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Abstract. We discuss the possibility of considering the shock wave in a compressible
viscous heat conducting gas as a strong discontinuity on which surface the generalized
Rankine-Hugoniot conditions hold. The corresponding linearized stability problem for
a planar shock lacks boundary conditions; i.e., the shock wave in a viscous gas viewed
as a (fictitious) strong discontinuity is like undercompressive shock waves in ideal fluids
and, therefore, it is unstable against small perturbations. We propose such additional
jump conditions so that the stability problem becomes well-posed and its trivial solution
is asymptotically stable (by Lyapunov). The choice of additional boundary conditions
is motivated by a priori information about steady-state solutions of the Navier-Stokes
equations which can be calculated, for example, by the stabilization method. The estab-
lished asymptotic stability of the trivial solution to the modified linearized shock front
problem can allow us to justify, at least on the linearized level, the stabilization method
that is often used, for example, for steady-state calculations for viscous blunt body flows.

1. Introduction. As is known, one uses two main approaches for describing motions
of different continuous media with shock fronts. The first one is based on representing
shock waves as surfaces of strong discontinuity. Such an approach is usually utilized for
modelling shock waves in ideal fluids for which dissipative mechanisms (e.g., viscosity or
heat conduction) can be neglected. According to the second, wviscous profile (continuous)
approach, the shock “spread” by dissipation is represented by traveling wave solutions of
viscous conservation laws connecting asymptotically constant states (these solutions are
called viscous profiles; see, e.g., [7], [14], [18]).
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Observe that motions of ideal continuous media are generally described by hyperbolic
systems of conservation laws for which the mathematical stability theory for strong dis-
continuities has been well discovered both on the linearized and initial nonlinear level (at
least for gas dynamics; see [6], [1], [2], [3], [4], [11], [12], [13]).

However, the discontinuous approach is found to be ineligible for shock waves in con-
tinuous media with dissipation when the shock is viewed as a (fictitious) strong disconti-
nuity on which surface the generalized Rankine-Hugoniot conditions derived by the usual
way (by analogy with ideal fluids; see, e.g., [10]) from the system of viscous conservation
laws arc satisfied. Such a conclusion follows even from the linear analysis. Namely, as
was shown in [5], the planar shock (with the equation x = 0) separating a supersonic
steady viscous flow (under z < 0) from a subsonic one (under z > 0) is unstable against
small perturbations (depending not on the character of linearized boundary conditions
at ¢ = 0). This instability is a direct consequence of the fact that the correspond-
ing linearized stability problem proves to be undetermined according to the number of
boundary conditions obtained by linearizing the generalized Rankine-Hugoniot relations.
In other words, this problem is ill-posed (by Hadamard).

At the same time, it should be noted that there are a lot of computational works
in which the shock wave in a viscous gas is considered as a fictitious surface of strong
discontinuity (see, e.g., [16], [15], [17] and references therein). As a rule, such works
are devoted to the numerical computation of steady viscous flows near blunt bodies.
For example, in [16], to bound essentially the calculated domain, where solutions of
the compressible Navier-Stokes equations are sought, one introduces a bow shock that
is treated as a strong discontinuity on which surface corresponding jump conditions
(gencralized Rankine-Hugoniot conditions) hold. Moreover, steady-state solutions to the
Navier-Stokes equations are computed there by the stabilization method; i.e., they are
found as a limit of unsteady solutions under t — 00

Although, we should observe that in the mentioned works devoted to steady-state
calculations for viscous blunt body flows, the supersonic coming flow is supposed to
be inviscid and not heat-conducting. Therefore, as in gas dynamics (see, e.g., [13]),
the linearized system (the acoustic system) ahead of the planar shock does not need
boundary conditions (there are no outgoing characteristic modes under z < 0). But
anyway, as follows from the results in [5], the linearized (nonstationary) Navier-Stokes
system behind the planar shock lacks boundary conditions: one boundary condition for
the case of one space dimension (1-D) and more than one boundary condition for 2-D or
3-D. In this connection, we underline once more that, for example, in [16], [15], [17], one
considers the stationary Navier-Stokes (or simplified Navier-Stokes) equations, but their
solutions are calculated there by the stabilization method. Hence, it is the nonstationary
linearized shock front problem that should be correctly posed according to the number

of boundary conditions.

Thus, one can conclude the groundlessness of the discontinuous approach applied
for steady-state calculations for viscous blunt body flows if the stabilization method is
used. On the other hand, accounting for some advantages of the discontinuous approach
(especially for numerical calculations), it would be advantageous to modify this approach
so that it might be applied (together with the stabilization method) with a mathematical
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ground for steady-state calculations for blunt body flows with dissipation. In this work,
on the example of the linearized stability problem for (discontinuous) shock wave in a
compressible viscous heat conducting gas, we propose an idea of such a modification.
The essence of this idea is that for the initial shock front problem we write additional
boundary conditions so that for the modified problem the steady flow regime with a shock
wave described above becomes asymptotically stable (by Lyapunov). So, at least on the
linearized level it might justify the stabilization method which can now be applied for
finding (e.g., numerically) the steady flow regime for a viscous gas with a shock wave.
The mentioned additional boundary conditions are suggested to be written with regard
to a priori information about steady-state solutions of the Navier-Stokes equations.

2. Generalized Rankine-Hugoniot conditions. We consider the motion of a
compressible viscous heat conducting gas. As is known, it is governed by the Navier-
Stokes equations (see, e.g., [10]):

Op d(pu)
ot

+div (pu) =0, —a—t—+div(pu®u—P)=0,

d 1 1
— p(eg + —|u|2) + div p(eo + =|ul? +pV>u —€—xVT )} =0.
ot 2 2
Here p denotes the density and u = (u, uz, uz) the velocity of the gas, P the stress tensor
with the components Py, = —pd;x + 0uk , 03 = 9{0u;/Oxy + Ouy/0z; — (2/3)d;rdivu) +
(bidivu, p the pressure, n and ¢ are first and second viscosity coefficients, s is the
heat conductivity (n, ¢, and » are usually assumed to be functions of p and s), s
3
the entropy; eg the internal energy, V = 1/p, € = (£1,&,8&3), & = Y. oupuk, and T

1
denotes the temperature. With regard to the state equation eg = eg(p, s), (2.1) is a close

system for finding components of the vector (p, s,u) (it follows from the Gibbs relation
TdS = deg + pdV that T = (eg)s, p = p*(e0),)-

By the usual way (see, e.g., [10]) we write out for the viscous conservation laws (2.1)
the following jump conditions (generalized Rankine-Hugoniot conditions):

(2.1)

3

W1 =0, funli+[P}=0, glur,]= [ > cunimy” ] :
5 vk=1 (2.2)
[eo + 1|u|2] Jj+ [pun - Z ik TiUl — %QT— } =0.
2 Bl on
Here the equation f(t,z2,z3) —x; = 0 represents a surface of propagating strong discon-
tinuity, [g] = 9~ goo = 9lf(t,02,23)—21——0 — Gl F(¢,20,25)—21 —+0 denotes the jump for every
regularly discontinuous function g (here and below the subindex ., stands for boundary
values ahead of the shock front), n = (ny,ns,n3) = (1+ f2, + f2)7Y2(=1, fo,, fa,) the
unit normal to the discontinuity front, j = p(u, — Dy) the mass transfer flux across the
discontinuity surface, Dy = —(1+ f2, + f2,)7'/2 f, the discontinuity speed in the normal
direction, 7, = (m%vm%)mil’)) = (fxzv L0), T2 = (m%,m%,m%) = (fzsﬁoa 1)» Un = (uvn)a

3

U, = (0, 7),i=1,2,and P=p— ) oining. Note that for the case of shock wave,
i k=1
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[p] # 0, [j] # 0, one can reduce the last condition in (2.2) to the following form of a
generalized Hugoniot adiabat:

ol + 5=V = o z(kza) ~(

i=1

5 2l 1[ oT
Uikn,-nk) + - %a— .
ik=1 J n

3. The modified shock front problem. The lincarized stability problem for a
planar shock wave in a viscous gas was formulated in [5]. Let us, following [5], write out
this problem here. For this purpose one considers a planar steady strong discontinuity
(stepshock) with the equation z; = 0 and the piecewise constant solution

u= ({1,000, p=/ps, and s=35, if xz, <0,

(3.1)
u=(4,0,0), p=p, and s=5, if z;>0,
to system (2.1) which satisfies the jump conditions (2.2) on the plane z; = 0:
pitn = boctioe . (I — i) + (b~ p) (V = V) =0,
(3.2)

(éo—é0m)+%<\7—f/x) —0.

Here the constants @ioc, foc, 8o, %1, P, and § are parameters of the steady viscous
flow ahead of and behind the stepshock (p > 0, ps > 0); moreover,

Uloo > oo >0, 0< 1y <&, (3.3)

&, = (p2(€0)p)p(ﬁom§oo) and ¢ = (p?

of and behind the stepshock, P = f)go((zo)p(f)oc,éx), Voo = 1/Poc s €000 = €0(Poos $oc)
p = p*(eo),p(p, 8), V= 1/p, ég = ep(p, §) . We will also suppose that the state equation
eq = eo(p, s) satisfies the requirements for a so-called normal gas (see, e.g., {14]). In that
case, as is known (see, e.g., [14], [10]), inequalities (3.3), the entropy increase assumption
3 > 84 , and the compressibility conditions p > Poe , § > foc , Uh1ec > U1 are equivalent to
each other (conditions (3.2) coincide with the corresponding ones for inviscid gas dynamic

(€0)p)n(p, 8) the squares of the sound speed ahead

flows without heat conduction).

Linearizing system (2.1) and the jump conditions (2.2) about the piecewise constant
solution (3.1), we obtain the stability problem (in a dimensionless form, see below) for
determining the small perturbations ép, du, §s, and the small disturbance of discon-
tinuity surface 8f = F = F(t,22,23) (in order to simplify the notation we indicate
perturbations again by p, u, and s). Its 1-D variant looks as follows (z := x;, v = u; ,
F = F(t)).

We seek solutions to the system

M*Lp+u, = N (dp” + ﬁsm> . M?Lu+p, =rM%*uyy, Ls=daps, + B8 (3.4)
for x > 0 and the system

LooPoc + (Uso)e = Na (dx(l)oc)m + Boc(soc)xx) : (3.5)

A/[goLocuoo + (pOO)z = 7'001\’130(“00)zz y LS = doo(poc)u + ,Boc(soo)z:c s
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for x < 0 satisfying the boundary conditions

u + dp + do (dpz + Bsz) + diug
= QUoe + d2Poo + d3(uoc)x +dy (doo (poo)z + /Boo(soo)x) + dsSuc (36)

s+vp -+ vo (A, + s, ) + 1t

= V2Poo + ’/3(Uoo)z + vy <&oo(poo)x + Boo(soo)z) + V5800 s (37)
thu(u—i-p—uoo—poo—ﬁs—t-]/\}ocsoo) (3.8)

at x = 0 and corresponding initial data for t =0.

Here the coordinate z, time ¢, and small perturbations p, u, s (z > 0), Peo  %oo » Sco
{x < 0) are related to the following characteristic values: I (characteristic length), I/
(time), pé? (pressure for > 0), pooé2, (pressure for x < 0), 41 (velocity for z > 0), G100
(velocity for z < 0), § (entropy for x > 0), 8§ (entropy for z < 0);

9 9 100 100 i oo

L=—24+2 o= et A= — 1, M=—<1, Myg=— 1,
8t+8x1 ’ w0t Ox; u o > é < T e >
Fo_Sevs(pd) , EVevs(8) 5 2V ((o)vy(eo)es = ()} (5 8)
Vieo)vv(p.8)’ Tsinl (eo)vv (B, 8) T
- o 4 1 4 1 panl pial
T= i 9 = o FeE] oc = a5 R, = <~ Ry = =
(@)elp8) T g YRy T* TR, TR 0T 0 T

(the values Noo, Qs s Bm, and Rjs 200 have an analogous form), M, My, Ri2, and
R0 200 are respectively Mach and Reynolds numbers behind and ahead of the stepshock,
3r = (p,8), 1 =n(p,3), ¢ =¢(p,8). The coefficients of boundary conditions p, d, and
v completely coincide with the corresponding ones in the linearized stability problem for
gas dynamical shocks ([6], [3], [13]) and have the following form:
a 14+ M2 B 32 1

~ 2T
s d——————g——, V= = W, W= =, D:Ai,
2M M2N 1-D N(a - 1)a2

P
3% = 1 — M?. In particular, for a polytropic gas with the adiabatic index ~, one has:
w=—(y—1)82/(2+ (y - 1)M?), &N/ = v — 1. Other coefficients (d; , v;, j = 0,5)
can be also easily written out, for example, dy = wf)]/\\f/2, vy = wD (below we will need
the concrete form only of these coefficients). Observe that for a normal gas the state
equation is convex, (eg)y < 0, (eg)s > 0, (eo)vv >0, (eo)vv(eo)ss — (e0)?, > 0, that
implies the inequalities B >0, aN > 0, Bw >0, and doo]\A/oo > 0. We finally note that
the boundary condition (3.8) is the equation for determining the function F and can be
considered separately from problem (3.4)—(3.7).

Main ideas of the work will be explained below on the example of a non-heat-conduc-
ting gas, i.e., when s = 0 (the situation for a heat-conducting gas is briefly described
at the end of the paper). For this case the linearized stability problem is obtained from
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problem (3.4)-(3.7) by setting 5 = 0, 500 = 0 (ie., & = § = 0 and G = foo = 0) and
has the following form.
One seeks solutions to the system

M?Lp+u, =0, M*Lu+p, =rM3u,,, (3.9)
Ls=0, (3.10)
for > 0 and the system
Loopoo + (uoo)x =0, Mo20Loouoo + (poo)z = Tooﬂlgo(uoo)zx y (311)
for x < 0 satisfying the boundary conditions
U+ dp + diuy = e + doPoo + d3(Uos )z, (3.12)
S+ VD + Uy = Do + V3 (Uso )z (3.13)

at z = 0 and corresponding initial data for t = 0.

Here, without loss of generality, the small entropy perturbation s, for x < 0 is
supposed to be equal to zero. And from problem (3.9)—(3.13) one can naturally separate
subproblem (3.10), (3.13) for finding the function s.

As was already noted in Sec. 1, the ill-posedness of the linearized stability problem
for shock waves in a viscous gas has been proved in [5]. This ill-posedness is a direct
consequence of the fact that the number of independent parameters determining an
arbitrary perturbation of the shock front is greater than that of boundary conditions
(the linearized generalized Rankine-Hugoniot conditions). The ill-posedness example of
Hadamard type for problem (3.9)—(3.13) constructed in [5] looks as follows:

p 3 p® . P p(O) o
u :Z u(k) en(7t+€kz) , >0 , < 0 > = (08) en(Tt+€oox) , 1-<0,
s Pt s(k) Uco Udo

where p®) | u®) | s® 5O " and 9 are some constants, n = 1,2,3,..., Re? > 0,

Ref, < 0, Refso > 0. The values & (k=1,2,3) and £ are the roots of corresponding
dispersion relations (ahead of and behind the discontinuity) following from (3.9), (3.10),
and (3.11); moreover (see [5]),

A - 7(0) . R 7(0)
f1=-70—2We+0(e?), £z=—\/%—f+0<ez>, =7, bo=1 et O(e?),

e = n"1/? is a small parameter (n > 1), 7 = 70 + 7(Ve 4+ O(e2). So, for finding 11
constants, p®) | u(k) | g(k) | pff(’) , uf,?,) , one has only 9 relations (two of them follow from
the boundary conditions (3.12), (3.13), and the others from Eqgs. (3.9)-(3.11); see [5].
Thus, problem (3.9)—(3.13) is underdetermined; namely, it lacks two boundary conditions
atz =0.

Let us now consider the question of additional boundary conditions for problem (3.9)-
(3.13). We note that the piecewise constant solution (3.1) described above satisfies, in

particular, the conditions

Uy =0, (Uso)z =0 (3.14)
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at z = 0. Starting from this a priori information, we add (3.14) to the boundary
conditions (3.12), (3.13) (observe that conditions (3.14) are already linear). Moreover, as
will be shown below, precisely such additional boundary conditions ensure the asymptotic
stability (by Lyapunov) of the trivial solution to the modified stability problem. This
problem is finally the linear initial boundary value problem (IBVP) for systems (3.9),
(3.11) with the boundary conditions

at z = 0. And, with regard to (3.14), the boundary condition (3.13) being necessary for
finding the function s is naturally simplified.

REMARK 3.1. Recall that a traveling wave solution of the 1-D Navier-Stokes equations
describing the viscous profile (see, e.g., [7], [14], [10]) of a shock wave is a stationary
profile closely approximating (under z — +oo) the piecewise constant solution (3.1).
Such a “spread” (viscous) shock wave does not have an exact width, but on conditional
boundaries of the shock zone (for which one can determine a so-called effective width [14],
[10]), the values of traveling wave and piecewise constant solutions are close to each other.
In this connection, we remark on the remarkable fact that it is the piecewise constant
solution (3.1) that is the unique piecewise smooth solution to the 1-D Navier-Stokes
equations (we consider the case » = 0) satisfying at x = 0 the generalized Rankine-
Hugoniot relations and the additional conditions (3.14). Indeed, the mentioned piecewise
smooth steady solution should satisfy the equalities

PU = Pooliee = C1 (3.16)
du duso
p+Clu—€£ —poo‘}'C]Uoo_Eoo% —CQ, (317)
U2 ’U,2
Cl <60 - 7) + CQ’LL = Cl (6000 — ?) + Czuoo = C3 s (318)

where C 3 3 are some constants, € = (4/3)n + {, €0 = €(pPoo, 500) - By (3.14), it follows
from (3.16) that p'(0) = p,(0) = 0. Then, accounting for such evident equalities as
ey = (e0)pp’ + (€0)pp’, € = €,p" + €pp’, etc., we obtain from (3.17), (3.18) that p’(0) =
o (0) = 0 and »”(0) = uZ (0) = 0. One analogously concludes that p”(0) = /. (0) =0,
p"(0) = pZ,(0) = 0, v"”(0) = w/.(0) = 0, etc. As a result, supposing the functions
p(z), u{z), and p(z) under = > 0 and the functions pe. (), Ueo(x), and poo(z) under
z < 0 to be infinitely smooth, we conclude that all of their derivatives are equal to
zero. Hence, the piecewise smooth solution under consideration is none other than the
piecewise constant solution (3.1) satisfying relations (3.2). And the asymptotic stability
(by Lyapunov) of the trivial solution to the linear IBVP (3.9), (3.11), (3.15) being proved
in this work points indirectly to the following fact. Piecewise smooth unsteady solutions
of the 1-D Navier-Stokes equations satisfying the generalized Rankine-Hugoniot relations
and the additional conditions (3.14) on a propagating discontinuity (free boundary) with
the equation z = f(t) should stabilize (converge under ¢ — o0o) to the piecewise constant
solution (3.1), which satisfies the classical Rankine-Hugoniot relations (3.2) at z = 0.
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4. The Ly-well-posedness of the modified stability problem. At the beginning,
we prove the well-posedness of problem (3.9), (3.11), (3.15). For this purpose we rewrite
systems (3.9) and (3.11) in the matrix form

AU, + BU, = CU,,. (4.1)

where U = (u,p), Uy = (Usc. Poo)

M2 0 1/ M2 O AM?Z 1
A: A = — > N = N
( 0 1)’ > la< 0 1>' B ( 1 1)'

M2 1 rM? 0 T M2 0
B = o0 = oc = oC < .
* ( 1 1 ) » © ( 0 0 ) » C ( 0 0 >

In view of the positive definiteness of the matrix B, , we at once note that (4.2) yields
the following estimate for the vector of perturbations ahead of the shock:

Ioo(t) < I (0), (4.3)

with Io(t) = [ (AU, Ux)dz >0 (Ry = {z|z 2 0}). Indeed, multiplying system
R

(4.2) scalar-wise by the vector 2U, , integrating the obtained equality with respect

to x € R_, and accounting for the boundary conditions (3.15), one gets the energetic

identity
%Ioo(t) + (B U, Usc) g0 + 2rc M2, /(ux)idm =0, (4.4)
R_
which implies, with regard to the remark about the matrix B, , the a priori estimate
(4.3) (when deducing (4.4) we assume that U | — 0 for x — —o0).

Thus, if initial data for the functions u,, and p. are zero, then, in view of (4.3).
Uoo = 0 and pse = 0 for all ¢ > 0. Therefore, as in gas dynamics (see, e.g., [6]. [13], [3].
[10]), without loss of generality one can assume that there are no perturbations ahead
of the shock wave: u, = 0, pos = 0. Moreover, in case of need, with regard to the
positive definiteness of the quadratic form (BooUso, Us)|z=0, one can always include
the estimate for these perturbations into the general a priori estimate containing also
the perturbations « and p behind the shock wave (for this purpose, it is enough to mul-
tiply equality (4.4) by a rather big positive constant and sum it with the corresponding
energetic identity for u and p (see below)).

As a result, instead of problem (3.9), (3.11), (3.15), we will analyze the IBVP for

system (3.9) with the boundary conditions

ut+dp=0, u,=0 (4.5)
at r = 0. And the function s is found as a solution to Eq. (3.10) with the boundary
condition s = —vp at x = 0. The function F = F(t) is determined from the relation

F, = (1 —d+ Nv)p(t,0) (4.6)

following from the boundary condition (3.8).
Let us now deduce an a priori estimate for solutions of the IBVP (3.9), (4.5) (with
corresponding initial data for ¢t = 0). With regard to the boundary conditions (4.5), we
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easily obtain from system (4.1) the following energetic identity (being analogous to (4.4))
for the vector U:

%I(t) + op?(t,0) + 2rM? / uldr =0, (4.7
Ry
where I(t) = [(AU,U)dz >0, 0 = 2d — 1 — M?d?. When deducing (4.7) we assume

Ry
that |U| — 0 for x — +oo. It is easily verified that for a polytropic gas the constant
o > 0. Then, (4.7) yields the inequality dI(t)/dt < 0 from which we deduce the desired
a priori estimate

I(t) < I{(0). (4.8)
In turn, estimate (4.8) is rewritten as the Lo-estimate
2 1 2

OOz, < 31U01,w.,) - (4.9)

The a priori estimate (4.9) implies the Lo-well-posedness (global) of the linear IBVP
(3.9), (4.5) and the stability (by Lyapunov) of its trivial solution (we do not discuss here
the existence of solutions that can be proved, for the linear problem under consideration,
with the help of the a priori estimate (4.9) by standard methods used, for example, in
the theory of linear parabolic equations [9]).

REMARK 4.1. When obtaining estimate (4.9) we supposed the gas to be polytropic. In
the general case of an arbitrary state equation (when the condition & > 0 can be violated),
for deducing a priori estimates one has to use expanded systems for (3.9) (i.e., equations
obtained by differentiating (3.9) with respect to ¢t and z). Here we only note that for
problem (3.9), (4.5) one cannot construct ill-posedness examples of Hadamard type.
Indeed, the dispersion relation for system (3.9) has the roots {Al and ég described above
(see Sec. 3). Then the constants p{) | u(1) | p(®)  and u? determining the exponential
solution

p= {p(l)enélx +p(2)enégz} en'f‘t , u= {u(l)enélx 4+ u(?)enégz} en%t

should satisfy an algebraic system of four equations following from the boundary condi-
tions (4.5) and the first equation in (3.9). This algebraic system has a nontrivial solution
if (€ — &) (M2(7 + &)(7 + &) — d€1€2) = 0. By expanding 7 and £, 5 into series in the
small parameter €, one can see that the last equality being considered as an equation for
7 has the unique solution 7 = 0 (consequently, él = 0 and ég = 0). That is, problem
(3.9), (4.5) has no exponential solutions bounded for t = 0.

5. The asymptotic stability of the trivial solution. To prove the asymptotic
stability of the trivial solution to problem (3.9), (4.5), we take advantage of the following
simple arguments. It is convenient to demonstrate the idea of these arguments on the
example of the boundary value problem for the heat equation v; = v, on the half-line
x > 0 with the boundary condition v|,—¢ = 0 (or vy|z—¢ = 0).

Let there exist a solution to this boundary value problem in the class of sufficiently
smooth functions decreasing on the infinity: v — 0 for £ — 400 (the same assumption
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has been already done and will be below valid for the functions « and p). Then one easily
gets the identity

(jt ()+2/vid:z::0, (5.1)

Ry

with j(t) = ||v(t )”LQ(IR which yields 7’(¢) < 0 and the a priori estimate
j(tg) < j(tl) for t; <ty. (52)

But, actually, without loss of generality, the function j(t) can be supposed to be strictly

decreasing. Indeed, assuming the contrary, i.e., that there exists a point ¢t = ¢, in which

7'(t«) = 0 (we consider the first such a point), it follows from (5.1) that [ vgdmltzt =0.
B .

Then v(t.,z) = 0 (observe that a constant (nonzero) solution does not bglong to the class
of smooth solutions under consideration). That is, in view of (5.2), v =0 for all ¢t > ¢, .
Thus, the function j(t) decreases up to t = ¢, and is equal to zero for t > ¢t,. This means
the asymptotic stability of the trivial solution to the boundary value problem.

So, the positive function j(t) is monotone decreasing. But, as follows from (5.1), in the
class of functions under consideration it cannot have other horizontal asymptotes except
j = 0; i.e., one has asymptotic stability: j(t) — 0 under ¢ — oo. Observe that in the
context of the present work we are not interested in an exact estimation of the character
of decrease (stabilization) of solutions under ¢ — oo. The fact of asymptotic stability of
the trivial solution itself is of importance to us. For example, it is clear that the solution
of the boundary value problem considered above decreases as t~1/2 that follows from its
explicit formula.

Let us now utilize analogous arguments for problem (3.9}, (4.5). For this purpose,
one has to extend system (4.1); i.e., differentiating it with respect to t and z, we finally
obtain:

%11( t) + op?(t,0) + 2rM? /ufxdx =0, (5.3)
Ry
d 2 2 2
Elz(t) —p;(t,0)+2rM* | ui, dr =0, (5.4)
Ry
with I1(t) = j (AU, Uy)dz, Ir(t) = [ (AU,,U,)dz. Multiplying (5.3), let us say, by
Ry
2/0 and summlng with (4.7) and (5.4), one gets
2
a—tJ(t) + op?(t,0) + p?(t,0) + 2rM? / <u§ + Zul + ufm> dz =0, (5.5)
o

Ry

with J(¢) = I(t) + (2/0)11(t) + I(t). It follows from (5.5) that J'(t) < 0; i.e., the
function J(¢) does not increase.

And, moreover, the function J(¢) is actually monotone decreasing from where we
have the desired asymptotic stability of the trivial solution: J(¢) — 0 under t — 0.
Indeed, supposing that there exists a point ¢ = ¢, in which J'(¢t,) = 0, from (5.5) we

deduce, in particular, that the integrals [ uzdac|
Ry

t=t,’

Rfu dm’t ..+ and fu dxlt .
"
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are equal to zero. Then u(t.,z) = us(ts, ) = uz(t.,z) = 0 and, by virtue of system
(3.9), pz(te,z) = pe(ts,xz) = 0 and p(t.,z) = 0. Thus, the inequality J(t) < J(t.) =0
for t > t, yields J(t) = 0 for all ¢+ > t.. As a result, by using arguments as above for
the heat equation, one gets: ||U(t)||€[,21(m+) — 0 under t — oo; i.e., the trivial solution to
problem (3.9), (4.5) is asymptotically stable (by Lyapunov).

Let us make one more important observation.

REMARK 5.1. By virtue of the evident estimate |¢(t,0)| < [[¢(t)|lwp (=, for the trace
of a function in W} (R, ) at the line z = 0, we obtain that not only W} (R )-norms of
the perturbations u and p but also their boundary values u(t,0) and p(t,0) converge to
zero under ¢ — oo. Then, it follows from relation (4.6) that the shock speed F; — 0
under ¢t — .

6. The general case of heat-conducting gas. Let us briefly discuss the general
case of heat-conducting gas, i.e., when in problem (3.4)-(3.8) 3 # 0 and 7 # 0. The
ill-posedness example of Hadamard type for this case has the following form [5]:

P 3 p(k) )

u = Z uk) en(ft+éx) , >0,

s k=1 5(k)
Poo 2 pgjo) R
Uso | = Z ug,) iittéeos) o F = F0ent
Sco j=t Sg]o)

where ék (Reék < 0, k = 1,2,3) and fjoo (Reéjoo > 0, 7 = 1,2) are the roots of
corresponding dispersion relations behind and ahead of the discontinuity; moreover,

. . +(0) R +(0)
b=t 0?), b=\ et O, &=\ —et+0(),
8+ Né r
. #(0) . 7(0)
£1w = AT—AE+O(€2), 5200 = T_E-FO(EZ).

For finding 16 constants, p(®, (¥ (k) pg)), ug,), sg)), F©) (k =1,2,3, 7 = 1,2),
one has an algebraic system of 13 equations (three of them follow from the boundary
conditions (3.6)—(3.8), and the others from systems (3.4) and (3.5)). That is, the cause of
ill-posedness of the linearized stability problem (3.4)—(3.8) is that it lacks three boundary
conditions at £ = 0.

As for problem (3.9)—(3.13), additional boundary conditions for problem (3.4)—(3.8)
are posed with regard to a priori information about the steady flow regime with a shock
wave. In the capacity of these conditions we take relations (3.14) and also the equality

(Too)ac =0 (61)

at © = 0 that is satisfied by the piecewise constant solution (3.1), where T is a small
perturbation of the temperature ahead of the discontinuity. Observe that the boundary
condition (6.1) is equivalent to the relation é&wo(Poo)z+ Bw(soo)z =0at z =0. Moreover,
if in problem (3.4), (3.6)—(3.8) we suppose Uo, = 0, poo = 0, and se = 0 (below it will
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be shown that, as for problem (3.9}, (3.11), {3.15), such a supposition does not restrict
generality), then it is easy to see that this problem needs exactly one additional boundary
condition in which capacity we take the relation u, =0 at x =0.

Systems (3.4) and (3.5) can be presented in the matrix form (4.1), (4.2) for the vectors
of perturbations U = (u,p,s) and Uy = (Usc, P, Soc) With the matrices

M2 0 0 M2 1 0 rA? 0 0
) o e
4 0 AOA . B= 1 1 AOA o= 0 Naé i\f i
N N ~
o o M o o MO o~ X5
& & &
(the matrices A,, Bs, and C. have an analogous form). Note that

(Coo(Uso)zs (Uso)z) > Toc M2 (us)2. Then, with regard to the boundary conditions
(3.14), (6.1), and accounting for the positive definiteness of the matrix By , for the per-
turbation vector Uy, ahead of the discontinuity, one gets an a priori estimate analogous
to estimate (4.3). Hence, without loss of generality we can suppose that Uy, = 0.

As a result, we have the IBVP for system (3.4) with the boundary conditions
u+dp+dgF =0, s+vp+1pF =0, u,=0, (6.2)

where F = ap, + Bsw . To obtain an a priori estimate for solutions of this problem we

use the inequality
d .
a](t) + Alp=o + 27‘]\[2/ uidr <0, (6.3)
: g
that is easily deduced from system (3.4) (being written in the matrix form (4.1)), with
regard to the boundary conditions (6.2) and the inequality (CU,, Ug) > rM?u2. Here

I(t) = [ (AU,U)dz > 0; A is the quadratic form that looks as follows:
Ry
A= {2(1 11— M2d- (Na/a)zﬂ} p? 4 {—(N;&/d)yo(z + ) — M?do} F?

+2 {do(l ~ M) — (NB/a)w(v + 1) + N} pF.

The quadratic form A is not always positive definite, but one can show that for the
air (this case is most interesting for applications), i.c., for a polytropic gas with v = 7/5,
the inequality A > 0 is certainly valid for Mach numbers of the coming flow M, > 4/3.
Then, with regard to the condition A > 0, from the inequality (6.3) we easily deduce
an Lo-estimate that is like a priori estimate (4.9). In this connection, we note that
for problem (3.4), (6.2) an observation analogous to Remark 4.1 for problem (3.9), (4.5)
takes place; i.c., one can show that problem (3.4), (6.2) does not tolerate the construction
of Hadamard-type ill-posedness examples (the situation is like that described in Remark
4.1), and in the case of violation of the condition A4 > 0, for obtaining an a priori estimate
one has to use expanded systems for (3.4).

Concerning the asymptotic stability of the trivial solution to problem (3.4}, (6.2), it is
established in just the same way as for problem (3.9), (4.5) (see Sec. 5). For this purpose
one should use the inequality (6.3) (under the condition A > 0) and corresponding
inequalities obtained by differentiating system (3.4) with respect to ¢ and z.
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7. Concluding remarks. So, the authors of the paper try to justify application
of the stabilization method for steady-state calculations in viscous gas with the shock
front as yet on the linear level. Clearly, in calculation practice, separation of the shock
front instead of determination of viscous profile has certain advantages while organizing
the calculation process. In the paper, a positive answer to the fundamental question
was obtained: controlling the boundary conditions, whether is it possible to use the
stabilization method for steady-state calculations in gas with shock fronts.

For setting additional boundary conditions for the multidimensional shock front prob-
lem for a viscous gas, one can apparently use ideas being analogous to those described
in this paper. But, of course the well-posedness of the modified problem will not be
established in such a simple way as for the 1-D case considered above. To prove well-
posedness the authors are planning to utilize, in particular, elements of the dissipative
integrals techniques worked out in [1], [2], [3], [4] for studying the stability of gas dy-
namical shock waves. Observe that the consideration of the multidimensional case is
necessary to come naturally, for example, to investigating blunt body problems for a
viscous heat-conducting gas.

At the same time, it should be noted that the considered 1-D case is of independent
interest. In this connection, we refer, e.g., to the work [8] (see also references therein)
devoted to the numerical simulation of the 1-D viscous air flow with a shock wave.

This work was partially supported by Russian Foundation for Basic Research (01-01-
00781 and 02-01-00641), by INTAS, project ” Conservation laws of mechanics of continua:
waves and fronts”, 868.
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