvalues of H(φ) and d1 and d2 the associated eigenvectors:

∂2φ

∂d2
1

= λ1 and
∂2φ

∂d2
2

= λ2

The error eK,d is independent of d and K when there exists a constant e0 > 0 independent of K

F

e1

e2

h1 d1

d2

h2

Figure 2: Anisotropic adaptive mesh.

such that eK,d1 = eK,d2 = e0. This writes equivalently

h2K,d1
|λ1| = h2K,d2

|λ2| = e0, ∀K ∈ Th

The constant e0 represents a global surface density factor. The adapted mesh generator tries to
shrink elements in all directions with a factor

√
e0, hence all the bidimensional element areas are

reduced by a factor e0. Suppose that H(φ) is non-singular, i.e. λ1λ2 6= 0. The constant e0 being
known, our aim is now to build triangles of length hi in the di direction with hi =

√

e0/|λi|,
i = 1, 2. Such a triangle has no privileged direction in a metric such that the two hidi vectors,
i = 1, 2, have the same norm. Thus, let us introduce the metric M(φ) tensor that have the same
eigenvectors as H(φ) and |λi|, i = 1, 2 as eigenvalues. The induced norm ‖.‖M satisfies

‖hidi‖M = hK

√

dT
i M(φ)di =

√
e0, i = 1, 2
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It then suffices to build an isotropic mesh in the Riemann space associated to the metric M(φ).
In the Euclidean space, this mesh locally shrinks with a factor hi in the di direction.

It remains to choose a suitable φ governing field. Several numerical experiments have motivated
the use of a combination of a free energy and of a viscous dissipation term:

φ = λ tr

(

f

(

aλ

ηp
, χ

))

+ ηv |D(u)|2

where f is defined in (7). As both χh and D(uh) are linear and piecewise discontinuous, the gov-
erning field φ is also approximated by a piecewise linear and discontinuous function φh. Obtaining
its hessian thus requires a L2 projection and two derivations. The L2 projection of φh gives a
piecewise linear and continuous approximation of φ, denoted by φ̃h. The discrete Hessian Hh is
obtained from φ̃h by computing first its discrete gradient gh, continuous and piecewise linear, from
the variational formula

∫

Ω

gh.vh dx =

∫

Ω

∇φ̃h.vh dx

where vh is any continuous piecewise linear vector. Then Hh is obtained from the variational
formula

∫

Ω

Hh :ξh dx =

∫

Ω

D(gh) : ξh dx

where ξh is any continuous piecewise linear tensor. Solving a problem using such an automatic
adaptive mesh is an iterative process, which involves three main steps :

1. Starting from an initial mesh Th, solve the problem using the Newton method. Let U be
the corresponding solution associated to the mesh Th.

2. From U , compute the governing field φh.

3. From the governing field φh, defined on the mesh Th, generate a totally new mesh, denoted

by T
(1)
h .

Then, T
(1)
h is used to solve the problem, and so on, until convergence of both the mesh and

its associated solution. Hence, the final adapted mesh minimizes the interpolation error for the
governing field. This choice of the governing field has been found able to catch accurately the
boundary layers and secondary vorticies, as showed in the next section.

3 Tests on the smoothed driven cavity flow

For the purpose of comparison with previous studies [18, 28], we consider the steady bi-dimensional
smoothed driven cavity benchmark problem with Ω = ]0, L[2 with L > 0. The boundary velocity uΓ

is zero except on the top boundary {y = L} where uΓ(x, L) = (16Ux2(L− x)2/L2, 0) with U > 0.
The fluid parameters are a = 1 and ηp = ηv and the dimensionless Weissenberg number is We =
λU/L. Despite its simple geometry, this is a very difficult problem: to our knowledge, most
numerical methods based on the initial formulation failed for We 6 0.1. Due to singularities near
corners between the lid and the sidewalls, the lid-driven cavity may encounter the highWe number
problem or present many challenges in the form of singularity points in the flow. Therefore, it is
known as a highly stringent test problem for numerical methods.

Fig. 3.a plots the residual term ‖F (λ, U)‖L2 versus the iteration number niter of the damped
Newton method. The loop is initialized from the Newtonian solution, associated to We = 0 and
the solution is then computed directly for a specific We. Observe the quadratic convergence in
log scale, up to We = 0.5. The algorithm stops when the machine precision is reached. For the
last test case, We = 0.6 and the damped strategy still allows the convergence of the algorithm
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Figure 3: Convergence of the damped Newton algorithm, starting from the solution at We = 0
for the Oldroyd-B problem on the driven cavity with ηp = ηv: (a) versus We for an uniform mesh
with h = 1/10 ; (b) versus mesh refinement h for We = 0.1.

at the price of a larger number of iteration and the loss of the quadratic convergence. In that
case, the Euler-Newton continuation algorithm, which restarts from a previous computed solution
at a smaller We, is more efficient. We used a Weissenberg number increment of ∆We = 0.1 in
the present computations. Moreover, the Euler-Newton continuation algorithm is more robust
and allows reaching solutions at much higher Weissenberg numbers. With this algorithm, each
step uses about five resolutions of the Jacobian linear system and the solution at We = 1 can
be reached from the solution at We = 0 with about fifty resolutions of linear systems. This
convergence property is mesh-invariant, as showed by Fig. 3.b (for the mesh-invariance property
of nonlinear algorithms, see [61, chap. 8]). This algorithm provides also all the intermediate
solutions at We = 0.1, . . . , 0.9. Such very efficient viscoelastic computations for large Weissenberg
numbers can be compared with the thousands of steps involving linear systems and required by all
the current time-dependent approaches for reaching the steady solution [18, 28, 35, 15]. Moreover,
the number of time steps required by these methods increases with the Weissenberg number, and
also with the mesh refinement, when non-fully implicit time schemes are used.

The current implementation uses the Rheolef free software FEM library [61, 62] that is available as

a standard package under the Debian and Ubuntu GNU/Linux systems. The Jacobian matrix
∂F

∂U
is large and sparse: the linear system is solved with a direct method with the help of the parallel
and massively distributed memory linear solver mumps [2] together with the scotch [53] ordering
algorithm for minimizing the fill-in of the sparse matrix. For the largest meshes (h = 1/80,
1/160 and the adaptive meshes), the computations are run on 32 processors on a BullX DLC
supercomputer (Bull Newsca) composed of nodes having two Intel Sandy-Bridge processors and
connected to a FDR infiniband non-blocking low latency network. The computation of a whole
branch of solutions is performed in less than one hour of real time.

Table 1 (left) groups the maximal Weissenberg number, denoted as Wemax, reached by the Euler-
Newton continuation algorithm: for higher We, the algorithm stops, due to a singular solution

where the Jacobian matrix
∂F

∂U
is non-invertible. When such a singularity occurs in the continua-

tion algorithm, the Weissenberg number increment is divided by two and the iteration restarted.
The Weissenberg number increment is limited to 10−7. When using an adaptive mesh, we observe
that the Euler-Newton continuation algorithm is able to jump behind the singular point and to
continue its progression on a branch of solutions until a second singular point is reached near
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h Wemax

1/20 3.74
1/40 2.19
1/80 2.21
1/160 2.08

hmin Wemax Wec

10−2 3.13 2.33
5× 10−3 2.78 2.03

Table 1: The Oldroyd-B problem on the driven cavity with ηp = ηv. Maximal and critical
Weissenberg number versus mesh refinement: (left) uniform mesh ; (right) adapted mesh.

We = 3. In that case, the determinant of the Jacobian matrix exhibits a change of sign after the
first singular point (see e.g. [66]). The Weissenberg number where this change of sign occurs is
denoted asWec on Table 1 (right). Note that for the finest uniform mesh (h = 1/160), the singular
point isWec = 2.08 and for the finest adapted one,Wec = 2.03. ThenWec seems to become mesh
insensitive with mesh refinement. A deeper analysis of singular points is planed as future work.
It requires more advanced tools than the simple continuation Euler-Newton algorithm. The first
and second singular points could be e.g. bifurcation points associated to a loss of stationarity of
the solution: for larger We, the solution becomes non-stationary, as suggested by time-dependent
simulations (see e.g. [18], Fig. 8). Pakdel, Spiegelberg and McKinley also showed by experimen-
tal observations [50] for the motion of viscoelastic fluids in the lid-driven cavity geometry that,
at large Weissenberg numbers, the fluid motion becomes unstable and a three-dimensional flow
develops.

0.1

0.2

0 1 2 3 4

We

‖u‖L2

U

h = 1/20
h = 1/40
h = 1/80
h = 1/160
adapted hmin = 10−2

adapted hmin = 5×10−3

0

0.5

1

1.4

0 1 2 3 4

We

L
(ηp+ηv)U

‖ℵ‖L2

h = 1/20
h = 1/40
h = 1/80
h = 1/160
adapted hmin = 10−2

adapted hmin = 5×10−3

Figure 4: The Oldroyd-B problem on the driven cavity with ηp = ηv. Norm of the solution versus
We.

Fig. 4 plots the L2 norm of the velocity and the log-conformation tensor: observe the good
convergence of these quantities with mesh refinement. There are five uniform meshes from h = 1/20
to h = 1/160 and two adapted meshes with hmin = 10−2 and 5× 10−3.

Figs. 5 and 6 show the adapted meshes and stream isovalues of the function for We = 1, 2 and
3. The stream function ϕ is defined as the unique function that satisfies −∆ϕ = ∂yux − ∂xuy in
Ω with ϕ = 0 on ∂Ω. Ten negative and fifteen positive equi-spaced isolines are represented on
each plot. Observe that viscoelastic effects break the symmetry observed for the velocity field of
cavity flows of viscous Newtonian fluids at zero Reynolds number. At low Weissenberg number,
the flow remains two-dimensional but the center of the primary recirculating vortex in the cavity
shifts progressively upstream (left). These results are in qualitative agreement with experimental
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results [50]. Note also that inertia in viscous Newtonian fluids (i.e. We = 0 and Re > 0) has
opposite effects (see e.g. [62, part 2]): the center of the primary recirculating vortex in the cavity
shifts downstream (right).

xm ym reference

0.439 0.816 Pan, Hao & Glowinski [51]
0.433 0.803 Su, Ouyang, Wang, Yang & Zhou [67]
0.429 0.818 present

Table 2: The Oldroyd-B problem on the driven cavity with ηp = ηv. Comparison of the dimen-
sionless main vortex center position for We = 1 with others authors.

Furthermore, our results are compared quantitatively to previous studies: the locations of the
primary vortex center for We = 1 are listed in table 2. Our results are compared with the
results of time-dependent flow using both a finite element method [51] and a lattice Boltzmann
method [67]. It is found that the results of our steady computations are consistent with those of
these authors.

Figs. 7 and. 8 show zooms on the left and right secondary vortices. While the main vortex moves
from left to right when We increases, the left vortex grows and the right one decreases in activity.
Note that this is also in opposition with inertial effects for viscous Newtonian fluids.

main left right
We

xm ym ϕmin xl yl ϕmax xr yr ϕmax

1 0.429 0.818 −0.0619 0.0364 0.0388 1.31×10−6 0.9637 0.0355 9.97×10−7

2 0.386 0.828 −0.0555 0.0394 0.0411 1.58×10−6 0.9663 0.0363 7.07×10−7

3 0.335 0.824 −0.0531 0.0485 0.0477 3.22×10−6 0.9631 0.0347 7.66×10−7

Table 3: The Oldroyd-B problem on the driven cavity with ηp = ηv. Dimensionless main and
secondary vortices center position and activity for We = 1, 2 and 3.

Table 3 groups the main and secondary vortices center position and activity for We = 1, 2 and 3.
These values are provided for future cross validation purpose. One can observe that the main
vortex goes left and decreases in activity while the center of the left secondary vortex goes up
and right and its activity increases. Also, the center of the right secondary vortex roughly stays
in place while its activity remains constant. Finally, Fig. 9 plots the cut of the first component
ux of the velocity and the χxx component along the x = 1/2 vertical axis, as computed with the
adaptive mesh. The computations with the finest uniform mesh (h = 1/160) give similar results
(not shown as the difference is not graphically perceptible). Observe the excellent quantitative
agreement with both the computations of Hao and Pan [28] and Fattal and Kupferman [18].

Conclusion

The new log-conformation formulation of viscoelastic fluid flow presented in this paper allows a
direct steady numerical resolution by a Newton method. Moreover, the use an exact divergence
free finite element method velocity-pressure approximation and a discontinuous Galerkin upwind
treatment for stresses leads to a robust discretization. A demonstration is provided by the compu-
tation of steady solutions at high Weissenberg numbers for the difficult benchmark of the lid driven
cavity flow. Numerical results are in good agreement, qualitatively with experiment measurements
on real viscoelastic flows, and quantitatively with computations performed by others authors. The
numerical algorithm is thus robust. It is also very efficient, as it requires few and mesh-invariant
number of linear system resolutions to reach solutions at high Weissenberg number. An adaptive

22



mesh procedure is also proposed, in order to catch accurately both boundary layers and main and
secondary vorticies.

We provide new data for future cross validation purpose and point out the existence of a singular
point near We = 2, where the determinant of the Jacobian vanishes and exhibits a change of
sign. This singular point has been found quite robust thought mesh refinement. As suggested
by both experimental measurements and time-dependent simulations, it could be a bifurcation
points associated to a loss of stationarity of the solution. The analysis of this situation by a
steady approach is also possible with the tools of the bifurcation theory. In 2009, a pioneering
work was performed in this direction by Howell [30] and it should be carried on in the context of
the log-conformation formulation.

There are many geometries that could be explored with this approach: contractions, as in the
previous reference, and flow around obstacles are interesting benchmarks, while experimental mea-
surements are also available. As new mathematical tools are now available for solving viscoelastic
flows problems, the situation becomes mature for considering efficient tridimensional flow simula-
tions. The present log-conformation formulation extends naturally to more complex viscoelastic
fluid models, such as Phan-Thien and Tanner, Giesekus or elastoviscoplastic one [59, 60]. The
integration of the Gordon-Schowalter derivative parameter in the present work also open the door
of the numerical modeling of liquid crystals, fiber suspensions or active fluids.
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We = 1:

We = 2:

Figure 5: The Oldroyd-B problem on the driven cavity with ηp = ηv. Adapted mesh and stream
function isovalues for We = 1 and 2.
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We = 3:

Figure 6: The Oldroyd-B problem on the driven cavity with ηp = ηv. Adapted mesh and stream
function isovalues for We = 3.
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Figure 7: The Oldroyd-B problem on the driven cavity with ηp = ηv. Zoom around vortex for
We = 1.
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We = 2
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Figure 8: The Oldroyd-B problem on the driven cavity with ηp = ηv. Zoom around vortex for
We = 2 and 3.
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Figure 9: The Oldroyd-B problem on the driven cavity with ηp = ηv. Cuts along the x = 1/2
vertical line: (top) ux(1/2, y) ; (bottom) χxx(1/2, y). Comparisons with results obtained by Hao
and Pan [28], Fig. 2 for We = 1 and by Fattal and Kupferman [18], Figs. 7 and 10 for We = 2
and 3, respectively.
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A Appendices

This appendix contains explicit computations of some complex expressions, namely the exponential
of a matrix, the κ function and their derivatives with respect to the matrix coefficients.

A.1 The matrix exponential and its derivatives

The present work uses the free software formal calculus system maxima [46]. With this system,
the computation of the exponential of a 2× 2 symmetric matrix writes:

load(linearalgebra);

domxexpt : false;

chi : matrix([a,b],[b,c]);

exp_chi : factor(matrixexp(chi));

The derivative exp′(χ) of this expression with respect to the coefficients of the matrix χ are then
treated without any difficulty by this formal calculus system. Notice that Kane, Guénette, and
Fortin [35, p. 50] proposed some explicit expressions for exp(χ) and exp′(χ), based on the mapple
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software: these expressions contained some errors and, for completeness, the correct expression
are provided here.

χ =

(

a b
b c

)

, exp(χ) = α2







α4 +
(a− c)α3

α1

2bα3

α1
2bα3

α1
α4 −

(a− c)α3

α1







where α1 =
√

(a− c)2 + 4b2, α2 = exp((a+ c)/2), α3 = sinh(α1/2), and α4 = cosh(α1/2). Notice
that the expression in [35] for exp′(χ) should also be fixed in a similar way.

Observe that the obtained expression degenerates when both a = c and b = 0, i.e. when the
matrix is proportional to the identity. In that case χ = a I and exp(χ) = exp(a) I. This possible
degeneracy is decided when both |a − c| < εm and |b| < εm where εm stands for the machine
epsilon, i.e. the higher positive floating number such that 1 + εm = 1. Finally, the expressions
produced by maxima are simplified and optimized in an automatic way: they are then formatted
in fortran, C or C++ languages for a direct use by the Euler-Newton continuation algorithm. The
formal calculus approach applies also for a 3×3 symmetric matrix: such expression is suitable
for tridimensional flow geometries. The explicit expression of the 3×3 matrix exponential is not
presented in this paper, as it expands on many pages. Nevertheless, the formal calculus approach
is able to automatically generate the corresponding fortran or C++ code in the tridimensional
case.

A.2 The κ function and its derivatives

Magnus and Neudecker [43, p. 177] showed that the eigenvalues and eigenvectors are differentiable
provided that eigenvalues are simple. Otherwise, when there are multiple eigenvalues, there is a
serious problem. Let us study this difficulty by considering the 2× 2 matrix function:

β(ε, δ) =

(

α+ ε δ
δ α− ε

)

where α is some fixed constant and ε and δ are two variables at the vicinity of zero. The two
eigenvalues and the two associated unnormalized eigenvectors are

β± = α±
√

ε2 + δ2 and v± =





1

−
(ε

δ

)

±
√

1 +
(ε

δ

)2





Both eigenvalues are continuous in ε and δ but not differentiable: the conical surface formed by
the eigenvalues has a singularity at (ε, δ) = (0, 0) (see Fig. 10.a). For instance

∂β±
∂ε

= ±
(

1 +

(

δ

ε

)2
)− 1

2

For a fixed ratio c = δ/ε however, we can pass through (0, 0) without noticing the singularity, but

the derivative depends upon c. Thus, the derivative
∂β±
∂ε

are multi-valued in (0, 0) and the two

eigenvalues are not derivable at the origin. Notice that the two eigenvectors only depends upon c.

Nevertheless, the situation is not hopeless for the κ function: Fig. 10.b plots the κ(β,γ)1,1 com-
ponent as a function of (ε, δ) for a specific γ value. Other components or γ values show a similar
behavior. This observation suggests that κ is differentiable at (ε, δ) = (0, 0) and that its deriva-
tive is zero. Let us prove this conjecture. But observing closely the definition (6a)-(6c) of the κ
function shows that κ̃ depends only upon (β+ − β−)/2 =

√
ε2 + δ2 and is independent of α. More

precisely, from (6b) we have κ̃1,2 = κ̂
(√
ε2 + δ2

)

γ̃1,2 where with κ̂(x) = 1− x/ tanh(x). Then

∂κ̃1,2
∂ε

= ε g
(

√

ε2 + δ2
)

γ̃1,2 + κ̂
(

√

ε2 + δ2
) ∂γ̃1,2

∂ε
(17)
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Figure 10: (a) The eigenvalue function β± = α ±
√
ε2 + δ2; (b) The κ(β,γ)1,1 function, with

γ = ((1, 2), (2, 3)).

with g(x) = κ̂′(x)/x. Observe that limx→0 g(x) = −2/3. Let us fix the direction c = δ/ε and do
ε→ 0. By this way v± depends only on c and so does the unitary matrix q whose columns are the
normalized eigenvectors v±/|v±|. Thus γ̃ = qTγq does not dependent on ε. Then, the first term
of the right-hand side of (17) behaves has O(ε). We now turn to the second term of the right-hand
side of (17): On one hand, we have κ̂(x) = −x2/3 + O(x3) and then κ̂

(√
ε2 + δ2

)

= O(ε2). On

the other hand,
∂v±

∂ε
= O(δ−1) = O(ε−1) and so are

∂q

∂ε
and

∂γ̃1,2
∂ε

. Then, the second term of

the right-hand side of (17) also behaves has O(ε). Finally, κ̃1,2 is differentiable in (0, 0) and its
derivative is zero. Now, let us turn to κ = qκ̃qT . We have:

∂κ

∂ε
=
∂q

∂ε
κ̃qT + q

∂κ̃

∂ε
qT + qκ̃

∂qT

∂ε

Recall that q depends only upon the constant direction c. Each term behaves as O(ε) and finally
∂κ

∂ε
= 0 at (0, 0). As ε and δ are interchangeable in the expression of κ, a similar deduction leads

to
∂κ

∂δ
= 0. Remark that, since the derivative is zero, it does not depend on the direction c. To

conclude, κ is fully differentiable with respect to β, even when β admits multiple eigenvalues.

The maxima code for computing κ(β,γ) writes:

beta : matrix([a,b],[b,c]);

gamma : matrix([g00,g01],[g10,g11]);

eig : eigenvectors(beta);

beta1 : eig[1][1][1];

beta2 : eig[1][1][2];

do_unitary(v) := v/sqrt(v[1]**2 + v[2]**2);

v1 : do_unitary(eig[2][1][1]);

v2 : do_unitary(eig[2][2][1]);

q : matrix([v1[1],v2[1]], [v1[2],v2[2]]);

tilde_gamma : transpose(q).gamma.q;

hat_kappa(x) := 1 - x/tanh(x);

k12 : hat_kappa((beta1-beta2)/2)*tilde_gamma[1][2];

tilde_kappa : matrix([0, k12],[k12,0]);

kappa : q.tilde_kappa.transpose(q);

The derivatives of this expression with respect to the matrix coefficients are then treated without
any difficulty. As shown in this section, there are two different degenerative cases, when a = c
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or b = 0. These special cases are decided up to the machine precision and are treated separately.
Finally, the expressions produced by maxima are simplified, optimized and formatted in fortran,
C or C++ for a direct use by the Euler-Newton continuation algorithm.
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