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0. Introduction and Summary

Uppuluri and Carpenter (1971) (referred to below as [U-C]), have discussed a
generalized occupancy model related to the classical occupancy model discussed by
David and Barton (1962). We first obtain Uppuluri and Carpenter's results by

elementary methods, and then discuss a natural multivariate generalization.

1. Univariate Case

Consider a population containing just m categories, of which b(s<m) appear
with equal frequency, each being a proportion p of the total population. We
call these categories of Class I. The remaining categories (a proportion
(1 - bp) of the total population) we will call categories of Class II.

We first evaluate the probability that in r independent trials, in each of
which an individual is chosen at random from the population, observed and return-
ed to the population, there are observed exactly j of the b Class I cate-

gories.

We will denote by Vr the number of different Class I categories observed
in r independent trials, and by Ry the number of trials in which a Class I

category (any one among the b in this Class) is observed. Then R1 has
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a binomial distribution with parameters r, bp.

The distribution of Vr’ given R1 is the same as that of the number of

different categories observed when there are just b equally likely categories
(i.e. each in proportion b-l) and Ry trials. This is the classical occupancy
distribution (e.g. David and Barton (1962)). Hence
. R, R
s [ b 1
Pr[v, =7j[R;] = o i ()

Averaging over the distribution of R1

. R R
Pr[v_ = j] = (?)E[AJO Lp 1y
Using the formula (for A an arhitrary constant)
E[AR]] = (1 - bp + bp)” ©)
we obtain Priv_ = j] = (?)Aj(l - bp + po0)T . (3)

Since Ajf(x) = i (-l)j—h(g)f(x+h) = % (-1)h(%)f(x+j—h) s we can express (3) as
0

h=0 .
or ) . | |
Pelly = 31 = Q) } (DR - ool “(3)

h=0

(x)
ij
gories of Class I have already been observed, that after r further independent

[U-C] derive the conditional probability p s given that i (<j) cate-
trials are carried out, the total number of different Class I categories observed
(including the i already observed) will be j. To evaluate this we regard the
(b-i) so far unobserved Class I categories as Class I' categories (each, of
course, still with proportion p) and all others (including Class II categories)

as Class II'. We then need the probability of observing (j-i) Class I'
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categories. So we replace b by (b-i) and j by (j-i) in (3), obtaining

i .
P§3’3= DAL - -)p # p0d “)

If we use the form (3)", we obtain
by = (?Ii)iﬁéc-1>h(g){l - -j+hyp}” oF

which agrees with the formula on page 320 of [U-C]. The methods we use are
much simpler than those used in [U-C], which include the theory of absorbing
Markov chains and '"'bidiagonal'’ matrices.

Results obtained in [U-C] concerning a certain waiting-time distribution
can also be obtained quite simply. Let T denote the number of trials needed
to observe all b categories of Class I, given that i have already been

observed. We again introduce the Classes I', II' defined above, and note that

b-i
T= ) T, (5)
h=0
where Th is the number of trials needed to observe some one of (b-i-h+l)

categories of Class I (each with proportion p). The Th’s are independent

and Th has a geometric distribution with parameter (b-i-h+1l)p. Hence
_ . -1 -1
E[Th] = (b-i-h+l1) "p 6)
and
var(T,) = {1 - (b-i-h+1)p} (b-i-h+1)%p~2. )
From (5), (6) and (7)
-1 b-i 1
E[T] = p = ) (b-i-h+1) (8)
h=1
b-i b-i
var(T) = p2 J (b-i-h+1)72 - p71 § (m-i-he)7! . (9)
h=1 h=1

These formulae agree with those on page 323 of [U-C].
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Of course, the expected value of the waiting time could be obtained as

riibr{Pr[V;b] - Pr[Vr_l=b]}.

Feller (1962) and Harkness (1969) consider an extension of the classical
occupancy problem in which there is a probability (1-w) that an observation
falling in any Class I category will not be recorded. (Tables of critical
points for the "extended" classical occupancy distribution are available in
Johnson, Kotz and Srinivasan (1974)). 1In the situation we have discussed
here this simply means that R has a binomial distribution with parameters

r, bwp (in place of r, bp). The formulae (3) - (9) will still apply, with

p replaced everywhere by uwp.

2. Multivariate Generalization

The simple techniques employed in Section 1 can be applied to obtain some
results for a natural generalization.
Suppose we have bg categories of Class I(g) for g =1,2,...,k and

each category of Class I(g) has proportion pg. Class I7, as before contains

k
all the remaining categories, and has total proportion 1 - Z bgpg = @0 , say.
K g=1
Suppose, now, that in r = z Rg independent trials, Rg trials yield
g=0

individuals in Class I(g) (for g = 1,2,...,k) and R0 yield Class II individuals.

Then the conditional probability, given Rl,Rz,...,Rg, that.exactly jg of

the bg Class I(g) categories have been observed (g = 1,2,...,k) is

k
= 9 = \ = i
Pryy = 1[R] 1V JgIRgl
g_
k b_j R R
= 1 (j°)A g9 g/bgg : (10)

g=l "g



‘l'}.

Vo=
Here V! (Vr,l""

categories obsérved, and j' = (jl’jZ""’jk)' (Note that conditionally

’Vr,k) with V. g being the number of Class I(g)

3

on R , the Vr g’s are mutually independent.)
~ l]

Now IP(\O,RI,...,Rk have a joint multinomial distribution, with parameters
r; (1 - gglbg,pg), blpl""’bkpk' Proceeding as in the univariate case

(cf (2) - (3)) and noting that for arbitrary constants Al’AZ"”’Ak

o bog e Fopat
E[TA®] =( - bn + bpA) (11)
g=1 & g=1 £8 -1 888
k T
= b A 11)¢
(g gzl gy’ ()
we obtain
Pr(y, = j] = E[Pr[Y, = j|RI]
K 3 k
=1 (g]A Bpy + 1 p,c0)" (12)
=1 0
g=1 ) g g=1 8 &

where the difference operator Ag operates only on O _.

Noting that
Jp 3y g 0y O K Jgoag)

By By% 8 10,70,% 0, = T (A
g=1
we find that (12) can be put in the form
%(j -h .
k by d 20y jg K r
RPN 1St (113} T 19 Y
~F o g=aVglh=0 g=1'"g g=1
Noting further that
b ! b
['g](;g] = B TRTGROT - [b i heaj -h }
Jgl gl (bgdg)thgt (3 ghy)! g lg"g e g

we see that (12) or (12)' can also be expressed as



k
) Z(J “ho) ¥ b k r
Pr[v_=j] = 2 I ( - }[p + Y hp ] . (12)"
~T R b -3 ,h ,i -h 0
h=g g=1Vg g g g g=1 £°6
Yet another form is
k
R X b r
Pr[y,=j] = ] (-1 " [b 5 hejoh ]{ 2 (g g)pg} : (12)™
¥ h=Q g=1‘"g g’ g’g ¢
k
Remembering that pO-l z bgpg’ the parallelism between (12)" and (3)', and
g=1

between (12)'"'and (3)" is apparent.

If we suppose that ’ik categories of Classes I(1),I(2),...,I(k)

iysigs...
respectively have already been observed, then as in Section 1, we obtain the
conditional probability, that jl’jz"'°’jk categoriess;in all,of Classes
I(1),1(2),...,I(k) respectively will have been observed after r further

independent trials, by replacing bg by (bg—ig) and j_ by (jg-ig) in

g
(12), remembering the *hidden" bg’s in Pg- We obtain from (12)*%
k
g 8 g -1 T
iz) Z -n? I [b 3 hg 38_1 “h }[ Py * Z (h -1g)pg]. (13)
h=0 g=1'"g "g’"g’"g g "¢ g=1

An extension, analogous to that described at the end of Section 1, is
obtained by supposing that (for g = 1,2,...,k) there is a probability, (l-wgl,
that an observation of any category in Class I(g) is not recorded. The
formulae (12)-(13) will still apply, with pg replaced by wgpg(g=1,2,...,k),
remembering that now p, = z b wp

g—l gg g

3. Expected Values

In the univariate case (Section 1) the probability that each of n
specified categories of Class I are observed (at least once) in r independent

trials is



1- Qa-p’ + Qa-zpt. DT = (DM’
(Note that np < 1.) .

We define

1 if the t-th category in Class I is observed,
2, = {

0 if not.
Then, for any subset (al,az,...,an) of (1,2,...,b)

n oLt n,n Tr
E[Mz,]= (-1)°A (1-p°0)
t=1 7t
where al,az,..

In particular

.,an are positive integers.

o)
B[Z,'] = -A(-p0) = 1 - (1-p)"

whence
Blz,] =1 - (1-p)°
var(Z,) = 1-pF{1-1-p*}
cov(Z,Z,,) = Az(l-p00)r -f{-A(l—p°0)r}2
= (1-2p)% - (1-p) .
b
Now V_ = } 2, and so
t=1 B - T
i[V,] = b{1-(1-p)"}

var(Vr)

b(1-p) T {1-1-p)T} + bb-1){1-2p)" - (1-p)?%}

(14)

(15)

(16)

(17)

(18.1)

(18.2)

(18.3)

(19.1)

b{-p)T - -2p)7) - B2 a-p?T - 1-2p)T). (19.2)

Note that if there is no Class II, then p = b'1 and we have the classical

occupancy problem. p cannot exceed bnl.

In the multivariate case we define
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Z =

1 if the t-th category in Class I(g) is observed,
™ {

0 if not. (20)

b
hat V ng
so tha = .
r,g =1 gt
Then (cf. (19.1), (19.2))

B[V, ] = by {1 - (l-pg)r} (21.1)

- _ r - ry .2 _ 2r _ _ T
var(Vr’g) = bg{(l pg) (1 2pg) } bg{(l pg) a Zpg) } (21.2)

Also, since (for (g,t) # (g',t"'))

E[thzg,t,] = Pr[(th=1) n (Zg't' = 1)]

=1

__r__ T . . T
(1 pg) ¢! pg,) + (1 Py pg.)

we have (for g # g')

L]

cov(V

r.g’vr,g') b bg, cov(Z

g ge*2grer)

n

T T T
bgbge{cl-pg-pg.) - (1-py) (I'ng) }

(21.3)
We now find the regression of V_ _, on V . Since
r,g r,g
bg jg Rg Rg
Priv. =3 |R ] = [."]A b
TV, g™ TglRy] {Jg] 0 %/t
we have, using Bayes'! theorem
j.r. . T ?8 a7
(%0 Byee yp Faa-bp ) e
Pr[R =r |V =j ]= e (22)
88 BEE A8{1p 0
- + -]
&g g
Given Rg=rg’ Vr,g' will be distributed as Vr—rg,g' , with pg, replaced
-1
b 1-b . Hence
Y Pgil P
-l r-1r
E[V R = =b ,[1 - 11- 1-b g 23
[V, go RG] = boy[1 = {1-p,, (1-bp )1 77E] (23)



and E[V, ,Iv

r g g] is the expected value of (23) taken over the distri-

bution (22).

This is

' T ' r-rg.]
°0) E(1-v PPy ')

13,
b, [1 - [A g{l bepy*Pg -0¥¥171a"8

Il [ L]

g
Ig
A =(1-b.p P, *P, °0)
= bg' 1 -
A g(l b PP, 0¥
Thus the regression of V on V_ ., is
r;g r,g
Ve g T
b T28(1-b p b, b, °0)7
SEETAE " - g£g°8 °8
E[vr,g,lvr’g] bgg 1 v (24)

T28(1-b p_+p _-0)
A ( gPe*Py )
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