ON A MULTIVARIATE STORAGE PROCESS

UDC 519.21

O. K. ZAKUSYLO AND N. P. LYSAK

Abstract

A multivariate storage process that satisfies the Langevin equation is studied in the paper.

1. Introduction

Let a process $x(t)=\left(x_{1}(t), x_{2}(t), \ldots, x_{n}(t)\right)^{T} \in \mathbb{R}^{n}$ satisfy the Langevin equation

$$
\begin{equation*}
d x(t)=A x(t) d t+d z(t) \tag{1}
\end{equation*}
$$

where $z(t)=\left(z_{1}(t), z_{2}(t), \ldots, z_{n}(t)\right)^{T} \in \mathbb{R}^{n}$ is a generalized Poisson process with parameter λ and jumps $\eta^{1}, \eta^{2}, \ldots, \eta^{j}, \ldots ; A: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is a linear operator and $\left\|a_{i j}\right\|_{i, j=1}^{n}$ is the matrix of its representation in some basis of \mathbb{R}^{n}.

Equation (1) with initial data $x(0)=x_{0}$ has a unique solution in the class of measurable processes. This solution can be written in the following form:

$$
\begin{equation*}
x(t)=\exp \{A t\} x_{0}+\int_{0}^{t} \exp \{A(t-u)\} d z(u) \tag{2}
\end{equation*}
$$

It is shown in [1] that the process $x(t)$ has the limit distribution as $t \rightarrow \infty$ and this distribution does not depend on the initial data x_{0} if and only if
a) the eigenvalues of A belong to the left semiplane,
b) $\mathrm{E}\left(\ln \left|\eta^{1}\right| ;\left|\eta^{1}\right|>1\right)<\infty$.

It is also proved in [1] that the limit distribution is a unique stationary distribution of the process $x(t)$ if both of the above conditions hold. The characteristic function of the limit distribution is given by

$$
\begin{equation*}
\psi(s)=\exp \left\{-\lambda \int_{0}^{\infty}\left(1-\varphi\left(\exp \left\{A^{T} u\right\} s\right)\right) d u\right\} \tag{3}
\end{equation*}
$$

where $\varphi(s)=\mathrm{E}\left\{\exp i\left(s, \eta^{1}\right)\right\}$.
As is seen from equality (2), the stationary distribution of $x(t)$ coincides with the distribution of the vector

$$
\begin{equation*}
\xi=\int_{0}^{\infty} \exp \{A u\} d z(u) \tag{4}
\end{equation*}
$$

Moreover, equality (3) implies that the characteristic function of the stationary distribution of $x(t)$ is of the form $\psi(s)=\exp \{\lambda K(s)\}$ where $K(s)$ does not depend on λ. In the stationary regime, $x(\cdot, \lambda)$ can be viewed as values of a stochastically continuous homogeneous process with independent increments at the moment λ.

[^0]
2. Setting of the problem

The limit behavior of the distribution of $x(\cdot, \lambda)$ as $\lambda \rightarrow 0$ is studied in 1 for the case of $A=U \Lambda U^{-1}$ where $\Lambda=\left\|\delta_{i j} \lambda_{i}\right\|_{i, j=1}^{n}, \lambda_{i}(i=1, \ldots, n)$ are real eigenvalues of the matrix A such that $\lambda_{i}<0$ for all i, and $U=\left\|u_{i j}\right\|_{i, j=1}^{n}$ is a nonsingular matrix.

The limit behavior as $\lambda \rightarrow 0$ of the distribution of $x(\cdot, \lambda)$ is obtained in [5] for the case of $A=U J U^{-1}$ where J is a Jordan matrix $1_{1}^{1} A=\left\|a_{i j}\right\|_{i, j=1}^{2}$, and $U=\left\|u_{i j}\right\|_{i, j=1}^{2}$.

In this paper, we consider the general case of $A=U J U^{-1}$ where J is a Jordan matrix, $U=\left\|u_{i j}\right\|_{i, j=1}^{n}$ is a nonsingular matrix, and $A=\left\|a_{i j}\right\|_{i, j=1}^{n}$. We study the limit behavior as $\lambda \rightarrow 0$ of the vector

$$
\tilde{x}=\left(\tilde{x}_{1}, \ldots, \tilde{x}_{n}\right)^{T}=U^{-1} x(\cdot, \lambda)
$$

under the assumption that the distribution of $x(\cdot, \lambda)$ is stationary.
Below we show that the components of the vector \tilde{x} are completely determined by the form of the Jordan blocks. Thus we obtain the limit behavior, as $\lambda \rightarrow 0$, of the part of the vector \tilde{x} that corresponds to a Jordan block J_{i}. In doing so, we consider separately the cases of real and complex eigenvalues λ_{i} of the matrix A.

3. Auxiliary results and notation

The process $z(t)$ is completely determined by the heights of the jumps $\eta^{1}, \eta^{2}, \ldots$ and by the lengths of the intervals $\lambda^{-1} \tau_{1}, \lambda^{-1} \tau_{2}, \ldots$ between the jumps. All the random variables $\eta^{j}, j=1,2, \ldots$, and $\tau_{i}, i=1,2, \ldots$, are independent and $\mathrm{P}\left\{\tau_{i}>t\right\}=\exp \{-t\}$ for $t \geq 0$. Thus we obtain from (4) that

$$
\begin{align*}
\xi= & \exp \left\{\lambda^{-1} \tau_{1} A\right\} \eta^{1}+\exp \left\{\lambda^{-1}\left(\tau_{1}+\tau_{2}\right) A\right\} \eta^{2}+\ldots \\
& +\exp \left\{\lambda^{-1} A \sum_{k=1}^{j} \tau_{k}\right\} \eta^{j}+\ldots \tag{5}
\end{align*}
$$

Below we use the following notation: $\tilde{x}=\left(\tilde{x}_{1}, \ldots, \tilde{x}_{n}\right)^{T}=U^{-1} x(\cdot, \lambda)$;

$$
\begin{gathered}
\tilde{\eta}^{j}=\left(\tilde{\eta}_{1}^{j}, \ldots, \tilde{\eta}_{n}^{j}\right)^{T}=U^{-1} \eta^{j}, \quad j=1,2, \ldots ; \\
\tilde{\xi}=\left(\tilde{\xi}_{1}, \ldots, \tilde{\xi}_{n}\right)^{T}=U^{-1} \xi ; p_{r}=\mathrm{P}\left\{\tilde{\eta}_{r}^{j}=0\right\} ; p_{r}^{+}=\mathrm{P}\left\{\tilde{\eta}_{r}^{j}>0\right\} \\
\operatorname{sgn} z=\left(\operatorname{sgn} z_{1}, \ldots, \operatorname{sgn} z_{n}\right)^{T} \quad \text { for } z=\left(z_{1}, \ldots, z_{n}\right)^{T} \in \mathbb{R}^{n}
\end{gathered}
$$

$J=\left\{J_{1}, \ldots, J_{m}\right\}$ where J_{i} is the Jordan block of order k_{i} corresponding to the eigenvalue $\lambda_{i}, i=1, \ldots, m$, of the matrix A (there could be equal numbers among the $\lambda_{i}, i=$ $1, \ldots, m) ; \sum_{i=1}^{m} k_{i}=l_{m}, m=1, \ldots, n ; l_{n}=n ; \nu_{i}=\lambda \lambda_{i}^{-1}$ for real λ_{i} and $\kappa_{i}=\lambda a_{i}^{-1}$ for complex $\lambda_{i}=a_{i}+i b_{i}$.

Recall that the matrix $f(A)$ is well defined if $f(t)$ is an analytic function. Since $A=U J U^{-1}$, the matrix $f(J)$ is well defined and, moreover, $f(A)=U f(J) U^{-1}$. Thus relation (5) can be rewritten in the following form:

$$
\begin{aligned}
\xi= & U \exp \left\{\lambda^{-1} \tau_{1} J\right\} \\
& \times U^{-1}\left(\eta^{1}+U \exp \left\{\lambda^{-1} \tau_{2} J\right\} U^{-1} \eta^{2}+\cdots+U \exp \left\{\lambda^{-1} J \sum_{k=2}^{j} \tau_{k}\right\} U^{-1} \eta^{j}+\ldots\right)
\end{aligned}
$$

or

$$
\xi=U \exp \left\{\lambda^{-1} \tau_{1} J\right\} U^{-1}\left(\eta^{1}+\xi^{1}\right)
$$

where the random variables τ_{1}, ξ^{1}, and η^{1} are independent and the distributions of ξ and ξ^{1} are identical.

[^1]Therefore

$$
\begin{equation*}
\tilde{\xi}=\exp \left\{\lambda^{-1} \tau_{1} J\right\}\left(\tilde{\eta}^{1}+\exp \left\{\lambda^{-1} \tau_{2} J\right\} \tilde{\eta}^{2}+\cdots+\exp \left\{\lambda^{-1} J \sum_{k=2}^{j} \tau_{k}\right\} \tilde{\eta}^{j}+\ldots\right) \tag{6}
\end{equation*}
$$

or

$$
\begin{equation*}
\tilde{\xi}=\exp \left\{\lambda^{-1} \tau_{1} J\right\}\left(\tilde{\eta}^{1}+\tilde{\xi}^{1}\right) \tag{7}
\end{equation*}
$$

where $\tilde{\xi}^{1}=\left(\tilde{\xi}_{1}^{1}, \ldots, \tilde{\xi}_{n}^{1}\right)=U^{-1} \xi^{1}$, the distributions of $\tilde{x}, \tilde{\xi}$, and $\tilde{\xi}^{1}$ are identical, and

$$
\begin{gather*}
\exp \left\{\lambda^{-1} \tau_{1} J\right\}=\left\{\exp \left\{\lambda^{-1} \tau_{1} J_{1}\right\}, \ldots, \exp \left\{\lambda^{-1} \tau_{1} J_{m}\right\}\right\} \\
\exp \left\{\lambda^{-1} \tau_{1} J_{i}\right\}=\exp \left\{\lambda^{-1} \tau_{1} \lambda_{i}\right\}\left(\begin{array}{ccccc}
1 & \frac{\lambda^{-1} \tau_{1}}{1!} & \ldots & \frac{\left(\lambda^{-1} \tau_{1}\right)^{k_{i}-1}}{\left(k_{i}-1\right)!} \\
0 & 1 & \ldots & \frac{\left(\lambda^{-1} \tau_{1}\right)^{k_{i}-2}}{\left(k_{i}-2\right)!} \\
\ldots & \ldots & \ldots & \ldots \\
0 & 0 & \cdots & 1
\end{array}\right) \tag{8}
\end{gather*}
$$

It is seen from (6) and (7) that the components of the vector $\tilde{\xi}=\left(\tilde{\xi}_{1}, \ldots, \tilde{\xi}_{n}\right)^{T}$ as well as those of the vector $\tilde{x}=\left(\tilde{x}_{1}, \ldots, \tilde{x}_{n}\right)^{T}$ are determined by the Jordan blocks. Thus, without loss of generality, we restrict our consideration below to the investigation of the part of the vector \tilde{x} that corresponds to the Jordan block J_{i} of order k_{i} related to the eigenvector λ_{i}.

Denote by $\left(\tilde{x}_{l_{i-1}+1}, \tilde{x}_{l_{i-1}+2}, \ldots, \tilde{x}_{l_{i}}\right)^{T}$ the part of the vector \tilde{x} that corresponds to the Jordan block J_{i} and let $\left(\tilde{\eta}_{l_{i-1}+1}^{j}, \tilde{\eta}_{l_{i-1}+2}^{j}, \ldots, \tilde{\eta}_{l_{i}}^{j}\right)^{T}, j=1,2 \ldots$, be the part of the vector $\tilde{\eta}^{j}$ related to the Jordan block J_{i}.

We introduce the random events $A_{1}=\left\{\tilde{\eta}_{l_{i}}^{1} \neq 0\right\}$,

$$
A_{j}=\left\{\tilde{\eta}_{l_{i}}^{1}=0, \ldots, \tilde{\eta}_{l_{i}}^{j-1}=0, \tilde{\eta}_{l_{i}}^{j} \neq 0\right\}
$$

$B_{1}=\left\{\tilde{\eta}_{l_{i}-1}^{1} \neq 0\right\}, B_{j}=\left\{\tilde{\eta}_{l_{i}-1}^{1}=0, \ldots, \tilde{\eta}_{l_{i}-1}^{j-1}=0, \tilde{\eta}_{l_{i}-1}^{j} \neq 0\right\}, j=2,3 \ldots$, and denote the indicators of events A_{j} and B_{j} by $1\left(A_{j}\right)$ and $1\left(B_{j}\right)$, respectively. Let $\mathrm{P}\left\{A_{1}\right\}=p$ and $\mathrm{P}\left\{B_{1}\right\}=q$. In what follows we assume that all stochastic processes and random variables are defined on the same probability space.

4. Main ReSUlts

We distinguish between the following two cases.
I. An eigenvalue $\lambda_{i}<0$ of the matrix A is real ($\tilde{x}_{l_{i-1}+1}, \ldots, \tilde{x}_{l_{i}}$ are real in this case).
II. An eigenvalue $\lambda_{i}<0$ of the matrix A is complex; that is,

$$
\lambda_{i}=a_{i}+i b_{i}, \quad a_{i}<0, \quad b_{i} \neq 0
$$

In this case, $\tilde{x}_{l_{i-1}+1}, \ldots, \tilde{x}_{l_{i}}$ are complex. We represent these numbers as follows:

$$
\tilde{x}_{l_{i-1}+1}=\left|\tilde{x}_{l_{i-1}+1}\right| \exp \left\{i \varphi_{l_{i-1}+1}\right\}, \quad \ldots, \quad \tilde{x}_{l_{i}}=\left|\tilde{x}_{l_{i}}\right| \exp \left\{i \varphi_{l_{i}}\right\}
$$

where $\varphi_{l_{i-1}+1}=\arg \tilde{x}_{l_{i-1}+1}, \ldots, \varphi_{l_{i}}=\arg \tilde{x}_{l_{i}}, \varphi_{l_{i-1}+1}, \ldots, \varphi_{l_{i}} \in(0,2 \pi)$.

4.1. Case I.

Theorem 1. If $p_{l_{i}}=0$ and the distribution of $x(\cdot, \lambda)$ is stationary, then the distribution of

$$
\left(\left|\tilde{x}_{l_{i-1}+1}\right|^{-\nu_{i}}, \ldots,\left|\tilde{x}_{l_{i}}\right|^{-\nu_{i}}, \operatorname{sgn}\left(\tilde{x}_{l_{i-1}+1}, \ldots, \tilde{x}_{l_{i}}\right)\right)
$$

converges weakly as $\lambda \rightarrow 0$ to the distribution of $\left(\alpha, \ldots, \alpha, \operatorname{sgn}\left(\tilde{\eta}_{l_{i}}^{1}, \ldots, \tilde{\eta}_{l_{i}}^{1}\right)\right)$, where α has the uniform distribution on the interval $(0,1)$ and does not depend on $\tilde{\eta}_{l_{i}}^{1}$.

Proof. Since $p_{l_{i}}=0$ and the distributions of the vectors \tilde{x} and $\tilde{\xi}$ are identical, we use relations (7) and (8) and obtain

$$
\begin{align*}
\left(\tilde{\xi}_{l_{i-1}+1}, \ldots, \tilde{\xi}_{l_{i}}\right)^{T} & =\exp \left\{\lambda^{-1} \tau_{1} J_{i}\right\}\left(\tilde{\xi}_{l_{i-1}+1}^{1}+\tilde{\eta}_{l_{i-1}+1}^{1}, \ldots, \tilde{\xi}_{l_{i}}^{1}+\tilde{\eta}_{l_{i}}^{1}\right)^{T} \\
& =\exp \left\{\lambda^{-1} \tau_{1} \lambda_{i}\right\}\left(\tilde{\zeta}_{l_{i-1}+1}^{1}, \tilde{\zeta}_{l_{i-1}+2}^{1}, \ldots, \tilde{\zeta}_{l_{i}}^{1}\right)^{T} \tag{9}
\end{align*}
$$

where

$$
\begin{gathered}
\tilde{\zeta}_{l_{i-1}+1}^{1}=\sum_{m=0}^{k_{i}-1} \frac{\left(\lambda^{-1} \tau_{1}\right)^{m}}{m!}\left(\tilde{\xi}_{l_{i-1}+m+1}^{1}+\tilde{\eta}_{l_{i-1}+m+1}^{1}\right) \\
\tilde{\zeta}_{l_{i-1}+2}^{1}=\sum_{m=0}^{k_{i}-2} \frac{\left(\lambda^{-1} \tau_{1}\right)^{m}}{m!}\left(\tilde{\xi}_{l_{i-1}+m+2}^{1}+\tilde{\eta}_{l_{i-1}+m+2}^{1}\right), \quad \ldots, \quad \tilde{\zeta}_{l_{i}}^{1}=\tilde{\xi}_{l_{i}}^{1}+\tilde{\eta}_{l_{i}}^{1} .
\end{gathered}
$$

According to Lemma 6.4 in [1], $\tilde{\xi}^{1} \xrightarrow{\mathrm{P}} \overline{0}$ as $\lambda \rightarrow 0$ and

$$
\begin{aligned}
& \mathrm{P}\left\{\tilde{\eta}_{l_{i-1}+1}^{1}+\sum_{m=1}^{k_{i}-1} \frac{\left(\lambda^{-1} \tau_{1}\right)^{m}}{m!} \tilde{\eta}_{l_{i-1}+m+1}^{1}=0\right\} \\
& \quad=\mathrm{P}\left\{\sum_{m=1}^{k_{i}-1} \frac{\left(\lambda^{-1} \tau_{1}\right)^{m}}{m!} \tilde{\eta}_{l_{i-1}+m+1}^{1}=-\tilde{\eta}_{l_{i-1}+1}^{1}\right\}=0
\end{aligned}
$$

since the random variables τ_{1} and $\tilde{\eta}_{r}^{1}\left(r=l_{i-1}+1, \ldots, l_{i}\right)$ are independent and

$$
\sum_{m=1}^{k_{i}-1} \frac{\left(\lambda^{-1} \tau_{1}\right)^{m}}{m!} \tilde{\eta}_{l_{i-1}+m+1}^{1}
$$

has an absolutely continuous distribution. Thus

$$
\begin{gathered}
\lim _{\lambda \rightarrow 0} \ln \left|\sum_{m=0}^{k_{i}-1} \frac{\left(\lambda^{-1} \tau_{1}\right)^{m}}{m!}\left(\tilde{\xi}_{l_{i-1}+m+1}^{1}+\tilde{\eta}_{l_{i-1}+m+1}^{1}\right)\right|^{-\nu_{i}} \\
=-\lambda_{i}^{-1} \lim _{\lambda \rightarrow 0} \frac{\tau_{1}^{k_{i}-1} \tilde{\eta}_{l_{i}}^{1}}{\tau_{1}^{k_{i}-2} \tilde{\eta}_{l_{i}-1}^{1}+\lambda^{-1} \tau_{1}^{k_{i}-1} \tilde{\eta}_{l_{i}}^{1}}=0
\end{gathered}
$$

Therefore relation (9) implies that

$$
\begin{gathered}
\left|\tilde{\xi}_{l_{i-1}+1}\right|^{-\nu_{i}}=\exp \left\{-\tau_{1}\right\}\left|\sum_{m=0}^{k_{i}-1} \frac{\left(\lambda^{-1} \tau_{1}\right)^{m}}{m!}\left(\tilde{\xi}_{l_{i-1}+m+1}^{1}+\tilde{\eta}_{l_{i-1}+m+1}^{1}\right)\right|^{-\nu_{i}} \xrightarrow{\mathrm{P}} \exp \left\{-\tau_{1}\right\}, \\
\left|\tilde{\xi}_{l_{i-1}+2}\right|^{-\nu_{i}} \xrightarrow{\mathrm{P}} \exp \left\{-\tau_{1}\right\}, \quad \ldots, \quad\left|\tilde{\xi}_{l_{i}}\right|^{-\nu_{i}} \xrightarrow{\mathrm{P}} \exp \left\{-\tau_{1}\right\}, \\
\operatorname{sgn} \tilde{\xi}_{l_{i-1}+1} \xrightarrow{\mathrm{P}} \operatorname{sgn} \tilde{\eta}_{l_{i}}^{1}, \quad \operatorname{sgn} \tilde{\xi}_{l_{i-1}+2} \xrightarrow{\mathrm{P}} \operatorname{sgn} \tilde{\eta}_{l_{i}}^{1}, \quad \ldots, \quad \operatorname{sgn} \tilde{\xi}_{l_{i}} \xrightarrow{\mathrm{P}} \operatorname{sgn} \tilde{\eta}_{l_{i}}^{1}
\end{gathered}
$$

as $\lambda \rightarrow 0$. Moreover the random variable $\exp \left\{-\tau_{1}\right\}=\alpha$ has the uniform distribution on the interval $(0,1)$ and does not depend on $\tilde{\eta}_{l_{i}}^{1}$.

Now Theorem 1 follows, since the convergence in probability of the corresponding coordinates of the vectors implies the weak convergence of the distributions of the vectors.

Theorem 2. If $0<p_{l_{i}}<1$ and the distribution of $x(\cdot, \lambda)$ is stationary, then the distribution of

$$
\left(\left|\tilde{x}_{l_{i-1}+1}\right|^{-\nu_{i}}, \ldots,\left|\tilde{x}_{l_{i}}\right|^{-\nu_{i}}, \operatorname{sgn} \tilde{x}_{l_{i-1}+1}, \ldots, \operatorname{sgn} \tilde{x}_{l_{i}}\right)
$$

weakly converges as $\lambda \rightarrow 0$ to the distribution of ($\alpha^{1 / p}, \ldots, \alpha^{1 / p}, \gamma, \ldots, \gamma$), where the random variable α has the uniform distribution on the interval $(0,1)$, while the random variable γ assumes the values 1 and -1 with the probabilities $p_{l_{i}}^{+}$and $\left(1-p_{l_{i}}^{+}\right)$, respectively, and does not depend on α.

Proof. If $0<p_{l_{i}}<1$, then we get from relations (6) and (8) that

$$
\left(\tilde{\xi}_{l_{i-1}+1}, \tilde{\xi}_{l_{i-1}+2}, \ldots, \tilde{\xi}_{l_{i}}\right)^{T}=\exp \left\{\lambda^{-1} \tau_{1} \lambda_{i}\right\}\left(\tilde{\zeta}_{l_{i-1}+1}, \tilde{\zeta}_{l_{i-1}+2}, \ldots, \tilde{\zeta}_{l_{i}}\right)^{T}
$$

where

$$
\begin{gathered}
\tilde{\zeta}_{l_{i-1}+1}=\sum_{m=1}^{k_{i}}\left(\frac{\left(\lambda^{-1} \tau_{1}\right)^{k_{i}-m}}{\left(k_{i}-m\right)!} \tilde{\eta}_{l_{i}-m+1}^{1}\right. \\
\left.\quad+\sum_{j=2}^{\infty} \exp \left\{\lambda^{-1} \lambda_{i} \sum_{k=2}^{j} \tau_{k}\right\} \frac{\left(\lambda^{-1} \sum_{k=1}^{j} \tau_{k}\right)^{k_{i}-m}}{\left(k_{i}-m\right)!} \tilde{\eta}_{l_{i}-m+1}^{j}\right), \\
\tilde{\zeta}_{l_{i-1}+2}=\sum_{m=2}^{k_{i}}\left(\frac{\left(\lambda^{-1} \tau_{1}\right)^{k_{i}-m}}{\left(k_{i}-m\right)!} \tilde{\eta}_{l_{i}-m+2}^{1}\right. \\
\left.+\sum_{j=2}^{\infty} \exp \left\{\lambda^{-1} \lambda_{i} \sum_{k=2}^{j} \tau_{k}\right\} \frac{\left(\lambda^{-1} \sum_{k=1}^{j} \tau_{k}\right)^{k_{i}-m}}{\left(k_{i}-m\right)!} \tilde{\eta}_{l_{i}-m+2}^{j}\right), \\
\tilde{\zeta}_{l_{i}}=\tilde{\eta}_{l_{i}}^{1}+\sum_{j=2}^{\infty} \exp \left\{\lambda^{-1} \lambda_{i} \sum_{k=2}^{j} \tau_{k}\right\} \tilde{\eta}_{l_{i}}^{j} .
\end{gathered}
$$

Consider the random events

$$
\begin{gathered}
A_{1}=\left\{\tilde{\eta}_{l_{i}}^{1} \neq 0\right\}, \quad A_{2}=\left\{\tilde{\eta}_{l_{i}}^{1}=0, \tilde{\eta}_{l_{i}}^{2} \neq 0\right\}, \ldots, \\
A_{j}=\left\{\tilde{\eta}_{l_{i}}^{1}=0, \ldots, \tilde{\eta}_{l_{i}}^{j-1}=0, \tilde{\eta}_{l_{i}}^{j} \neq 0\right\}, \quad \ldots
\end{gathered}
$$

One can treat $\Omega=\left\{A_{1}, A_{2}, \ldots, A_{j}, \ldots\right\}$ as the space of elementary events. Moreover $\mathrm{P}\left\{A_{j}\right\}=p(1-p)^{j-1}$, where $\mathrm{P}\left\{A_{1}\right\}=p$.

The restriction of the random variable $\tilde{\xi}_{r}, r=l_{i-1}+1, \ldots, l_{i}$, on the elementary event $A_{j}, j=1,2, \ldots$, is denoted by $\left.\tilde{\xi}_{r}\right|_{A_{j}}$. Then

$$
\begin{align*}
& \left.\tilde{\xi}_{l_{i-1}+1}\right|_{A_{1}} \equiv \exp \left\{\lambda^{-1} \tau_{1} \lambda_{i}\right\} \frac{\left(\lambda^{-1} \tau_{1}\right)^{k_{i}-1}}{\left(k_{i}-1\right)!} \tilde{\eta}_{l_{i}}^{1}, \\
& \left.\tilde{\xi}_{l_{i-1}+1}\right|_{A_{2}} \equiv \exp \left\{\lambda^{-1}\left(\tau_{1}+\tau_{2}\right) \lambda_{i}\right\} \frac{\left(\lambda^{-1}\left(\tau_{1}+\tau_{2}\right)\right)^{k_{i}-1}}{\left(k_{i}-1\right)!} \tilde{\eta}_{l_{i}}^{2}, \quad \ldots \tag{10}\\
& \left.\tilde{\xi}_{l_{i-1}+1}\right|_{A_{j}} \equiv \exp \left\{\lambda^{-1} \lambda_{i} \sum_{k=1}^{j} \tau_{k}\right\} \frac{\left(\lambda^{-1} \sum_{k=1}^{j} \tau_{k}\right)^{k_{i}-1}}{\left(k_{i}-1\right)!} \tilde{\eta}_{l_{i}}^{j}, \quad \ldots
\end{align*}
$$

Thus we have

$$
\begin{gathered}
\left.\left|\tilde{\xi}_{l_{i-1}+1}\right|_{A_{1}}\right|^{-\nu_{i}} \xrightarrow{\text { a.s. }} \exp \left\{-\tau_{1}\right\},\left.\quad\left|\tilde{\xi}_{l_{i-1}+1}\right|_{A_{2}}\right|^{-\nu_{i}} \xrightarrow{\text { a.s. }} \exp \left\{-\left(\tau_{1}+\tau_{2}\right)\right\}, \quad \ldots, \\
\\
\left.\left|\tilde{\xi}_{l_{i-1}+1}\right|_{A_{j}}\right|^{-\nu_{i}} \xrightarrow{\text { a.s. }} \exp \left\{-\sum_{k=1}^{j} \tau_{k}\right\}, \quad \ldots,
\end{gathered}
$$

as $\lambda \rightarrow 0$; that is,

$$
\left|\tilde{\xi}_{l_{i-1}+1}\right|^{-\nu_{i}} \xrightarrow{\text { a.s. }} \sum_{j=1}^{\infty} \exp \left\{-\sum_{k=1}^{j} \tau_{k}\right\} 1\left(A_{j}\right)=\chi .
$$

A similar reasoning for $\tilde{\xi}_{l_{i-1}+2}, \ldots, \tilde{\xi}_{l_{i}}$ shows that

$$
\begin{aligned}
&\left|\tilde{\xi}_{l_{i-1}+2}\right|^{-\nu_{i}} \xrightarrow{\text { a.s. }} \sum_{j=1}^{\infty} \exp \left\{-\sum_{k=1}^{j} \tau_{k}\right\} 1\left(A_{j}\right), \ldots, \\
&\left|\tilde{\xi}_{l_{i}}\right|^{-\nu_{i}} \xrightarrow{\text { a.s. }} \sum_{j=1}^{\infty} \exp \left\{-\sum_{k=1}^{j} \tau_{k}\right\} 1\left(A_{j}\right) .
\end{aligned}
$$

Analogously we obtain that

$$
\begin{gathered}
\operatorname{sgn} \tilde{\xi}_{l_{i-1}+1}=\sum_{j=1}^{\infty} \operatorname{sgn} \tilde{\eta}_{l_{i}}^{j} 1\left(A_{j}\right)=\gamma, \\
\operatorname{sgn} \tilde{\xi}_{l_{i-1}+2}=\sum_{j=1}^{\infty} \operatorname{sgn} \tilde{\eta}_{l_{i}}^{j} 1\left(A_{j}\right), \quad \ldots, \quad \operatorname{sgn} \tilde{\xi}_{l_{i}}=\sum_{j=1}^{\infty} \operatorname{sgn} \tilde{\eta}_{l_{i}}^{j} 1\left(A_{j}\right)
\end{gathered}
$$

as $\lambda \rightarrow 0$.
Since the random variables

$$
\exp \left\{-\tau_{j}\right\}=\alpha_{j}, \quad j=1,2, \ldots
$$

have the uniform distribution on the interval $(0,1)$, the Laplace transform of χ is given by

$$
\begin{aligned}
\mathrm{E} \exp \{-s \chi\} & =\mathrm{E} \exp \left\{-s \sum_{j=1}^{\infty} \alpha_{1} \ldots \alpha_{j} 1\left(A_{j}\right)\right\} \\
& =\sum_{k=1}^{\infty} \mathrm{P}\left(A_{k}\right) \mathrm{E}_{A_{k}} \exp \left\{-s \sum_{j=1}^{\infty} \alpha_{1} \ldots \alpha_{j} 1\left(A_{j}\right)\right\} \\
& =\sum_{k=1}^{\infty} \mathrm{P}\left(A_{k}\right) \mathrm{E} \exp \left\{-s \alpha_{1} \ldots \alpha_{k}\right\}
\end{aligned}
$$

where

$$
\mathrm{E} \exp \left\{-s \alpha_{1} \ldots \alpha_{k}\right\}=\int_{0}^{1} \ldots \int_{0}^{1} \exp \left\{-s x_{1} \ldots x_{k}\right\} d x_{1} \ldots d x_{k}
$$

The series

$$
\exp \left\{-s x_{1} \ldots x_{k}\right\}=\sum_{j=0}^{\infty} \frac{(-s)^{j}}{j!} x_{1}^{j} \ldots x_{k}^{j}
$$

converges by the d'Alembert criterion for any $x^{0}=x_{1}^{0} \ldots x_{k}^{0}$; thus it converges on $(0,1)$. By the Weierstrass criterion this series is uniformly convergent on $(0,1)$. Since the terms of this series are continuous functions on $(0,1)$, we get

$$
\mathrm{E} \exp \left\{-s \alpha_{1} \ldots \alpha_{k}\right\}=\sum_{j=0}^{\infty} \int_{0}^{1} \ldots \int_{0}^{1} \frac{(-s)^{j}}{j!} x_{1}^{j} \ldots x_{k}^{j} d x_{1} \ldots d x_{k}=\sum_{j=0}^{\infty} \frac{(-s)^{j}}{j!(j+1)^{k}}
$$

Hence

$$
\begin{aligned}
\mathrm{E} \exp \{-s \chi\} & =\sum_{k=1}^{\infty} p(1-p)^{k-1} \sum_{j=0}^{\infty} \frac{(-s)^{j}}{j!(j+1)^{k}}=p \sum_{j=0}^{\infty} \frac{(-s)^{j}}{j!} \sum_{k=1}^{\infty} \frac{(1-p)^{k-1}}{(j+1)^{k}} \\
& =p \sum_{j=0}^{\infty} \frac{(-s)^{j}}{j!} \frac{1}{(j+1)} \sum_{k=1}^{\infty}\left(\frac{1-p}{j+1}\right)^{k-1}=p \sum_{j=0}^{\infty} \frac{(-s)^{j}}{j!} \frac{1}{j+p}=\phi(s)
\end{aligned}
$$

or

$$
\begin{aligned}
\phi(s)(-1)^{p} s^{p} & =p \sum_{j=0}^{\infty} \frac{(-s)^{j+p}}{j!(j+p)}=\int_{0}^{s} d_{u}\left(\phi(u)(-u)^{p}\right)=-p \int_{0}^{s} \sum_{j=0}^{\infty} \frac{(-u)^{j+p-1}}{j!} d u \\
& =-p \int_{0}^{s}(-u)^{p-1} \sum_{j=0}^{\infty} \frac{(-u)^{j}}{j!} d u=p(-1)^{p} \int_{0}^{s} u^{p-1} \exp \{-u\} d u \\
& =p(-1)^{p} \gamma(p, s)
\end{aligned}
$$

where

$$
(-1)^{p}=\exp \{(2 n+1) p \pi i\}=\cos (2 n+1) p \pi+i \sin (2 n+1) p \pi, \quad n=0, \pm 1, \pm 2, \ldots
$$

and $\gamma(p, s)$ is the incomplete gamma function.
Therefore

$$
\phi(s)=p s^{-p} \gamma(p, s)
$$

Using corresponding relations for the inversion of the Laplace-Carson transform 3], we evaluate the density of χ :

$$
g(t)= \begin{cases}p t^{p-1}, & 0<t<1 \\ 0, & t>1\end{cases}
$$

and the corresponding distribution function

$$
G(t)= \begin{cases}t^{p}, & 0<t<1 \\ 0, & t>1\end{cases}
$$

If α has the uniform distribution on $(0,1)$, then $\chi=\alpha^{1 / p}$. The theorem is proved.
Theorem 3. If $p_{l_{i}}=1, p_{l_{i}-1}=0$, and the distribution of $x(\cdot, \lambda)$ is stationary, then the distribution of $\left(\left|\tilde{x}_{l_{i-1}+1}\right|^{-\nu_{i}}, \ldots,\left|\tilde{x}_{l_{i}-1}\right|^{-\nu_{i}},\left|\tilde{x}_{l_{i}}\right|, \operatorname{sgn} \tilde{x}_{l_{i-1}+1}, \ldots, \operatorname{sgn} \tilde{x}_{l_{i}-1}, \operatorname{sgn} \tilde{x}_{l_{i}}\right)$ weakly converges as $\lambda \rightarrow 0$ to the distribution of $\left(\alpha, \ldots, \alpha, 0, \operatorname{sgn} \tilde{\eta}_{l_{i}-1}^{1}, \ldots, \operatorname{sgn} \tilde{\eta}_{l_{i}-1}^{1}, 0\right)$, where α has the uniform distribution on $(0,1)$ and does not depend on $\tilde{\eta}_{l_{i}-1}^{1}$.

Proof. The proof of Theorem 3 is similar to that of Theorem 1.
Theorem 4. If $p_{l_{i}}=1,0<p_{l_{i}-1}<1$, and the distribution of $x(\cdot, \lambda)$ is stationary, then the distribution of

$$
\left(\left|\tilde{x}_{l_{i-1}+1}\right|^{-\nu_{i}}, \ldots,\left|\tilde{x}_{l_{i}-1}\right|^{-\nu_{i}},\left|\tilde{x}_{l_{i}}\right|, \operatorname{sgn} \tilde{x}_{l_{i-1}+1}, \ldots, \operatorname{sgn} \tilde{x}_{l_{i}-1}, \operatorname{sgn} \tilde{x}_{l_{i}}\right)
$$

weakly converges as $\lambda \rightarrow 0$ to the distribution of $\left(\alpha^{1 / q}, \ldots, \alpha^{1 / q}, 0, \gamma, \ldots, \gamma, 0\right)$, where α has the uniform distribution on $(0,1)$, while the random variable γ assumes the values 1 and -1 with probabilities $p_{l_{i}-1}^{+}$and $1-p_{l_{i}-1}^{+}$, respectively, and does not depend on α.
Proof. The proof of Theorem 4 is analogous to that of Theorem 2. Note however that the random events $B_{1}=\left\{\tilde{\eta}_{l_{i}-1}^{1} \neq 0\right\}, B_{j}=\left\{\tilde{\eta}_{l_{i}-1}^{1}=0, \ldots, \tilde{\eta}_{l_{i}-1}^{j-1}=0, \tilde{\eta}_{l_{i}-1}^{j} \neq 0\right\}, j=2,3 \ldots$, should be substituted for the random events $A_{j}, j \geq 1$, in the proof of Theorem 4 .

4.2. Case II.

Theorem 5. If $p_{l_{i}}=0$ and the distribution of $x(\cdot, \lambda)$ is stationary, then the distribution of

$$
\left(\left|\tilde{x}_{l_{i-1}+1}\right|^{-\kappa_{i}}, \ldots,\left|\tilde{x}_{l_{i}}\right|^{-\kappa_{i}}, \varphi_{l_{i-1}+1}, \ldots, \varphi_{l_{i}}\right)
$$

weakly converges as $\lambda \rightarrow 0$ to the distribution of $(\alpha, \ldots, \alpha, \beta, \ldots, \beta)$, where the distribution of the random variable α is uniform on the interval $(0,1)$, the distribution of the random variable β is uniform on the interval $(0,2 \pi)$, and β does not depend on α.
Proof. Since $p_{l_{i}}=0, \lambda_{i}=a_{i}+i b_{i}$, and the matrix U is complex, the vector

$$
\left(\tilde{\xi}_{l_{i-1}+1}, \tilde{\xi}_{l_{i-1}+2}, \ldots, \tilde{\xi}_{l_{i}}\right)^{T}
$$

is of the form

$$
\begin{align*}
& \left(\tilde{\xi}_{l_{i-1}+1}, \tilde{\xi}_{l_{i-1}+2}, \ldots, \tilde{\xi}_{l_{i}}\right)^{T} \tag{11}\\
& \quad=\exp \left\{\lambda^{-1} \tau_{1} a_{i}\right\} \exp \left\{i \lambda^{-1} \tau_{1} b_{i}\right\}\left(\zeta_{l_{i-1}+1}, \zeta_{l_{i-1}+2}, \ldots, \zeta_{l_{i}}\right)^{T}
\end{align*}
$$

in view of relations (7) and (8), where

$$
\zeta_{r}=\left|\zeta_{r}\right| \exp \left\{i \gamma_{r}\right\}, \quad \gamma_{r}=\arg \zeta_{r}, \quad \gamma_{r} \in(0,2 \pi), \quad r=l_{i-1}+1, \ldots, l_{i}
$$

Therefore (11) implies that

$$
\begin{aligned}
&\left|\tilde{\xi}_{l_{i-1}+1}\right|^{-\kappa_{i}}=\exp \left\{-\tau_{1}\right\}\left|\exp \left\{i\left(\gamma_{l_{i-1}+1}+\lambda^{-1} \tau_{1} b_{i}\right)\right\}\right|^{-\kappa_{i}} \xrightarrow{\mathrm{P}} \exp \left\{-\tau_{1}\right\}, \\
&\left|\tilde{\xi}_{l_{i-1}+2}\right|^{-\kappa_{i}} \xrightarrow{\mathrm{P}} \exp \left\{-\tau_{1}\right\}, \quad \ldots, \quad\left|\tilde{\xi}_{l_{i}}\right|^{-\kappa_{i}} \xrightarrow{\mathrm{P}} \exp \left\{-\tau_{1}\right\}
\end{aligned}
$$

as $\lambda \rightarrow 0$. Moreover the distribution of the random variable $\exp \left\{-\tau_{1}\right\}=\alpha$ is uniform on the interval $(0,1)$, and

$$
\begin{aligned}
\arg \tilde{\xi}_{l_{i-1}+1} & \equiv\left(\gamma_{l_{i-1}+1}+\lambda^{-1} \tau_{1} b_{i}\right) \quad(\bmod 2 \pi), \\
\arg \tilde{\xi}_{l_{i-1}+2} & \equiv\left(\gamma_{l_{i-1}+2}+\lambda^{-1} \tau_{1} b_{i}\right) \quad(\bmod 2 \pi), \quad \ldots, \\
\arg \tilde{\xi}_{l_{i}} & \equiv\left(\gamma_{l_{i}}+\lambda^{-1} \tau_{1} b_{i}\right) \quad(\bmod 2 \pi)
\end{aligned}
$$

as $\lambda \rightarrow 0$.
Let $f_{l_{i-1}+1}(t), f_{l_{i-1}+2}(t), \ldots, f_{l_{i}}(t), t \in(0,2 \pi)$, be the densities of the random variables

$$
\begin{gathered}
\quad\left(\gamma_{l_{i-1}+1}+\lambda^{-1} \tau_{1} b_{i}\right) \quad(\bmod 2 \pi) \\
\left(\gamma_{l_{i-1}+2}+\lambda^{-1} \tau_{1} b_{i}\right) \quad(\bmod 2 \pi), \quad \ldots, \\
\\
\quad\left(\gamma_{l_{i}}+\lambda^{-1} \tau_{1} b_{i}\right) \quad(\bmod 2 \pi),
\end{gathered}
$$

respectively, defined on a circle of length 2π, while $f(t)$ is the density of the random variable $\lambda^{-1} \tau_{1} b_{i}$. The random variable $\lambda^{-1} \tau_{1} b_{i}(\bmod 2 \pi)$ is defined on a circle, and its density \tilde{f} is given by

$$
\begin{gathered}
\tilde{f}(t)=\sum_{k=0}^{\infty} f(t+2 \pi k)=\lambda b_{i}^{-1} \sum_{k=0}^{\infty} \exp \left\{-\lambda b_{i}^{-1}(t+2 \pi k)\right\}=\frac{\lambda \exp \left\{-\lambda b_{i}^{-1} t\right\}}{b_{i}\left(1-\exp \left\{-\lambda b_{i}^{-1} 2 \pi\right\}\right)} \\
\lim _{\lambda \rightarrow 0} \tilde{f}(t)=\lim _{\lambda \rightarrow 0} \frac{\exp \left\{-\lambda b_{i}^{-1} t\right\}-\lambda b_{i}^{-1} t \exp \left\{-\lambda b_{i}^{-1} t\right\}}{2 \pi \exp \left\{-\lambda b_{i}^{-1} 2 \pi\right\}}=\frac{1}{2 \pi}
\end{gathered}
$$

It is known [2] that the convolution of the uniform density on a circle with an arbitrary density on a circle is the density of the uniform distribution. Thus

$$
\lim _{\lambda \rightarrow 0} f_{l_{i-1}+1}(t)=\frac{1}{2 \pi}, \quad \lim _{\lambda \rightarrow 0} f_{l_{i-1}+2}(t)=\frac{1}{2 \pi}, \quad \ldots, \quad \lim _{\lambda \rightarrow 0} f_{l_{i}}(t)=\frac{1}{2 \pi}
$$

as $\lambda \rightarrow 0$. Therefore the distributions of the random variables

$$
\begin{gathered}
\left(\gamma_{l_{i-1}+1}+\lambda^{-1} \tau_{1} b_{i}\right)
\end{gathered}(\bmod 2 \pi), \quad \begin{gathered}
\left(\gamma_{l_{i}}+\lambda^{-1} \tau_{1} b_{i}\right) \quad(\bmod 2 \pi)
\end{gathered}
$$

as $\lambda \rightarrow 0$ coincide with the uniform distribution on the interval $(0,2 \pi)$, and these random variables do not depend on α.

Now Theorem 5 follows from the properties of the weak convergence and convergence in probability.

Theorem 6. If $0<p_{l_{i}}<1$ and the distribution of $x(\cdot, \lambda)$ is stationary, then the distribution of

$$
\left(\left|\tilde{x}_{l_{i-1}+1}\right|^{-\kappa_{i}}, \ldots,\left|\tilde{x}_{l_{i}}\right|^{-\kappa_{i}}, \varphi_{l_{i-1}+1}, \ldots, \varphi_{l_{i}}\right)
$$

weakly converges as $\lambda \rightarrow 0$ to the distribution of $\left(\alpha^{1 / p}, \ldots, \alpha^{1 / p}, \beta, \ldots, \beta\right)$ where the random variable α has the uniform distribution on the interval $(0,1)$, the random variable β has the uniform distribution on the interval $(0,2 \pi)$, and β does not depend on α.

Proof. The proof of Theorem 6 is analogous to that of Theorem 2.
Since $\lambda_{i}=a_{i}+i b_{i}$, relation (10) can be rewritten as follows:

$$
\begin{aligned}
& \left.\tilde{\xi}_{l_{i-1}+1}\right|_{A_{1}} \equiv \exp \left\{\lambda^{-1} \tau_{1} a_{i}\right\} \exp \left\{i \lambda^{-1} \tau_{1} b_{i}\right\} \frac{\left(\lambda^{-1} \tau_{1}\right)^{k_{i}-1}}{\left(k_{i}-1\right)!} \tilde{\eta}_{l_{i}}^{1}, \\
& \left.\tilde{\xi}_{l_{i-1}+1}\right|_{A_{2}} \equiv \exp \left\{\lambda^{-1}\left(\tau_{1}+\tau_{2}\right) a_{i}\right\} \exp \left\{i \lambda^{-1}\left(\tau_{1}+\tau_{2}\right) b_{i}\right\} \frac{\left(\lambda^{-1}\left(\tau_{1}+\tau_{2}\right)\right)^{k_{i}-1}}{\left(k_{i}-1\right)!} \tilde{\eta}_{l_{i}}^{2}, \ldots, \\
& \left.\tilde{\xi}_{l_{i-1}+1}\right|_{A_{j}} \equiv \exp \left\{\lambda^{-1} a_{i} \sum_{k=1}^{j} \tau_{k}\right\} \exp \left\{i \lambda^{-1} b_{i} \sum_{k=1}^{j} \tau_{k}\right\} \frac{\left(\lambda^{-1} \sum_{k=1}^{j} \tau_{k}\right)^{k_{i}-1}}{\left(k_{i}-1\right)!} \tilde{\eta}_{l_{i}}^{j}, \ldots,
\end{aligned}
$$

where

$$
\tilde{\eta}_{l_{i}}^{j}=\left|\tilde{\eta}_{l_{i}}^{j}\right| \exp \left\{i \phi_{j}\right\}, \quad \phi_{j}=\arg \tilde{\eta}_{l_{i}}^{j}, \quad j=1,2, \ldots, \quad \phi_{j} \in(0,2 \pi)
$$

and

$$
\begin{aligned}
\left.\arg \tilde{\xi}_{l_{i-1}+1}\right|_{A_{1}} & \equiv\left(\phi_{1}+\lambda^{-1} \tau_{1} b_{i}\right) \quad(\bmod 2 \pi), \\
\left.\arg \tilde{\xi}_{l_{i-1}+1}\right|_{A_{2}} & \equiv\left(\phi_{2}+\lambda^{-1} \tau_{1} b_{i}+\lambda^{-1} \tau_{2} b_{i}\right) \quad(\bmod 2 \pi), \quad \ldots, \\
\left.\arg \tilde{\xi}_{l_{i-1}+1}\right|_{A_{j}} & \equiv\left(\phi_{j}+\lambda^{-1} \tau_{1} b_{i}+\lambda^{-1} b_{i} \sum_{k=2}^{j} \tau_{k}\right) \quad(\bmod 2 \pi),
\end{aligned}
$$

Then

$$
\arg \tilde{\xi}_{l_{i-1}+1}=\sum_{j=1}^{\infty}\left(\phi_{j}+\lambda^{-1} \tau_{1} b_{i}+\lambda^{-1} b_{i} \sum_{k=2}^{j} \tau_{k}\right) \quad(\bmod 2 \pi) 1\left(A_{j}\right) .
$$

Therefore

$$
\begin{gathered}
\left.\left|\tilde{\xi}_{l_{i-1}+1}\right|_{A_{1}}\right|^{-\kappa_{i}} \xrightarrow{\text { a.s. }} \exp \left\{-\tau_{1}\right\},\left.\quad\left|\tilde{\xi}_{l_{i-1}+1}\right|_{A_{2}}\right|^{-\kappa_{i}} \xrightarrow{\text { a.s. }} \exp \left\{-\left(\tau_{1}+\tau_{2}\right)\right\}, \quad \ldots, \\
\\
\left.\left|\tilde{\xi}_{l_{i-1}+1}\right|_{A_{j}}\right|^{-\kappa_{i}} \xrightarrow{\text { a.s. }} \exp \left\{-\sum_{k=1}^{j} \tau_{k}\right\}, \quad \ldots,
\end{gathered}
$$

as $\lambda \rightarrow 0$; that is,

$$
\left|\tilde{\xi}_{l_{i-1}+1}\right|^{-\kappa_{i}} \xrightarrow{\text { a.s. }} \sum_{j=1}^{\infty} \exp \left\{-\sum_{k=1}^{j} \tau_{k}\right\} 1\left(A_{j}\right)=\chi .
$$

As in the proof of Theorem $2, \chi=\alpha^{1 / p}$ where the random variable α has the uniform distribution on the interval $(0,1)$.

A similar reasoning for $\tilde{\xi}_{l_{i-1}+2}, \ldots, \tilde{\xi}_{l_{i}}$ yields

$$
\begin{gathered}
\left|\tilde{\xi}_{l_{i-1}+2}\right|^{-\kappa_{i}} \xrightarrow{\text { a.s. }} \sum_{j=1}^{\infty} \exp \left\{-\sum_{k=1}^{j} \tau_{k}\right\} 1\left(A_{j}\right), \quad \ldots, \\
\left|\tilde{\xi}_{l_{i}}\right|^{-\kappa_{i}} \xrightarrow{\text { a.s. }} \sum_{j=1}^{\infty} \exp \left\{-\sum_{k=1}^{j} \tau_{k}\right\} 1\left(A_{j}\right), \\
\arg \tilde{\xi}_{l_{i-1}+2}=\sum_{j=1}^{\infty}\left(\phi_{j}+\lambda^{-1} \tau_{1} b_{i}+\lambda^{-1} b_{i} \sum_{k=2}^{j} \tau_{k}\right) \quad(\bmod 2 \pi) 1\left(A_{j}\right), \quad \ldots, \\
\arg \tilde{\xi}_{l_{i}}=\sum_{j=1}^{\infty}\left(\phi_{j}+\lambda^{-1} \tau_{1} b_{i}+\lambda^{-1} b_{i} \sum_{k=2}^{j} \tau_{k}\right)(\bmod 2 \pi) 1\left(A_{j}\right) .
\end{gathered}
$$

Since the random variable $\lambda^{-1} \tau_{1} b_{i}(\bmod 2 \pi)$ has the uniform density on $(0,2 \pi)$ as $\lambda \rightarrow 0$ (see Theorem 5) and the convolution of the uniform density on a circle with an arbitrary density on a circle is again uniform, the densities of the random variables

$$
\gamma_{j}=\left(\phi_{j}+\lambda^{-1} \tau_{1} b_{i}+\lambda^{-1} b_{i} \sum_{k=2}^{j} \tau_{k}\right) \quad(\bmod 2 \pi), \quad j=1,2, \ldots
$$

are again uniform on $(0,2 \pi)$ as $\lambda \rightarrow 0$. Thus

$$
\begin{gathered}
\arg \tilde{\xi}_{l_{i-1}+1}=\sum_{j=1}^{\infty} \gamma_{j} 1\left(A_{j}\right)=\beta, \\
\arg \tilde{\xi}_{l_{i-1}+2}=\sum_{j=1}^{\infty} \gamma_{j} 1\left(A_{j}\right), \quad \ldots, \quad \arg \tilde{\xi}_{l_{i}}=\sum_{j=1}^{\infty} \gamma_{j} 1\left(A_{j}\right)
\end{gathered}
$$

as $\lambda \rightarrow 0$.
The Laplace transform of the random variable β is given by

$$
\mathrm{E} \exp \{-s \beta\}=\mathrm{E} \exp \left\{-s \sum_{j=1}^{\infty} \gamma_{j} 1\left(A_{j}\right)\right\}=\sum_{k=1}^{\infty} \mathrm{P}\left(A_{k}\right) \mathrm{E} \exp \left\{-s \gamma_{k}\right\}
$$

where

$$
\mathrm{E} \exp \left\{-s \gamma_{k}\right\}=\int_{0}^{2 \pi} \exp \left\{-s x_{k}\right\} d\left(\frac{x_{k}}{2 \pi}\right)=\frac{1-\exp \{-2 \pi s\}}{2 \pi s}
$$

Therefore

$$
\mathrm{E} \exp \{-s \beta\}=\frac{1}{2 \pi} \frac{1-\exp \{-2 \pi s\}}{s} \sum_{k=1}^{\infty} p(1-p)^{k-1}=\frac{1}{2 \pi} \frac{1-\exp \{-2 \pi s\}}{s}
$$

and thus the random variable β has the uniform distribution on $(0,2 \pi)$ and does not depend on α.

Theorem 6 is proved.

Bibliography

1. O. K. Zakusylo, General Storage Processes with an Additive Input, Kyïv Taras Shevchenko University, Kyïv, 1998. (Ukrainian)
2. W. Feller, An Introduction to Probability Theory and its Applications, vol. 2, Wiley, New York, 1971. MR 0270403 (42:5292)
3. V. A. Ditkin and A. P. Prudnikov, Integral Transforms and Operational Calculus, "Vysshaya Shkola", Moscow, 1961; English transl., Pergamon Press, Oxford-London-Edinburgh-New York-Paris-Frankfurt, 1965. MR0196422 (33:4609)
4. F. R. Gantmakher, The Theory of Matrices, Gostekhizdat, Moscow, 1951; English transl., Chelsea, Berlin, 1959. MR0065520 (16:4381) MR0107649 (21:6372c)
5. N. P. Lysak [Lisak], Limit theorems for solutions of Langevin equation in the two-dimensional case, Visnyk Kyïv. Univ. Ser. Fiz.-Mat. 2 (2003), 155-160. (Ukrainian) MR2049855

Faculty for Cybernetics, National Taras Shevchenko University, Academician Glushkov Avenue 6, Kyiv 03127, Ukraine

E-mail address: do@unicyb.kiev.ua
Faculty for Cybernetics, National Taras Shevchenko University, Academician Glushkov Avenue 6, Kyiv 03127, Ukraine

E-mail address: lysak@unicyb.kiev.ua
Received 1/SEP/2003
Translated by S. V. KVASKO

[^0]: 2000 Mathematics Subject Classification. Primary 60Fxx, 60G10.

[^1]: ${ }^{1}$ I.e., a matrix in the Jordan normal form.

