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Abstract

The contraction method for recursive algorithms is extended to the multivariate analysis of
vectors of parameters of recursive structures and algorithms. We prove a general multivariate limit
law which also leads to an approach to asymptotic covariances and correlations of the parameters.
As an application the asymptotic correlations and a bivariate limit law for the number of key
comparisons and exchanges of median-of-(2t+ 1) Quicksort is given. Moreover, for the Quicksort
programs analyzed by Sedgewick the exact order of the standard deviation and a limit law follow,
considering all the parameters counted by Sedgewick.
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1 Introduction

Over the last ten years limit laws for some parameters of random recursive structures and algorithms,
which seemed to resist classical probabilistic techniques, could be derived by the contraction method.
This method was introduced by Rösler [43] for the derivation of the limit law of the number of key
comparisons needed by Hoare’s Quicksort algorithm to sort a list of randomly permuted items.
The contraction method was further developed in Rösler [44] and independently in Rachev and
Rüschendorf [40]. A guide for the use of this technique and an overview over the applications up to
1998 is given in the survey article of Rösler and Rüschendorf [46].

In general, the distribution of a parameter of a recursive structure or algorithm satisfies some
recurrence equation on the level of distributions caused by the recursive nature of the structure. In
order to derive a limit law for the parameter by the contraction method one proceeds in several steps:
First, the right normalization of the parameter has to be found. This is usually done by studying its
mean and variance. The original recurrence equation of the parameter induces a modified recursive
equation for the normalized quantities, again on the level of distributions. From this a limiting form
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has to be determined which gives rise to a transformation on the set of all probability distributions
on the real line. Then one chooses a probability metric such that the transformation has contraction
properties in this metric. The metric has to be complete on a subspace where the limit distribution
is sought. Then Banach’s fixed-point theorem yields a unique fixed-point which is the candidate for
the limiting distribution. The last step of the method is to establish weak convergence of the scaled
parameter to this fixed-point.

In this work we extend this method to the multivariate analysis of vectors of parameters of
recursive structures and algorithms and formulate a general theorem in a form to be easily applied.
For algorithms usually time and space requirements are of interest, where both quantities may result
form various parameters of the algorithm. An accurate asymptotic stochastic description would be a
multivariate limit law jointly for all these quantities. For random search trees many parameters such
as the depth of insertion of a node, the height, and the internal path length were investigated for its
own. It is natural to study these quantities jointly to gain information on the dependence structure
beyond the pure marginal distributions of the parameters. For examples of multivariate limit laws
in the field of combinatorial structures using various approaches see [1, 29, 18, 30, 31, 26].

This paper is organized as follows: In section two we outline the type of divide-and-conquer
structures for which the contraction method is extended to multivariate asymptotic analysis. In the
third section contraction properties of transformations from the space of probability distributions to
itself are investigated which appear as the limiting operators of the recurrences under consideration.
In the fourth section we derive multivariate limit laws for a general recurrence extending a general
limit law for one-dimensional stochastic divide-and-conquer algorithms due to Rösler [45]. In contrast
to the one-dimensional case it is not clear if the contraction condition for the limiting operator is
also sufficient to imply weak convergence of the scaled parameters. Therefore, we have to strengthen
the contraction condition in order to get a limit law. This is done in different ways and each of our
conditions is tested in the applications. It remains open whether the contraction condition for the
ideal limiting operator is in general sufficient to imply a limit law or not. This is briefly summarized
in section 7.

Section 5 gives the main applications to the analysis of median-of-(2t+1) Quicksort. We consider
the vector of the number of key comparisons and key exchanges made by the algorithm. These are
the most important parameters of Quicksort since they are of larger order of magnitude than other
parameters. The multivariate contraction approach can be applied and results in a bivariate limit
law for the joint distribution of these parameters. This leads also to the asymptotic correlation
and a first order asymptotic of the covariance of these parameters. As corollaries limit laws and
variances of linear combinations of these parameters are obtained. This would also be in the range
of a univariate approach but results here without any work. The analysis covers as well the more
complex situation of Sedgewick’s [50] cost measure for concrete Quicksort implementations. Here
the cost of the algorithm is measured as a linear combination of several parameters of the algorithm.
Asymptotically only the number of key comparisons and exchanges matter. Therefore we obtain the
exact order of the standard deviation of these Quicksort programs as well as a limit law.

In section 6 a family of recurrences is considered in order to test the applicability of the general
method and to provide an example, where improvements of the strengthened contraction condition
may easily be tested.

The rest of this section is devoted to technical and notational preliminaries. For a random variable
X and a probability distribution µ we write X ∼ µ if the law L(X) of X is µ, similarly X ∼ Y for
random variables with L(X) = L(Y ). The law of X is also denoted by PX . We will use three different
norms. For a vector x ∈ Rd by ‖x‖ the Euclidean norm of x is denoted, ‖X‖2 := (E ‖X‖2)1/2 denotes
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the L2-norm of a random vector X, and ‖A‖op := sup‖x‖=1 ‖Ax‖ denotes the spectral radius of a
square matrix A. By At the transposed of A is denoted. The Wasserstein-metric `2 is defined on the
space of d-dimensional probability distributions with existing second moments by

`2(µ, ν) := inf {‖X − Y ‖2 : X ∼ µ, Y ∼ ν} .

ByMd
0,2 the space of the centered probability measures on Rd with finite second moment is denoted.

The metric space (Md
0,2, `2) is complete and convergence in `2 is equivalent to weak convergence

plus convergence of the second moments. Random vectors with X ∼ µ, Y ∼ ν, and `2(µ, ν) =
‖X − Y ‖2 are called optimal couplings of (µ, ν). Such optimal couplings exist for all µ, ν with
finite second moments. For information on the `2 metric see [2, 7, 32, 39, 41]. We will also use
the notation `2(X,Y ) := `2(L(X),L(Y )). For random variables X, Y with finite second moments
we write Cov(X,Y ) := E [(X − EX)(Y − EY )] for the covariance of X, Y and Cor(X,Y ) :=
Cov(X,Y )/(Var(X)1/2Var(Y )1/2) for their correlation. By the symbol D= equality in distribution
is denoted even if a random vector and a distribution or two random vectors are compared. The
uniform distributions on the unit interval [0, 1] and the unit cube [0, 1]d are denoted by unif[0, 1]
and unif[0, 1]d respectively, B(n, p) denotes the binomial distribution with parameters n ∈ N0 and
p ∈ [0, 1], M(n, p1, . . . , pd) the corresponding multinomial distribution, and beta(a, b) stands for the
beta distribution with parameters a, b > 0.

2 Stochastic divide-and-conquer recurrences

Now, we outline the setting of divide-and-conquer algorithms which are under consideration here. We
assume that an algorithm or data structure of (input) size n ∈ N is given, where the randomness might
come from the input or from the algorithm itself. We consider d ≥ 1 parameters Yn = (Yn1, . . . , Ynd)
which are random variables depending on the input size n. By the recursive nature of the algorithm or
structure these parameters can be expressed by the corresponding parameters of the subproblems or
substructures into which the original problem or structure is subdivided. We assume that the problem
or structure is always subdivided into K ≥ 1 subproblems of sizes I(n) = (I(n)

1 , . . . , I
(n)
K ) if the size of

the input is n. Here K is a fixed number but I(n) is a random vector. Furthermore, we assume that
given the cardinalities I(n) of the subproblems or substructures the vectors of the parameters of these
are mutually independent and that the distribution of (Yn1, . . . , Ynd) can be obtained as a random
linear combination of all the corresponding Y

I
(n)
r k

for r = 1, . . . ,K, k = 1, . . . , d plus a random toll
vector bn. The toll vector measures the cost for subdividing and merging or corresponding effects.
More precisely, we assume that the sequence (Yn)n∈N0 satisfies the distributional recursion

Yn
D=

K∑
r=1

ArY
(r)

I
(n)
r

+ bn, n ≥ n0, (1)

for some n0 ≥ 1. Here, the sequences (Y (1)
n ), . . . , (Y (K)

n ) and the vector (A1, . . . , AK , bn, I
(n)) are

independent, A1, . . . , AK are random d× d matrices with some given joint distribution, which might
depend on n (suppressed in the notation), bn is a random vector, I(n) is a vector of random cardi-
nalities I(n)

r ∈ {0, . . . , n} for r = 1, . . . ,K, and (Y (1)
n ), . . . , (Y (K)

n ) are sequences which are identically
distributed as (Yn).

Most of the examples given in the survey of Rösler and Rüschendorf [46] are of the form (1)
with dimension d = 1. Dependences between A1, . . . , AK , bn, I

(n) usually occur in applications to
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divide-and-conquer algorithms. We could also allow randomness for K but will drop this in our
discussion. An application of the one-dimensional contraction method with random K can be found
in Geiger [19].

3 Multivariate Contraction

For the derivation of a limit theorem for the sequence (Yn) given by recursion (1) we follow the general
idea of the contraction method. In this work we restrict ourselves to the use of the Wasserstein metric
`2. This requires that the random quantities (Yn), A1, . . . , AK , bn in (1) are all square-integrable.
We scale the Ynr by centering by their mean and by dividing by some σr(n) > 0. Clearly, in an
L2-setting these σr(n) should be chosen at the order of the corresponding standard deviations. With
the diagonal matrices

Dn := diag(σ1(n), . . . , σd(n))

and the notation Mn := EYn we define the scaled version Xn of Yn by

Xn := D−1
n (Yn −Mn), n ≥ 0. (2)

The original recursion (1) implies the modified recursion for the scaled vectors, n ≥ n0,

Xn
D= D−1

n

(
K∑
r=1

ArY
(r)

I
(n)
r

+ bn −Mn

)
D= D−1

n

(
K∑
r=1

Ar

(
D
I

(n)
r
X

(r)

I
(n)
r

+M
I

(n)
r

)
+ bn −Mn

)

=
K∑
r=1

(
D−1
n ArDI

(n)
r

)
X

(r)

I
(n)
r

+
K∑
r=1

(
D−1
n ArMI

(n)
r

)
+D−1

n (bn −Mn)

=
K∑
r=1

A(n)
r X

(r)

I
(n)
r

+ b(n), (3)

where

A(n)
r := D−1

n ArDI
(n)
r
, b(n) :=

K∑
r=1

(
D−1
n ArMI

(n)
r

)
+D−1

n (bn −Mn), (4)

and (A(n)
1 , . . . , A

(n)
K , b(n), I(n)), (X(1)

n ), . . . , (X(K)
n ) are, corresponding to the original recursion, inde-

pendent with (X(r)
n ) ∼ (Xn) for r = 1, . . . ,K. According to the concept of the contraction method

we are looking for a limiting form of equation (3). Therefore we assume L2-convergence of (b(n)) and
(A(n)

r ) for r = 1, . . . ,K:

‖A(n)
r −A∗r‖22 → 0, ‖b(n) − b∗‖22 → 0, n→∞, (5)

with appropriate (A∗1, . . . , A
∗
K , b

∗). Then, one suggests that a limit X of (Xn) satisfies the distribu-
tional recursion

X
D=

K∑
r=1

A∗rX
(r) + b∗ (6)
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with (A∗1, . . . , A
∗
K , b∗), X(1), . . . , X(K) being independent and X(r) ∼ X for r = 1, . . . ,K.

In the subsequent we have to find conditions which imply that (6) has a unique distributional
fixed-point and that in fact convergence of (Xn) to this fixed-point holds.

The following multivariate contraction lemma from the author’s dissertation [34] generalizes two
special cases. For dimension d = 1 this is the well-known contraction lemma (see, e.g., Lemma 1 in
Rösler and Rüschendorf [46]). In general dimension but with K = 1 our lemma reduces to Theorem
1 in Burton and Rösler [4].

Lemma 3.1 (Multivariate Contraction Lemma) Let (A1, . . . , AK , b) be a square-integrable vec-
tor of random d× d matrices A1 . . . , AK and a random d-dimensional vector b with E b = 0, and let
the transformation T :Md

0,2 →Md
0,2 be defined by

T (µ) := L

(
K∑
r=1

ArZ
(r) + b

)
, µ ∈Md

0,2,

where (A1, . . . , AK , b), Z(1), . . . , Z(K) are independent and Z(r) ∼ µ for all r = 1, . . . ,K. Then T is
a contraction with respect to the `2-metric if∥∥∥∥∥

K∑
r=1

E

[
AtrAr

]∥∥∥∥∥
op

< 1. (7)

Proof: Clearly T (µ) has a second moment and ET (µ) = 0 for all µ ∈ Md
0,2 by the valid inde-

pendence conditions and E b = 0, so T : Md
0,2 → Md

0,2 is a well-defined map. Let µ, ν ∈ Md
0,2

be given and (W (1), Z(1)), . . . , (W (K), Z(K)) be optimal couplings of (µ, ν) for r = 1, . . . ,K so that
(A1, . . . , AK , b), (W (1), Z(1)), . . . , (W (K), Z(K)) are independent. Then

`22(T (µ), T (ν)) ≤ E

∥∥∥∥∥
K∑
r=1

Ar(W (r) − Z(r))

∥∥∥∥∥
2

= E

K∑
r=1

〈
Ar(W (r) − Z(r)), Ar(W (r) − Z(r))

〉
+ E

K∑
r,s=1
r 6=s

〈
Ar(W (r) − Z(r)), As(W (s) − Z(s))

〉
(8)

=
K∑
r=1

E

〈
W (r) − Z(r), AtrAr(W

(r) − Z(r))
〉

=
K∑
r=1

E

〈
W (r) − Z(r), E

[
AtrAr

]
(W (r) − Z(r))

〉
(9)

= E

〈
W (1) − Z(1),

(
K∑
r=1

E

[
AtrAr

])
(W (1) − Z(1))

〉

≤

∥∥∥∥∥
K∑
r=1

E

[
AtrAr

]∥∥∥∥∥
op

E

∥∥∥W (1) − Z(1)
∥∥∥2

(10)

=

∥∥∥∥∥
K∑
r=1

E

[
AtrAr

]∥∥∥∥∥
op

`22(µ, ν).
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The sum in (8) is zero by independence and E (W (r) − Z(r)) = 0; the additional expectation in (9)
is justified by independence.

The improvement of the contraction condition (7) by the insertion of an additional expectation
in (9) is (for the case K = 1) discussed in Burton and Rösler [4].

Note that the estimate in (10) is sharp: S :=
∑K

r=1 E [AtrAr] is a symmetric and positive semi-
definite matrix. Therefore, it is ‖S‖op = λ if λ denotes the largest eigenvalue of S. Let u ∈ Rd
be a corresponding eigenvector and µ, ν ∈ Md

0,2, where ν is the Dirac measure in zero and µ the
probability measure with mass 1/2 on u and −u. Then W ∼ µ and Z = 0 is an optimal coupling of
(µ, ν) for all realizations W of µ. It follows

E 〈W − Z, S(W − Z)〉 = E 〈W,SW 〉 = E 〈W,λW 〉 = λE ‖W‖2

= ‖S‖op `
2
2(µ, ν).

This shows the sharpness in (10).
In the case K = 2, d = 2, and b = 0 Cramer and Rüschendorf [6] were led to the map T in Lemma

3.1 as a limiting operator of a related branching recursion. It is easy to see that their contraction
conditions (2.13), (2.14) and Proposition 2.5 coincide with our representation in terms of the spectral
radius in (7).

4 Multivariate limit laws

In the following we come back to the situation where we are given a sequence (Yn) of random vectors
satisfying the recurrence (1) and that after scaling the Yn as in (2) the scaled variates (Xn) satisfy
the modified recursion (3). According to the idea of the contraction method we are looking for
a theorem saying roughly that convergence of the coefficients as in (5) implies under appropriate
conditions convergence of the (Xn). The following theorem yields such a transfer being an extension
of a general one-dimensional limit law for stochastic divide-and-conquer algorithms due to Rösler
[45].

Theorem 4.1 Let (Xn) be a sequence of d-dimensional square-integrable random vectors satisfying
the distributional recursion

Xn
D=

K∑
r=1

A(n)
r X

(r)

I
(n)
r

+ b(n), n ≥ n0,

where (A(n)
1 , . . . , A

(n)
K , b(n), I(n)), (X(1)

n ), . . . , (X(K)
n ) are independent, A

(n)
1 , . . . , A

(n)
K are square-

integrable random d× d matrices, b(n) is a square-integrable random vector, X(r)
n ∼ Xn, and I(n) is

a vector of random integers with I(n)
r ∈ {0, . . . , n}, r = 1, . . . ,K, n ≥ 0. Let the following conditions

be satisfied:

(A(n)
1 , . . . , A

(n)
K , b(n)) L2−→ (A∗1, . . . , A

∗
K , b

∗), n→∞, (11)
K∑
r=1

E

∥∥(A∗r)
tA∗r
∥∥

op
< 1, (12)

E

[
1{I(n)

r ≤l}∪{I
(n)
r =n}

∥∥∥(A(n)
r )tA(n)

r

∥∥∥
op

]
→ 0, n→∞, (13)
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for all l ∈ N and r = 1, . . . ,K. Then we have

`2(Xn, X)→ 0, n→∞,

where X is the in Md
0,2 unique distributional fixed-point of

X
D=

K∑
r=1

A∗rX
(r) + b∗, (14)

with (A∗1, . . . , A
∗
K , b

∗), X(1), . . . , X(K) independent and X(r) ∼ X for r = 1, . . . ,K.

Proof: By Jensen’s inequality (12) implies ‖
∑
E [(A∗r)

tA∗r ]‖op < 1. By the definition of b(n) we have
E b(n) = 0 for all n ∈ N. Thus, the L2-convergence of (b(n)) implies E b∗ = 0. Therefore, by Lemma
3.1, the limiting equation (14) has a unique distributional fixed-point X in Md

0,2. Let X(r)
n ∼ Xn,

X(r) ∼ X so that (X(r)
n , X(r)) are optimal couplings of (Xn, X) for all n ∈ N and r = 1, . . . ,K and

that (A1, . . . , AK , bn, I
(n)), (X(1)

n , X(1)), . . . , (X(K)
n , X(K)) are independent. The first step is to derive

an estimate of `22(Xn, X) in terms of `22(Xi, X) only with indices i ∈ {0, . . . , n − 1}. This reduction
inequality for the sequence (`22(Xn, X)) will be sufficient to deduce `2(Xn, X)→ 0. To derive such a
reduction inequality we use the representations (3) and (14) of Xn and X respectively. For the X(r)

n

and X(r) occurring there we use optimal couplings to keep the arising distances small. We start for
n ≥ n0 with the estimate

`22(Xn, X) ≤

∥∥∥∥∥
K∑
r=1

(
A(n)
r X

(r)

I
(n)
r

−A∗rX(r)
)

+ b(n) − b∗
∥∥∥∥∥

2

2

=
K∑
r=1

∥∥∥A(n)
r X

(r)

I
(n)
r

−A∗rX(r)
∥∥∥2

2
+
∥∥∥b(n) − b∗

∥∥∥2

2

+
K∑

r,s=1
r 6=s

E

〈
A(n)
r X

(r)

I
(n)
r

−A∗rX(r), A(n)
s X

(s)

I
(n)
s

−A∗sX(s)
〉

+ 2
K∑
r=1

E

〈
A(n)
r X

(r)

I
(n)
r

−A∗rX(r), b(n) − b∗
〉
. (15)

The third and fourth summand in (15) are zero by independence and EX(r) = EX
(r)

I
(n)
r

= 0. By our

assumption we have ‖b(n) − b∗‖22 → 0 for n→∞, so we only have to care about the first summand:

K∑
r=1

∥∥∥A(n)
r X

(r)

I
(n)
r

−A∗rX(r)
∥∥∥2

2

=
K∑
r=1

∥∥∥A(n)
r

(
X

(r)

I
(n)
r

−X(r)
)

+
(
A(n)
r −A∗r

)
X(r)

∥∥∥2

2

=
K∑
r=1

(∥∥∥A(n)
r

(
X

(r)

I
(n)
r

−X(r)
)∥∥∥2

2
+
∥∥∥(A(n)

r −A∗r
)
X(r)

∥∥∥2

2
(16)

+ 2E
〈
A(n)
r

(
X

(r)

I
(n)
r

−X(r)
)
,
(
A(n)
r −A∗r

)
X(r)

〉)
.
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By (11), independence, and ‖X‖2 <∞ we obtain∥∥∥(A(n)
r −A∗r

)
X(r)

∥∥∥2

2
→ 0, n→∞,

and r = 1, . . . ,K. The first summand in (16) can by estimated by∥∥∥A(n)
r

(
X

(r)

I
(n)
r

−X(r)
)∥∥∥2

2
(17)

= E

〈
X

(r)

I
(n)
r

−X(r), (A(n)
r )tA(n)

r

(
X

(r)

I
(n)
r

−X(r)
)〉

≤ E

[∥∥∥(A(n)
r )tA(n)

r

∥∥∥
op

∥∥∥X(r)

I
(n)
r

−X(r)
∥∥∥2
]
.

Since the operator norm is a Lipschitz continuous map and by the L2-convergence of (A(n)
r ) we deduce

E

∥∥∥A(n)
r −A∗r

∥∥∥2

op
→ 0,

E

∥∥∥(A(n)
r )tA(n)

r

∥∥∥
op
→ E

∥∥(A∗r)
tA∗r
∥∥

op
, n→∞,

for r = 1, . . . ,K. In the following the symbol o(1) might denote different sequences tending to zero.
The third summand in (16) can be estimated by

E

〈
A(n)
r

(
X

(r)

I
(n)
r

−X(r)
)
,
(
A(n)
r −A∗r

)
X(r)

〉
≤ E

[∥∥∥A(n)
r

(
X

(r)

I
(n)
r

−X(r)
)∥∥∥∥∥∥(A(n)

r −A∗r
)
X(r)

∥∥∥]
≤

∥∥∥A(n)
r

(
X

(r)

I
(n)
r

−X(r)
)∥∥∥

2

∥∥∥(A(n)
r −A∗r

)
X(r)

∥∥∥
2

≤
∥∥∥A(n)

r

(
X

(r)

I
(n)
r

−X(r)
)∥∥∥

2
o(1)

≤ max
{

1,
∥∥∥A(n)

r

(
X

(r)

I
(n)
r

−X(r)
)∥∥∥2

2

}
o(1)

≤
∥∥∥A(n)

r

(
X

(r)

I
(n)
r

−X(r)
)∥∥∥2

2
o(1) + o(1).

Putting these estimates together and denoting (with the same o(1))

A((n))
r :=

∥∥∥(A(n)
r )tA(n)

r

∥∥∥
op

(1 + o(1)),

we obtain

`22(Xn, X) ≤
K∑
r=1

E

[
A((n))
r

∥∥∥X(r)

I
(n)
r

−X(r)
∥∥∥2
]

+ o(1)

=
K∑
r=1

E

[
n∑
i=0

1{I(n)
r =i}A

((n))
r

∥∥∥X(r)
i −X

(r)
∥∥∥2
]

+ o(1)

=
n∑
i=0

(
K∑
r=1

E

[
1{I(n)

r =i}A
((n))
r

])
`22(Xi, X) + o(1).
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With the abbreviations

an := `22(Xn, X), pn :=
K∑
r=1

E

[
1{I(n)

r =n}A
((n))
r

]
, (18)

this implies

(1− pn)an ≤
K∑
r=1

E

[
A((n))
r

]
sup

0≤i≤n−1
ai + o(1)

=
K∑
r=1

E

[∥∥(A∗r)
tA∗r

∥∥
op

+ o(1)
]

sup
0≤i≤n−1

ai + o(1). (19)

By (13) we have pn → 0, thus the assumption
∑
E ‖(A∗r)tA∗r‖op < 1 implies that (an) is a bounded

sequence. We define a := lim sup an. Now, it exists a ξ < 1 such that for all ε > 0 there exists a n1 ∈ N
with an ≤ a+ε for all n ≥ n1 and such that the prefactor in (19) satisfies

∑
E [‖ (A∗r)

tA∗r‖op+o(1)] ≤
ξ for n ≥ n1. Then from (18) we deduce

an ≤ 1
1− pn

[
n1−1∑
i=0

(
K∑
r=1

E

[
1{I(n)

r =i}A
((n))
r

])
ai

+
n−1∑
i=n1

(
K∑
r=1

E

[
1{I(n)

r =i}A
((n))
r

])
(a+ ε) + o(1)

]

≤ 1
1− pn

(ξ(a+ ε) + o(1)) , (20)

where (13) has been used. The o(1) depends on ε. Since ε > 0 is arbitrary we conclude with n→∞
that a = 0.

For the application of this limit law it is necessary to scale the quantities at the right order of
magnitude (cf. (2)). With σr(n) growing too fast we will get b∗ = 0 for the limiting equation (14).
Then the conditions of the limit law might be still satisfied but the unique solution in (14) is the
degenerated one X = 0. With σr(n) growing too slow we typically cannot satisfy b(n) → b∗ as in
(11).

Note, that we had to strengthen our ideal contraction condition (7) to (12) in order to derive
convergence in the `2 metric. It would be interesting to know whether also (7) in general implies our
limit law or not. In the applications in section 6 the fulfillment of the strengthened condition (12)
will require some restrictions which would not be necessary to satisfy the ideal contraction condition
(7). For the special case of diagonal matrices A1, . . . , AK we give an alternative sufficient condition
for the limit law. In this condition (22) we try to imitate the expectation inside the spectral radius
in (7). The utility of (22) will become clear in the applications of section 6.

Corollary 4.2 With diagonal matrices A1, . . . , AK in the situation of Theorem 4.1, condition (13)
replaced by

∑
i∈{0,...,l}∪{n}

max
1≤k≤d

E

K∑
r=1

(
1{I(n)

r =i}

(
A(n)
r

)2

kk

)
→ 0 for n→∞, (21)
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and (12) replaced by

lim sup
n→∞

n∑
i=0

max
1≤k≤d

E

K∑
r=1

(
1{I(n)

r =i}

(
A(n)
r

)2

kk

)
< 1 (22)

we have

`2(Xn, X)→ 0, n→∞,

where X is the unique distributional fixed-point of (14) in Md
0,2.

Proof: We proceed as in the proof of Theorem 4.1. Note that (22) also implies ‖
∑
E [(A∗r)

tA∗r ]‖op <
1 in the case of diagonal matrices A1, . . . , AK :∥∥∥∥∥

K∑
r=1

E

[
(A∗r)

tA∗r
]∥∥∥∥∥

op

= lim
n→∞

∥∥∥∥∥
K∑
r=1

E

[(
A(n)
r

)t
A(n)
r

]∥∥∥∥∥
op

= lim
n→∞

max
1≤k≤d

K∑
r=1

E

(
A(n)
r

)2

kk

= lim
n→∞

max
1≤k≤d

n∑
i=0

E

K∑
r=1

(
1{I(n)

r =i}

(
A(n)
r

)2

kk

)

≤ lim sup
n→∞

n∑
i=0

max
1≤k≤d

E

K∑
r=1

(
1{I(n)

r =i}

(
A(n)
r

)2

kk

)
,

thus, by Lemma 3.1, the limiting equation (14) has a unique distributional fixed-point. Now, for the
reduction inequality for `22(Xn, X) we follow the proof of Theorem 4.1 up to (17). Using (A(n)

r )t = A
(n)
r

we replace (17) by

K∑
r=1

∥∥∥A(n)
r

(
X

(r)

I
(n)
r

−X(r)
)∥∥∥2

2

=
K∑
r=1

E

〈
X

(r)

I
(n)
r

−X(r),
(
A(n)
r

)
A(n)
r

(
X

(r)

I
(n)
r

−X(r)
)〉

=
K∑
r=1

n∑
i=0

E

[
1{I(n)

r =i}

〈
X

(r)
i −X

(r),
(
A(n)
r

)
A(n)
r

(
X

(r)
i −X

(r)
)〉]

=
n∑
i=0

E

[
K∑
r=1

1{I(n)
r =i}

d∑
k=1

(
A(n)
r

)2

kk

(
X

(r)
i −X

(r)
)2

k

]

=
n∑
i=0

d∑
k=1

(
E

K∑
r=1

(
1{I(n)

r =i}

(
A(n)
r

)2

kk

)
E (Xi −X)2

k

)

≤
n∑
i=0

(
max

1≤k≤d
E

K∑
r=1

(
1{I(n)

r =i}

(
A(n)
r

)2

kk

)
‖Xi −X‖22

)
.
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With this estimate and the arguments of the proof of Theorem 4.1 we deduce corresponding to (18)

`22(Xn, X) ≤
n∑
i=0

((
max

1≤k≤d
E

K∑
r=1

(
1{I(n)

r =i}

(
A(n)
r

)2

kk
(1 + o(1))

))
`22(Xi, X)

)
+ o(1).

Analogously to (18) we define

pn := max
1≤k≤d

E

K∑
r=1

(
1{I(n)

r =n}

(
A(n)
r

)2

kk
(1 + o(1))

)
,

where the o(1) is the corresponding one from the previous inequality. Then, similarly to (19), we
derive

(1− pn)an ≤
n−1∑
i=0

(
max

1≤k≤d
E

K∑
r=1

(
1{I(n)

r =i}

(
A(n)
r

)2

kk
(1 + o(1))

))
sup

0≤i≤n−1
ai + o(1).

By (21) and (22) this again implies that (an) is bounded and based on (23) similarly to (20) we
deduce `22(Xn, X)→ 0 for n→∞.

5 Applications: Median-of-(2t + 1) Quicksort

In this section we consider the median-of-(2t+1) version of Hoare’s Quicksort algorithm with t ∈ N0.
For measuring the performance of Quicksort algorithms several parameters have been considered, the
most important being the number of key comparisons, key exchanges, partitioning stages, and stack
pushes and pops made during the execution of the algorithm. One approach to define a univariate
cost measure for Quicksort algorithms may be in taking linear combinations to weight the specific
parameters, see Sedgewick [49, 50].

We consider mainly the number of key comparisons Cn and key exchanges Bn, since these pa-
rameters are in the mean of the order n lnn, whereas other parameters are of smaller order. The
n denotes the number of items to be sorted and the underlying probabilistic model consists of all
permutations of the items being equally likely. We assume that the splitting into the subfiles is
done while preserving randomness in and independence between the subfiles. For Cn a huge body of
probabilistic results is available even for the median-of-(2t+ 1) version of Quicksort. These include
in particular asymptotic expressions for the means and variances, as well as limit laws for the scaled
quantities, and large deviation inequalities, see Hennequin [22, 23], Régnier [42], Rösler [43, 45],
McDiarmid and Hayward [11], Bruhn [3], and for a detailed survey the book of Mahmoud [28]. For
the number of exchanges Bn the mean and variance were for general t ∈ N0 studied in Hennequin
[23], Chern and Hwang [5] refined the analysis of the mean, and Hwang and Neininger [25] gave a
limit law for the standard case t = 0.

Here we will give an asymptotic analysis of the joint distribution Yn := (Cn, Bn) for general
t ∈ N0. A bivariate limit law is derived, which covers especially the missing one-dimensional limit
laws for Bn with t ≥ 1. Moreover, asymptotic correlations and covariances for Cn and Bn are derived.
Since weak convergence of measures is preserved under continuous transformations the bivariate limit
law covers as well continuous functions of the scaled versions of Cn and Bn. The transformations
which are of interest from a practical point of view are the linear combinations Cn + wBn with
w > 0. This models the cost of the algorithm assuming that a key exchange has w times the cost
of a comparison. The subsequent analysis is based on our transfer Theorem 4.1 which gives the
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results quite immediate. Due to the special type of the distributional recursion for (Cn, Bn) we
could alternatively also combine a purely univariate approach by the contraction method with the
Cramér-Wold device. However, for more complex examples (the A

(n)
r not being multiples of the

identity matrix) the Cramér-Wold device would not be applicable. We will report on such examples
in subsequent work [36].

The number of key comparisons Cn for median-of-(2t+ 1) Quicksort satisfies the recursion

Cn
D= C

(1)
In

+ C
(2)
n−1−In + n− 1 + Scn, n ≥ n0, (23)

where In + 1 is the order of the pivot element of the first partition stage. Furthermore,
(C(1)

n ), (C(2)
n ), (In, Scn) are independent, C(1)

n ∼ C
(2)
n ∼ Cn, and (Scn) is a sequence of uniformly

bounded random variables which models the number of key comparisons for the selection of the me-
dian in the 2t+ 1 sample. No further conditions on Scn are required. To initialize the algorithm some
(random) bounded costs C0, . . . , Cn0−1 have to be given with a n0 ≥ 2t + 1 denoting the maximal
size of the subfiles, which are sorted by some other sorting procedure.

For the number of key exchanges we have

Bn
D= B

(1)
In

+B
(2)
n−1−In + Tn + Sbn, n ≥ n0, (24)

with (B(1)
n ), (B(2)

n ), (In, Tn, Sbn) being independent, B(1)
n ∼ B(2)

n ∼ Bn, Tn denoting the number of key
exchanges during the partitioning step, and (Sbn) a uniformly bounded sequence counting exchanges
for the selection of the pivot element. We also need initial values B0, . . . , Bn0−1. The Tn depend on
the orders In + 1 of the pivot elements. It is

P(Tn = j | In = k) =

(
k
j

)(
n−1−k

j

)(
n−1
k

) , 0 ≤ j ≤ k ≤ n− 1,

see Sedgewick [49].
We emphasis that the relation (24) is only correct due to the assumption that the file is permuted

uniformly at random and that the randomness and independence between subfiles is preserved. Note
that for the corresponding relation (23) for the key comparisons it would be sufficient to select the
pivot element from a uniformly chosen subsample, where the permutation of the file is then irrelevant.
This difference is most transparent when looking at a sorted list.

In order to apply our framework we have first to settle some basic facts about Tn and Bn.
Sedgewick [49, p. 226] showed the expansion ETn = (t + 1)/(2(2t + 3))n + O(1). We rederive this
mean since also information on T 2

n is required.

Lemma 5.1 The mean of the number of key exchanges Tn during a partitioning stage of n ≥ 2
elements by the median-of-(2t+ 1) quicksort is given by

ETn =
t+ 1

2(2t+ 3)
n− 1

2t+ 3
+

t

2t+ 3
1

n− 1
, n ≥ 2t+ 1.

Proof: Let Gj denote the event that the key with order 1 ≤ j ≤ n is exchanged in the first partition
stage. Then conditioned on In the number of exchanges Tn in the first partitioning stage is obtained
by appropriate counting of these events:

E [Tn | In = k] =
k∑
j=1

P(Gj | In = k). (25)
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Given In = k, a key with order 1 ≤ j ≤ k is exchanged if it is placed on a position k + 2, . . . , n.
Since all permutations of the keys are equally likely we have P(Gj | In = k) = (n− k− 1)/(n− 1) for
1 ≤ j ≤ k ≤ n− 1. Hence we obtain

E [Tn | In] =
In(n− 1− In)

n− 1
(26)

almost surely. The pivot In + 1 is given as the median of a random sample of size 2t + 1 out of
1, . . . , n, thus we have for n ≥ 2t+ 1

P(In + 1 = j) =

(
j−1
t

)(
n−j
t

)(
n

2t+1

) , t+ 1 ≤ j ≤ n− t. (27)

By symmetry it is E In = (n− 1)/2. Using the combinatorial identity

n−1∑
j=0

(
j
t

)(
n−1−j

t

)(
n

2t+1

) (j + 1)(j + 2) =
t+ 2

2(2t+ 3)
(n+ 1)(n+ 2)

we obtain

E I2
n =

t+ 2
2(2t+ 3)

n2 − 3(t+ 1)
2(2t+ 3)

n+
1

2(2t+ 3)
.

The statement follows now by taking expectations in (26).

Subsequently we will also need the second moment of Tn given In. A representation analogous
to (25) and

P(Gi ∩Gj | In = k) =
(n− 1− k)(n− 2− k)

(n− 1)(n− 2)

for 1 ≤ i < j ≤ k ≤ n− 1 imply

E [T 2
n | In] =

In(In − 1)(n− 1− In)(n− 2− In)
(n− 1)(n− 2)

+
In(n− 1− In)

n− 1
(28)

almost surely. Note, that all the factorial moments of Tn given In are implicitly contained in Hwang
and Neininger [25].

Lemma 5.2 The mean of the number of key exchanges Bn for the median-of-(2t + 1) Quicksort
applied to a randomly permuted set of items satisfies

EBn =
t+ 1

2(2t+ 3)(H2t+2 −Ht+1)
n ln(n) + ctn+ o(n), (29)

with a constant ct ∈ R depending on the indicial conditions and (Sbn).

Proof: For the transfer from the mean of the toll function Tn + Sbn to the mean of Bn we apply
a general result on median-of-(2t + 1) Quicksort recursions due to Bruhn [3] and Rösler [45], who
proved: If Bn satisfies (24) with a toll function T ′n satisfying ET ′n = βn+O(1) for some β > 0, then it
follows EBn = (β/(H2t+2−Ht+1))n ln(n) + cn+ o(n), where the constant c ∈ R depends on t, β, n0,
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the initial values EB0, . . . , EBn0−1, and the O(1). By Lemma 5.1 our toll function T ′n := Tn + Sbn
satisfies ETn = (t + 1)/(2(2t + 3))n + O(1). Therefore the transfer theorem of Bruhn and Rösler
applies.

The leading term in (29) was given by Hennequin [23, Annexe C, equation (C.4)] with an error
estimate ofO(n). For the application of the contraction method the refined expansion (29) is required.
The mean of the number of comparisons Cn satisfies

ECn =
1

H2t+2 −Ht+1
n ln(n) + c′tn+ o(n), (30)

with a constant c′t ∈ R. The derivation of expansions of this type, which are of interest for the appli-
cation of the contraction method, was the original motivation for the general Bruhn–Rösler transfer
theorem. The leading term in (30) was obtained by van Emden [12] and Hurwitz [24]. The constant
c′t depends on the implementation. Contributions to the derivation of explicit representations of c′t
are given in Green [21], Hennequin [22, p. 327], and Chern and Hwang [5, p. 62].

We abbreviate

µ(t)
c :=

1
H2t+2 −Ht+1

, µ
(t)
b :=

t+ 1
2(2t+ 3)(H2t+2 −Ht+1)

.

The vector Yn = (Cn, Bn)t satisfies the recursion

Yn
d= Y

(1)

I
(n)
1

+ Y
(2)

I
(n)
2

+ bn, n ≥ n0,

with (Y (1)
n ), (Y (2)

n ), (I(n), bn) being independent, Y (1)
n ∼ Y

(2)
n ∼ Yn, I(n) = (In, n − 1 − In), bn =

(n − 1 + Scn, Tn + Sbn)t, and In, Tn as above. We scale using the matrix Dn := diag(n, n). With the
expansions (29) and (30) we obtain for the scaled quantities Xn := D−1

n (Yn − EYn)

Xn
d= A

(n)
1 X

(1)

I
(n)
1

+A
(n)
2 X

(2)

I
(n)
2

+ b(n), n ≥ n0, (31)

with A
(n)
1 = diag(In/n, In/n), A(n)

2 = diag((n− 1− In)/n, (n− 1− In)/n),

b(n) =

(
1 + µ(t)

c

(
I

(n)
1

n
ln
I

(n)
1

n
+
I

(n)
2

n
ln
I

(n)
2

n

)
,

Tn
n

+ µ
(t)
b

(
I

(n)
1

n
ln
I

(n)
1

n
+
I

(n)
2

n
ln
I

(n)
2

n

))t
+ o(1),

and independence relations as in the original recursion. The o(1) depends on randomness, but the
convergence is uniform. For the L2 convergence of the coefficients in (31) we use that for all p > 0

In
n

Lp−→ V,
Tn
n

L2−→ V (1− V ), n→∞,

where V has the beta(t+ 1, t+ 1) distribution. The convergence of In/n is obvious since the median-
of-(2t + 1) independent unif[0, 1] distributed random variables is beta(t + 1, t + 1) distributed and
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we are allowed to choose versions of In such that the convergence holds in Lp as well. For the
convergence of Tn/n we estimate∥∥∥∥Tnn − V (1− V )

∥∥∥∥
2

≤
∥∥∥∥Tnn − In(n− In)

n2

∥∥∥∥
2

+
∥∥∥∥In(n− In)

n2
− V (1− V )

∥∥∥∥
2

.

The first summand is seen to tend to zero by taking the square, multiplying out, conditioning by In
and applying (26) and (28). Thus, we have the L2-convergences

b(n) → b∗, A(n)
r → A∗r , r = 1, 2, (32)

with

A∗1 =
(
V 0
0 V

)
, A∗2 =

(
1− V 0

0 1− V

)
, (33)

b∗ =
(

1 + µ(t)
c E(V ), V (1− V ) + µ

(t)
b E(V )

)t
, (34)

with E(V ) := V ln(V ) + (1− V ) ln(1− V ).

Theorem 5.3 The normalized vector of the number of key comparisons and key exchanges made by
a median-of-(2t+ 1) version of Quicksort satisfies

`2

((
Cn − ECn

n
,
Bn − EBn

n

)
, X

)
→ 0, n→∞,

where X is the unique distributional fixed-point in M2
0,2 of

X
D= A∗1X

(1) +A∗2X
(2) + b∗,

with X(1), X(2) ∼ X being independent and independent of (A∗1, A
∗
2, b
∗), where (A∗1, A

∗
2, b
∗) is given

by (33), (34) with V there being beta(t+ 1, t+ 1) distributed.

Proof: We apply Theorem 4.1. It is

E [1{I(n)
r ≤l}

‖(A(n)
r )tA(n)

r ‖op] ≤ P(I(n)
r ≤ l)→ 0, n→∞,

for all l ∈ N and r = 1, 2, thus (13) is satisfied. The L2-convergence of A(n)
r , b(n) was checked in (32).

It is ‖A∗1‖op = V , ‖A∗2‖op = 1− V , with V ∼ beta(t+ 1, t+ 1), thus

E ‖A∗1‖2op + E ‖A∗2‖2op =
t+ 2
2t+ 3

< 1.

The conditions of Theorem 4.1 are satisfied.

Corollary 5.4 The asymptotic correlation and covariance of the number of key comparisons and
key exchanges made by a median-of-(2t+ 1) Quicksort version are given by

Cor(Cn, Bn) = (1 + o(1))
E [b∗1b

∗
2]√

E [(b∗1)2]E [(b∗2)2]
,

Cov(Cn, Bn) = (1 + o(1))
2t+ 3
t+ 1

E [b∗1b
∗
2]n2,

where b∗ = (b∗1, b
∗
2)t is given in (34).
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Proof: The fixed-point equation for the limit distribution X = (X1, X2)t implies

E [X1X2] =
2t+ 3
t+ 1

E [b∗1b
∗
2], Var(Xr) =

2t+ 3
t+ 1

E [(b∗r)
2]

for r = 1, 2. Since convergence in `2 implies convergence of the correlations the asymptotic correlation
follows. Furthermore it is

Cov(Cn, Bn) = Cov
(
Cn − ECn

n
,
Bn − EBn

n

)
n2 = (1 + o(1))E [X1X2]n2.

The second assertion follows.

Explicit terms for the variances of Cn and Bn were calculated by Hennequin [23, Proposition IV.8,
IV.7]. The asymptotic correlation from Corollary 5.4 is for, e.g., the median-of-3 Quicksort

√
2(471− 48π2)√

(485− 48π2)(949− 96π2)
.

Numerical values for these asymptotic correlations for t = 0, . . . , 10 are listed in Table 1.

t lim Cor(Cn, Bn)
0 −0.86404
1 −0.93766
2 −0.96482
3 −0.97754
4 −0.98446
5 −0.98862
6 −0.99131
7 −0.99316
8 −0.99447
9 −0.99544
10 −0.99618

Table 1 Asymptotic correlations for the number of key comparisons and key exchanges of
median-of-(2t+ 1) Quicksort.

A univariate cost measure

We consider now the univariate cost measures Wn := Cn +wBn, where w > 0 is a weight on the key
exchange. By linearity of expectation the mean of Wn follows from (29) and (30). The variance of
Wn is obtained from the variances of Cn and Bn and their covariance given in Corollary 5.4. The
limit law for Wn follows from the bivariate limit law in Theorem 5.3:

Wn − EWn

n

`2−→W,

where W is the unique distributional solution in M2
0,2 of

W
d= VW + (1− V )W ∗ + 1 + wV (1− V ) + (µ(t)

c + wµ
(t)
b )E(V ), (35)
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with W,W ∗, V independent, W ∼ W ∗, and V ∼ beta(t + 1, t + 1). This limit law is obtained by
applying the map Tw : R2 → R, (x, y) 7→ x + wy to the normalized version of (Cn, Bn) in Theorem
5.3.

The asymptotic mean of Cn is decreasing for t → ∞ whereas the mean of Bn is increasing as
t → ∞. For the identification of the optimal t ∈ N0 such that the leading constant τ(t, w) in
EWn = (1 + o(1))τ(t, w)n ln(n) is minimized for given w > 0 see Mart́ınez and Roura [33], who also
discuss the more delicate problem of allowing t to be dependent on n.

Sedgewick’s Quicksort programs

The analysis of the weighted mixtures Wn can be extended to a first order analysis of the Quicksort
versions Sedgewick [50] analyzed; see also [49, program 2.4, program 8.2]. These programs partition
up to subfiles of a size M ∈ N and sort the remaining subfiles by a final scan of insertion sort.
Program 2.4 uses a uniform pivot element (t = 0), whereas program 8.2 is the corresponding median-
of-3 version. The cost for an assembly language implementation of program 2.4 (for the median-of-3
version a slightly modified mixture being used) is measured by

24An + 11Bn + 4Cn + 3Dn + 8En + 9Sn + 7n, (36)

where An denotes the number of partitioning stages, Bn the number of key exchanges during the
partitioning, Cn the number of comparisons during partitioning, Sn the number of stack pushes,
Dn the number of insertions made by the final insertion sort, and En the number of keys moved
by insertion sort. The computation of the exact mean for t = 0, 1 led among other interpretations
to the optimal choice of M = 9 for both programs. As an indication for the order of the standard
deviation the standard deviation for Cn in the case t = 0 was derived to be 0.68n. From the previous
discussion we obtain the exact order σtn of the standard deviation of the costs of the programs as
well as the limit law:

Corollary 5.5 Let W̃n denote the costs of Sedgewick’s quicksort programs with median-of-(2t + 1)
selection of the pivot, t = 0, 1. Then we have

Var(W̃n) = (1 + o(1))σ2
t n

2,

W̃n − E W̃n

n

`2−→ W,

where W is the fixed-point in (35) with w = 11/4 and V ∼ beta(t+ 1, t+ 1). We have

σ0 =

√
13771
960

− 1225
864

π2 = 0.592814 . . . ,

σ1 =

√
917309
78400

− 2883
2450

π2 = 0.294047 . . . .

Proof: A sequence (Yn) which satisfies a quicksort recurrence as (23), (24) with a (random) toll
function of the order oL2

(n) and which has a mean of the form cn + o(n) with c ≥ 0 is seen by
the contraction method to satisfy (Yn − EYn)/n → 0 in `2. (The order of normalization for a non-
degenerate limit being

√
n.) The quantities An, Dn, En, Sn in (36) follow this pattern. Therefore,

the only asymptotic contributions come from Cn and Bn, and the previous discussion implies the
assertions.

17



6 Ideal and strengthened contraction condition

In this section the ideal contraction condition (7) and its strengthened version (12) are compared for
a concrete parametric family of recurrences. It will turn out that the strengthened condition (12)
is violated for (infinitely many) particular choices of the parameters whereas the ideal condition is
always satisfied. This example is worked out in detail in order to provide a bench mark for further
improvements of the strengthened condition towards the ideal contraction condition.

Let d′ ≥ 2 be an integer. We use the convention that we identify indices r ∈ {0, . . . , 2d′ − 1} with
their binary representation (r1, . . . , rd′) ∈ {0, 1}d

′
, i.e.,

r =
d′∑
i=1

ri2d
′−i, ri ∈ {0, 1}.

For a vector u ∈ [0, 1]d
′

we define for r ∈ {0, . . . , 2d′ − 1}

〈u〉r :=
∏

1≤i≤d′
ri=0

ui
∏

1≤i≤d′
ri=1

(1− ui)

and 〈u〉 := (〈u〉0, . . . , 〈u〉2d′−1). Geometrically, 〈u〉 is the vector of volumes which are generated
by subdividing the unit cube [0, 1]d

′
by the hyperplanes perpendicular to the axis through u. Let

S1, . . . , Sd ⊂ {1, . . . , d′} with 1 ≤ |Sk| ≤ d′ − 1 for k = 1, . . . d, furthermore U be a unif[0, 1]d
′

distributed random variable and {Q(k)
i : k = 1, . . . , d, i = 1, . . . , d′} be a set of independent unif[0, 1]

distributed random variables, which is also independent of U , and

1Skr (U,Q(k)) :=
∏
i∈Sk
ri=0

1{Q(k)
i <Ui}

∏
i∈Sk
ri=1

1{Q(k)
i ≥Ui}

, (37)

for r = 0, . . . , 2d
′ − 1 and k = 1, . . . , d. Then we define the diagonal matrices

Ar := diag
(
1S1
r (U,Q(1)), . . . ,1Sdr (U,Q(d))

)
for r = 0, . . . , 2d

′ − 1, and b := (1, 1, . . . , 1)t. With these definitions we setup a recurrence relation as
(1) by Y0 := 0 and

Yn :D=
2d
′−1∑
r=0

ArY
(r)

I
(n)
r

+ b, n ≥ 1. (38)

According to (1) the sequences (Y (0)
n ), . . . , (Y (2d

′−1)
n ) are independent copies of (Yn) being indepen-

dent of (A0, . . . , A2d′−1, I
(n)). The random vector I(n) is defined to be multinomially distributed

given U ,

P
I(n)|U=u = M(n− 1, 〈u〉).

This implies in particular

I(n)

n

P−→ 〈U〉 = (〈U〉0, . . . , 〈U〉2d′−1). (39)
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For recurrence (38) we check the conditions of Theorem 4.1 for various choices of d′, d, S1, . . . , Sd.
This leads in two ways to examples where the strengthened contraction condition of Theorem 4.1
is violated: firstly, by taking d = 2, increasing d′ and suitably choosing S1 and S2 or secondly by
increasing d. Although in some situations the refinement in Corollary 4.2 will save.

Taking means in (38) leads in each component to the recursion for the mean of the number of
nodes visited during a partial match query in a d′-dimensional quadtree in the uniform probabilistic
model, the set Sk giving the coordinates which are specified in the query. For background on random
quadtrees and partial match see [17, 14, 15, 13, 8, 47, 48, 27, 20, 38].

Note that recursion (38) with independent (Y (0)
n ), . . . , (Y (2d

′−1)
n ) does model the mean but does

not model the distribution of the cost of a partial match in the uniform probabilistic model of
Flajolet and Puech [17], since positive correlations of the costs for the subtrees of the root searched
simultaneously are to be expected. This effect becomes relevant as soon as variances or limits laws
are considered and is present as well in K-d trees, its variants, and in tries under the asymmetric
Bernoulli model. Whether the correlation of the cost for searching the subtrees remains small enough,
such that the order of variances and limit laws for the idealized model in (38) carry over to the uniform
probabilistic model, or not, is open. Such an idealization was in connection with tries also called
the model of “adapted queries” and was tacitly assumed in the analysis of K-d trees in [35] and
elsewhere. From this perspective, (38) may be considered as an idealized model for d independent
partial match queries in a common random quadtree, but we will only look at (38) to test the
conditions of Theorem 4.1.

Flajolet, Gonnet, Puech, and Robson [14] proved

EYnk = (1 + o(1))γsk,d′n
αk , (40)

with sk = |Sk|, a constant γsk,d′ > 0, and αk given as the in (1, 2) unique solution of

αd
′−sk
k (αk + 1)sk = 2d

′
. (41)

For d = 2 we write α := α1, β := α2 and assume that S1 = {1, . . . , q + s}, S2 = {1, . . . , q, q + s +
1, . . . , q + s+ t} with 0 ≤ q, s, t ≤ d′ − 1, 1 ≤ q + s ≤ q + t ≤ d′ − 1 and q + s+ t ≤ d′. We define

Dn := diag
(
nα−1, nβ−1

)
and scale according to (2). Then the quantities A(n)

r , b(n) in (4) are given by

A(n)
r = diag

(
1S1
r (U,Q(1))

(
I

(n)
r

n

)α−1

,1S2
r (U,Q(2))

(
I

(n)
r

n

)β−1)

for r = 0, . . . , 2d
′ − 1 and

b(n) =

((
2d
′−1∑
r=0

1S1
r (U,Q(1))

(
I

(n)
r

n

)α−1

− 1

)
γq+s,d′ + o(1),

(
2d
′−1∑
r=0

1S2
r (U,Q(2))

(
I

(n)
r

n

)β−1

− 1

)
γq+t,d′ + o(1)

)t
,
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where γq+s,d′ and γq+t,d′ are the constants in (40). By (39) the L2 convergence in (11) is satisfied for

A∗r := diag
(
1S1
r (U,Q(1))〈U〉α−1

r ,1S2
r (U,Q(2))〈U〉β−1

r

)
(42)

for r = 0, . . . , 2d
′ − 1 and

b∗ =

((
2d
′−1∑
r=0

1S1
r (U,Q(1))〈U〉α−1

r − 1

)
γq+s,d′ , (43)

(
2d
′−1∑
r=0

1S2
r (U,Q(2))〈U〉β−1

r − 1

)
γq+t,d′

)t
.

Lemma 6.1 The conditions of Theorem 4.1 are satisfied if(
1
β

)q+t( 2
2β − 1

)d′−q−t
+
(

1
α

)q+s( 2
2α− 1

)d′−q−s
−
(

2
2α+ 1

)q ( 1
α

)s+t( 2
2α− 1

)d′−q−s−t
< 1. (44)

Proof: We apply Theorem 4.1 to our situation. Already checked by our preceding considerations is
the L2 convergence of (A(n)

0 , . . . , A
(n)

2d′−1
, b(n)) to (A∗0, . . . , A

∗
2d′−1

, b∗). For the proof of (13) note that

‖(A(n)
k )tA(n)

k ‖op remains bounded, that σ := L(〈U〉k) is Lebesgue-continuous and has in particular
no point-mass on zero. Using dominated convergence we have

lim
n→∞

P({I(n)
k ≤ l} ∪ {I(n)

k = n})

=
∫ 1

0
lim
n→∞

B(n− 1, x)({0, . . . , l, n}) dσ(x)

= 0

for all l ∈ N, i.e., (13) is satisfied. Thus, it remains to show that the condition (12),

2d
′−1∑
r=0

E

∥∥(A∗r)
tA∗r

∥∥
op
< 1,

is satisfied. First of all, we observe that

(A∗r)
tA∗r = diag

(
1S1
r (U,Q(1))〈U〉2α−2

r ,1S2
r (U,Q(2))〈U〉2β−2

r

)
are identically distributed for r = 0, . . . , 2d

′ − 1. Clearly the spectral radius of these matrices is
the maximum of the diagonal entries. Furthermore note, that q + s ≤ q + t implies β ≤ α and
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U2α−2
i ≤ U2β−2

i for the occurring Ui. This implies

2d
′−1∑
r=0

E

∥∥(A∗r)
tA∗r

∥∥
op

= 2d
′
E max

{
1S1

0 (U,Q(1))〈U〉2α−2
0 ,1S2

0 (U,Q(2))〈U〉2β−2
0

}
= 2d

′
E

[
1S2

0 (U,Q(2))〈U〉2β−2
0 + (1− 1S2

0 (U,Q(2)))1S1
0 (U,Q(1))〈U〉2α−2

0

]
= 2d

′

((
1

2β

)q+t( 1
2β − 1

)d′−q−t
+
(

1
2α

)q+s( 1
2α− 1

)d′−q−s
−
(

1
2α+ 1

)q ( 1
2α

)s+t( 1
2α− 1

)d′−q−s−t)
< 1,

by (44).

It is easy to see that the ideal contraction condition is satisfied for all choices of
d′, q, s, t. The strengthened conditions (44) is violated for the choices (d′, q, s, t) =
(6, 4, 1, 1), (7, 6, 0, 0), (7, 5, 1, 1), (8, 7, 0, 0), (8, 6, 1, 1) . . . Up to dimension d′ = 10 there are 460 quali-
tatively different cases from which 9 are not covered by the strengthened condition. Interestingly, all
these cases are of a special type which can be covered by the alternative contraction condition (22),
as it follows from the second part of the next Lemma. However, we have no proof that this holds for
arbitrarily large d′.

Now we turn to the case of general d ≥ 2. Increasing d would easily violated (12) if the sizes
|Sk| remain large, e.g., |Sk| > 0.57d′ for all k (as seen from the first part of the following proof).
Therefore we give two special cases, where we can still for arbitrarily large d get a limit law. For this
we scale as in the case d = 2 and get the limiting matrices

A∗r := diag
(
1S1
r (U,Q(1))〈U〉α1−1

r , . . . ,1Sdr (U,Q(d))〈U〉αd−1
r

)
(45)

for r = 0, . . . , 2d
′ − 1, where the αk are the solutions of the corresponding indicial equations, and the

random toll vector

b∗ =

((
2d
′−1∑
r=0

1S1
r (U,Q(1))〈U〉α1−1

r − 1

)
γs1,d′ , . . . , (46)

(
2d
′−1∑
r=0

1Sdr (U,Q(d))〈U〉αd−1
r − 1

)
γsd,d′

)t
. (47)

Lemma 6.2 The conditions of Theorem 4.1 are satisfied if

αk >
3
2

(
or equivalently

sk
d′
<

ln(4/3)
ln(5/3)

= 0.56317079 . . .
)

(48)

for all k = 1, . . . , d or

α1 = . . . = αd (or equivalently s1 = . . . = sd). (49)

21



Proof: First we assume that (48) is given. In this case we apply Theorem 4.1 as in the proof of
Theorem 6.1. It remains to prove

2d
′−1∑
r=0

E

∥∥(A∗r)
tA∗r

∥∥
op
< 1.

Again, (A∗r)
tA∗r are identically distributed and with α := min1≤k≤d αk we deduce

2d
′−1∑
r=0

E

∥∥(A∗r)
tA∗r

∥∥
op

= 2d
′
E max

1≤k≤d

{
1Sk0 (U,Q(k))〈U〉2αk−2

0

}
≤ 2d

′
E

[
max

1≤k≤d

{
1Sk0 (U,Q(k))

}
〈U〉2α−2

0

]
≤ 2d

′
E 〈U〉2α−2

0

= 2d
′
(

1
2α− 1

)d′
< 1,

if 2/(2α − 1) < 1 which means α > 3/2. Therefore, αk > 3/2 for k = 1, . . . , d implies (12). This
proves the assertion of the theorem under condition (48).

For the second part we assume that αk =: α for k = 1, . . . , d is given. We apply Corollary 4.2.
Note, that condition (21) can be derived similarly to condition (13) in the proof of Theorem 6.1.
Hence, it remains to show (22). By conditioning on U we derive

E

2d
′−1∑
r=0

1{I(n)
r =i}

(
A(n)
r

)2

kk
(50)

= E

2d
′−1∑
r=0

1{I(n)
r =i}1

Sk
r (U,Q(k))

(
i

n

)2α−2

=
(
i

n

)2α−2 2d
′−1∑
r=0

∫
[0,1]d′

(
n

i

)
〈u〉ir(1− 〈u〉r)n−i

∏
l∈Sk
rl=0

ul
∏
l∈Sk
rl=1

(1− ul) du

=
(
n

i

)(
i

n

)2α−2 ∫
[0,1]d′

2d
′−1∑
r=0

〈u〉ir(1− 〈u〉r)n−i
∏
l∈Sk
rl=0

ul
∏
l∈Sk
rl=1

(1− ul) du.

The integral only depends on the cardinality of Sk, thus the expectation in (50) is independent of k.
Therefore, in (22) we may remove the maximum and derive

lim sup
n→∞

n∑
i=0

E

2d
′−1∑
r=0

1{I(n)
r =i}

(
A(n)
r

)2

11
= lim sup

n→∞
E

2d
′−1∑
r=0

(
A(n)
r

)2

11
= E

2d
′−1∑
r=0

(A∗r)
2
11 .

This is the contraction factor for the one-dimensional problem which was shown to be less than 1 in
[38].
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7 Conclusion

We proposed an extension of the contraction method with respect to the minimal L2-metric `2. The
contraction condition (7) for the limiting map which determines the limit distribution for the limit
law is ∥∥∥∥∥

K∑
r=1

E

[
AtrAr

]∥∥∥∥∥
op

< 1.

However, in order to derive the limit law we had to strengthen this condition to , e.g., (12):

K∑
r=1

E

∥∥AtrAr∥∥op
< 1.

This is contrary to the one-dimensional case d = 1 where the contraction condition for the limiting
map also implies convergence in the `2-metric. Note, that in the one-dimensional case (7) and (12)
are equivalent. In our approach it seems to be crucial to find an appropriate estimate for the term
(17). Since we have no example where (7) is satisfied and no convergence in `2 holds it remains open
whether (7) is sufficient to imply the limit law or not.
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