ON A MULTICLASS BATCH ARRIVAL RETRIAL QUEUE

G. I. FALIN,* Moscow State University

Abstract

Kulkarni (1986) derived expressions for the expected waiting times for customers of two types who arrive in batches at a single-channel repeated orders queueing system. We propose another method of solving this problem and extend Kulkarni's result to the case of $N \geqq 2$ classes of customers.

RETRIALS; BATCH ARRIVALS

In the context of local area computer networks, Kulkarni (1986) considered the following queueing system. There is a single channel, and arriving customers belong to n different types. The arrival times of demands of the i th type (i-demands) form a Poisson process with rate λ_{i}; at every arrival epoch with certain probability $c_{i k}$ exactly $k i$-demands arrive. These demands we call primary calls. If an arriving batch of i-customers finds the channel free, one of the batch members immediately occupies the channel and the rest of the customers in that batch form the sources of repeated i-calls (i-sources). Every such source produces a Poisson process of repeated calls with intensity $\mu_{i}>0$. If an incoming repeated call finds a free line it is served and leaves the system after service. Otherwise, if the channel is engaged, the system state does not change. Service times, for primary and for repeated i-calls, have the same distribution function $B_{i}(x)$. As usual we suppose that interarrival period, batch sizes, retrial times and service times are mutually independent.
Let $b_{i}(x)=B_{i}^{\prime}(x) /\left(1-B_{i}(x)\right)$ be the instantaneous service intensity of i-calls, $\beta_{i}(S)=$ $\int_{0}^{\infty} \exp (-s x) d B_{i}(x)$ be the Laplace-Stieltjes transform of the service time distribution function $B_{i}(x), \quad \beta_{i k}=(-1)^{k} \beta_{i}^{(k)}(0)$ be the k th initial moment of the i-calls service time, $c_{i}(z)=\sum_{k=1}^{\infty} c_{i k} z^{k}, \bar{c}_{i}, \sigma_{i}^{2}$ be respectively the generating function, the mean and the variance of batch size of i-calls, $\lambda=\lambda_{1}+\cdots+\lambda_{n}, \rho_{i}=\lambda_{i} \bar{c}_{i} \beta_{i 1}$ be the system load due to primary i-calls.

$$
\beta(s)=\int_{0}^{\infty} \exp (-s x) d B(x), \quad \beta_{k}(-1)^{k} \beta^{(k)}(0), \quad \rho=\sum_{i=1}^{n} \rho_{i} .
$$

Let $c(t)=0$ if at time t the channel is free; $c(t)=i$ if at time t the channel is occupied by some i-call; $N_{i}(t)$ is the number of i-sources at time t. If $c(t) \neq 0$ then $\xi(t)$ is the time during which the channel has been serving the call which occupies the channel at time t.
We shall consider the system in steady state, which exists if and only if $\rho<1$, so the condition $\rho<1$ is assumed to hold from now on. Our goal consists of finding mean queue lengths $\quad N_{i}=E N_{i}(t), \quad 1 \leqq i \leqq n$ as well as the variance-covariance matrix of the $\left(N_{1}(t), \ldots, N_{n}(t)\right)$. Kulkarni (1986) proposed a method of solving the problem and in the case of two types of customers obtained formulas for N_{1}, N_{2}. In this note we describe another approach to the problem and obtain a solution in the general case.

Theorem 1. The expected number of retrial customers of type i in steady state is

$$
N_{i}=\frac{\lambda_{i}\left(\rho+\bar{c}_{i}-1\right)}{\mu_{i}(1-\rho)}+\frac{\lambda_{i} \bar{c}_{i}}{2} x_{i},
$$

[^0]where the values x_{i} can be found as the solution of the system of linear equations
$$
\sum_{j=1}^{n} \frac{\mu_{j} \rho_{j}}{\mu_{i}+\mu_{j}}\left(x_{i}+x_{j}\right)=x_{i}-\sum_{j=1}^{n} \lambda_{j} \bar{c}_{j} \beta_{j 2}-\frac{\beta_{i 1}}{\bar{c}_{i}}\left(\sigma_{i}^{2}+\bar{c}_{i}^{2}-\bar{c}_{i}\right)
$$

Proof. Let $m=\left(m_{1}, \cdots, m_{n}\right), \quad z=\left(z_{1}, \cdots, z_{n}\right), \quad e_{i}=(0, \cdots, 1, \cdots, 0)$ be the n dimensional vector with i th coordinate equal to 1 and the rest equal to 0 , and $e=(1, \cdots, 1)$ be the n-dimensional vector which has all coordinates equal to 1 .

Consider the system in steady state and write:

$$
\begin{aligned}
p_{0}(m)=P\left\{c(t)=0, N_{1}(t)\right. & \left.=m_{1}, \cdots, N_{n}(t)=m_{n}\right\} \\
p_{i}(m, x) d x=P\left\{c(t)=i, x<\xi(t)<x+d x, N_{1}(t)\right. & \left.=m_{1}, \cdots, N_{n}(t)=m_{n}\right\}, \quad i=1, \cdots, n .
\end{aligned}
$$

In a general way we obtain the equations of statistical equilibrium:

$$
\begin{aligned}
\left(\lambda+\sum_{i=1}^{n} \mu_{i} m_{i}\right) p_{0}(m)= & \sum_{i=1}^{n} \int_{0}^{\infty} p_{i}(m, x) b_{i}(x) d x \\
\frac{d}{d x} p_{j}(m, x)= & -\left[\lambda+b_{j}(x)\right] p_{j}(x) \\
& +\sum_{i=1}^{n} \lambda_{i} \sum_{k=1}^{m_{i}} c_{i k} p_{j}\left(m-k e_{i}, x\right) \\
p_{j}(m, 0)= & \lambda_{j} \sum_{k=1}^{m_{j}+1} c_{j k} p_{0}\left(m-(k-1) e_{j}\right) \\
& +\mu_{j}\left(m_{j}+1\right) p_{0}\left(m+e_{j}\right)
\end{aligned}
$$

For the generating functions

$$
\begin{aligned}
\varphi_{0}(z) & =\sum_{m_{1}=0}^{\infty} \cdots \sum_{m_{n}=0}^{\infty} z_{1}^{m_{1}} \cdots z_{n}^{m_{n}} p_{0}(m) \\
\varphi_{i}(z, x) & =\sum_{m_{1}=0}^{\infty} \cdots \sum_{m_{n}=0}^{\infty} z_{1}^{m_{1}} \cdots z_{n}^{m_{n}} p_{i}(m, x)
\end{aligned}
$$

these equations give

$$
\begin{gather*}
\lambda \varphi_{0}(z)+\sum_{i=1}^{n} \mu_{i} z_{i} \frac{\partial \varphi_{0}(z)}{\partial z_{i}}=\sum_{i=1}^{n} \int_{0}^{\infty} \varphi_{i}(z, x) b_{i}(x) d x \tag{1}\\
\frac{\partial}{\partial x} \varphi_{j}(z, x)=-\left(\sum_{i=1}^{n} \lambda_{i}\left(1-c_{i}\left(z_{i}\right)\right)+b_{j}(x)\right) \varphi_{j}(z, x) \tag{2}\\
\varphi_{j}(z, 0)=\lambda_{j} \frac{c_{j}\left(z_{j}\right)}{z_{j}} \varphi_{0}(z)+\mu_{j} \frac{\partial \varphi_{0}(z)}{\partial z_{j}} \tag{3}
\end{gather*}
$$

From (2) we find that $\varphi_{j}(z, x)$ depends upon x as follows:

$$
\begin{equation*}
\varphi_{j}(z, x)=\varphi_{j}(z, 0)\left[1-B_{j}(x)\right] \exp (-s x) \tag{4}
\end{equation*}
$$

where we have denoted $\sum_{i=1}^{n} \lambda_{i}\left(1-c_{i}\left(z_{i}\right)\right)$ by s.
From (4) it follows that

$$
\begin{equation*}
\varphi_{j}(z)=\int_{0}^{\infty} \varphi_{j}(z, x) d x=\varphi_{j}(z, 0) \frac{1-\beta_{j}(s)}{s} . \tag{5}
\end{equation*}
$$

Now with the help of (4) and (5), Equations (1) and (3) can be rewritten as follows:

$$
\begin{align*}
& \lambda \varphi_{0}(z)+\sum_{i=1}^{n} \mu_{i} z_{i} \frac{\partial \varphi_{0}(z)}{\partial z_{i}}=\sum_{i=1}^{n} \frac{s \beta_{i}(s)}{1-\beta_{i}(s)} \varphi_{i}(z) \tag{6}\\
& \lambda_{j} \frac{c_{j}\left(z_{j}\right)}{z_{j}} \varphi_{0}(z)+\mu_{j} \frac{\partial \varphi_{0}(z)}{\partial z_{j}}=\frac{s}{1-\beta_{j}(s)} \varphi_{j}(z) .
\end{align*}
$$

In order to find the distribution of the channel state we multiply (7) by z_{j}, then sum over $j=1, \cdots, n$ and subtract from (6); after some transformations we get

$$
\begin{equation*}
\varphi_{0}(z)=\sum_{i=1}^{n} \varphi_{i}(z) \frac{\beta_{i}(s)-z_{i}}{1-\beta_{i}(s)} . \tag{8}
\end{equation*}
$$

Fixing some j and putting $z_{i}=1$ for all $i \neq j$,

$$
\varphi_{0}(z)+\sum_{i=1}^{n} \varphi_{i}(z)=\frac{1-z_{j}}{1-\beta_{j}\left(\lambda_{j}-\lambda_{j} c_{j}\left(z_{j}\right)\right)} \varphi_{j}(z) .
$$

Setting $z_{j}=1$ and taking into account the normalization condition $\sum_{i=0}^{n} \varphi_{i}(e)=1$ we get

$$
\varphi_{j}(e)=\rho_{j}
$$

$$
\begin{equation*}
\varphi_{0}(e)=1-\sum_{j=1}^{n} \varphi_{j}(e)=1-\rho . \tag{9}
\end{equation*}
$$

Also, with $z=e$ (7) and (9) yield

$$
\begin{equation*}
\frac{\partial \varphi_{0}(e)}{\partial z_{j}}=\frac{\lambda_{j}\left(\rho-1+\bar{c}_{j}\right)}{\mu_{j}} . \tag{10}
\end{equation*}
$$

Summing up (7) over $j=1, \cdots, n$ and subtracting from (6) we have

$$
\begin{equation*}
\sum_{i=1}^{n} \lambda_{i}\left[c_{i}\left(z_{i}\right)-\frac{c_{i}\left(z_{i}\right)}{z_{i}}\right] \varphi_{0}(z)+\sum_{i=1}^{n} \mu_{i}\left(z_{i}-1\right) \frac{\partial \varphi_{0}(z)}{\partial z_{i}}=\sum_{i=1}^{n} \lambda_{i}\left(c_{i}\left(z_{i}\right)-1\right) N(z) \tag{11}
\end{equation*}
$$

where $N(z)=\sum_{i=0}^{n} \varphi_{i}(z)$.
Differentiating (11) with respect to $z_{i} z_{j}$ at the point $z=e$ we obtain, after some algebra,

$$
\begin{align*}
\left(\mu_{i}+\mu_{j}\right) \frac{\partial^{2} \varphi_{0}(e)}{\partial z_{i} \partial z_{j}}= & \lambda_{i} \bar{c}_{i} N_{j}+\lambda_{j} \bar{c}_{j} N_{i}-\lambda_{i} \lambda_{j}\left(\frac{\rho-1+\bar{c}_{j}}{\mu_{j}}+\frac{\rho-1+\bar{c}_{i}}{\mu_{i}}\right) \tag{12}\\
& +\delta_{i, j} \lambda_{i}\left[\sigma_{i}^{2}+\bar{c}_{i}^{2}-2\left(\bar{c}_{i}-1\right)(1-\rho)-\bar{c}_{i}\right] .
\end{align*}
$$

Now differentiate (7) with respect to z_{i} at the point $z=e$:

$$
\begin{align*}
\frac{1}{\beta_{j 1}} \frac{\partial \varphi_{j}(e)}{\partial z_{i}}= & \mu_{j} \frac{\partial^{2} \varphi_{0}(e)}{\partial z_{i} \partial z_{j}}+\frac{\lambda_{j} \lambda_{i}\left(\rho-1+\bar{c}_{i}\right)}{\mu_{i}}+\lambda_{i} \lambda_{j} \bar{c}_{i} \bar{c}_{j} \frac{\beta_{j 2}}{2 \beta_{j 1}} \tag{13}\\
& +\delta_{i, j} \lambda_{j}\left[c_{j}-1\right)(1-\rho) .
\end{align*}
$$

Then multiply (13) by $\beta_{j 1}$ and sum up over $j=1, \cdots, n$:

$$
\begin{aligned}
\sum_{j=1}^{n} \mu_{j} \beta_{j 1} \frac{\partial^{2} \varphi_{0}(\dot{e})}{\partial z_{i} \partial z_{j}}= & N_{i}-\frac{\lambda_{i}\left(\rho-1+\bar{c}_{i}\right)}{\mu_{i}}\left(1+\lambda \beta_{1}\right)-\frac{\lambda_{i} \bar{c}_{i}}{2} \sum_{j=1}^{n} \lambda_{j} \bar{c}_{j} \beta_{j 2} \\
& -\lambda_{i} \beta_{i 1}\left(c_{i}-1\right)(1-\rho)
\end{aligned}
$$

Using (12) we obtain from this equality:

$$
\begin{align*}
\sum_{j=1}^{n} \frac{\mu_{j} \beta_{j 1}}{\mu_{i}+\mu_{j}}\left(\lambda_{i} \bar{c}_{i} N_{j}+\lambda_{j} \bar{c}_{j} N_{i}\right)= & N_{i}-\frac{\lambda_{i} \bar{c}_{i}}{2} \sum_{j=1}^{n} \lambda_{j} \bar{c}_{j} \beta_{j 2} \\
& -\frac{\lambda_{i} \beta_{i 1}}{2}\left(\sigma_{i}^{2}+\bar{c}_{i}^{2}-\bar{c}_{i}\right)-\frac{\lambda_{i}}{\mu_{i}}\left(\rho-1+\bar{c}_{i}+\lambda \beta_{1} \bar{c}_{i}\right) \tag{14}\\
& +\sum_{j=1}^{n} \mu_{j} \beta_{j 1} \frac{\lambda_{i} \lambda_{j}}{\mu_{i}+\mu_{j}}\left(\frac{\bar{c}_{j}}{\mu_{j}}+\frac{\bar{c}_{i}}{\mu_{i}}\right) .
\end{align*}
$$

Introducing the new variables x_{i} by the formula

$$
N_{i}=\frac{\lambda_{i}\left(\rho+\bar{c}_{i}-1\right)}{\mu_{i}(1-\rho)}+\frac{\lambda_{i} \bar{c}_{i}}{2} x_{i}
$$

completes the proof.
For every concrete n it is easy to obtain the solution in explicit form. For example, if $n=2$ then we have the system of two linear equations with two unknown variables and so after some algebra we get the main results of Kulkarni (1986):

$$
\begin{aligned}
N_{1}= & \frac{\lambda_{1}\left(\rho+\bar{c}_{1}-1\right)}{\mu_{1}(1-\rho)} \\
& +\frac{\lambda_{1} \bar{c}_{1}}{2} \frac{\left[\mu_{2}+(1-\rho) \mu_{1}\right] A+\left[(1-\rho) \mu_{1}+\left(1-\rho_{2}\right) \mu_{2}\right] B_{1}+\mu_{2} \rho_{2} B_{2}}{(1-\rho)\left[\left(1-\rho_{1}\right) \mu_{1}+\left(1-\rho_{2}\right) \mu_{2}\right]}, \\
N_{2}= & \frac{\lambda_{2}\left(\rho+\bar{c}_{2}-1\right)}{\mu_{2}(1-\rho)} \\
& +\frac{\lambda_{2} \bar{c}_{2}}{2} \frac{\left[\mu_{1}+(1-\rho) \mu_{2}\right] A+\left[(1-\rho) \mu_{2}+\left(1-\rho_{1}\right) \mu_{1}\right] B_{2}+\mu_{1} \rho_{1} B_{1}}{(1-\rho)\left[\left(1-\rho_{1}\right) \mu_{1}+\left(1-\rho_{2}\right) \mu_{2}\right]}
\end{aligned}
$$

where

$$
A=\sum_{j=1}^{n} \lambda_{j} \bar{c}_{j} \beta_{j 2}, \quad B_{i}=\frac{\beta_{i 1}}{\bar{c}_{i}}\left(\sigma_{i}^{2}+\bar{c}_{i}^{2}-\bar{c}_{i}\right)
$$

It is, of course, generally convenient to use a computer to carry out the calculations.
Our method allows us to obtain second moments of queue lengths

$$
N_{i j}=\frac{\partial N(e)}{\partial z_{i} \partial z_{j}}=E N_{i}(t) N_{j}(t)-\delta_{i, j} . E N_{i}(t)
$$

For lack of space we consider only the case $c_{i}(z) \equiv z, i=1, \cdots, n$, i.e. singleton arrivals.
Theorem 2. The second moments of queue lengths in the steady state are

$$
N_{i j}=\lambda_{i} \lambda_{j} x_{i j}+\frac{\lambda_{i} \lambda_{i}}{2} \frac{x_{i}+x_{j}}{\mu_{i}+\mu_{j}}+\frac{\lambda_{i} \lambda_{j}}{\mu_{i} \mu_{j}} \frac{\rho^{2}}{(1-\rho)^{2}},
$$

where the values x_{i} were defined in Theorem 1 and the values $x_{i j}$ can be found as the solution
of the system of linear equations:

$$
\begin{aligned}
\sum_{k=1}^{n} \mu_{k} \rho_{k} \frac{x_{i j}+x_{i k}+x_{k j}}{\mu_{i}+\mu_{j}+\mu_{k}}= & x_{i j}-\frac{\rho}{2} \frac{x_{i}+x_{j}}{\mu_{i}+\mu_{j}}-\frac{\lambda \beta_{3}}{3} \\
& -\frac{\lambda \beta_{2}}{2} \cdot \frac{\rho}{1-\rho} \cdot \frac{\mu_{i}+\mu_{j}}{\mu_{i} \cdot \mu_{j}} \\
& -\frac{1}{4} \sum_{k=1}^{n} \lambda_{k} \mu_{k} \beta_{k 2}\left(\frac{x_{i}+x_{k}}{\mu_{i}+\mu_{k}}+\frac{x_{j}+x_{k}}{\mu_{j}+\mu_{k}}\right) .
\end{aligned}
$$

The proof is along the lines of Theorem 1, but now we have to differentiate (11) with respect to $z_{i} z_{j} z_{k}$ (instead of differentiating it with respect to $z_{i} z_{j}$ as we did earlier in obtaining (12)) and differentiate (7) with respect to $z_{i} z_{k}$ (instead of differentiating it with respect to z_{i} as we did earlier in obtaining (14)).

References

Kulkarni, V. G. (1986) Expected waiting times in a multiclass batch arrival retrial queue. J. Appl. Prob. 23, 144-154.

[^0]: Received 22 April 1987; revision received 23 November 1987.

 * Postal address: Department of Probability, Mechanics and Mathematics Faculty, Moscow State University, Moscow, 119899, USSR.

