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ON A MULTIVARIATE STORAGE PROCESS
UDC 519.21

O. K. ZAKUSYLO AND N. P. LYSAK

Abstract. A multivariate storage process that satisfies the Langevin equation is
studied in the paper.

1. Introduction

Let a process x(t) = (x1(t), x2(t), . . . , xn(t))T ∈ R
n satisfy the Langevin equation

(1) dx(t) = Ax(t) dt + dz(t),

where z(t) = (z1(t), z2(t), . . . , zn(t))T ∈ R
n is a generalized Poisson process with param-

eter λ and jumps η1, η2, . . . , ηj , . . . ; A : R
n → R

n is a linear operator and ‖aij‖n
i,j=1 is

the matrix of its representation in some basis of R
n.

Equation (1) with initial data x(0) = x0 has a unique solution in the class of measur-
able processes. This solution can be written in the following form:

(2) x(t) = exp{At}x0 +
∫ t

0

exp{A(t − u)} dz(u).

It is shown in [1] that the process x(t) has the limit distribution as t → ∞ and this
distribution does not depend on the initial data x0 if and only if

a) the eigenvalues of A belong to the left semiplane,
b) E(ln |η1|; |η1| > 1) < ∞.

It is also proved in [1] that the limit distribution is a unique stationary distribution of
the process x(t) if both of the above conditions hold. The characteristic function of the
limit distribution is given by

(3) ψ(s) = exp
{
−λ

∫ ∞

0

(
1 − ϕ

(
exp

{
AT u

}
s
))

du

}

where ϕ(s) = E{exp i(s, η1)}.
As is seen from equality (2), the stationary distribution of x(t) coincides with the

distribution of the vector

(4) ξ =
∫ ∞

0

exp{Au} dz(u).

Moreover, equality (3) implies that the characteristic function of the stationary distri-
bution of x(t) is of the form ψ(s) = exp{λK(s)} where K(s) does not depend on λ.
In the stationary regime, x(·, λ) can be viewed as values of a stochastically continuous
homogeneous process with independent increments at the moment λ.
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2. Setting of the problem

The limit behavior of the distribution of x(·, λ) as λ → 0 is studied in [1] for the
case of A = UΛU−1 where Λ = ‖δijλi‖n

i,j=1, λi (i = 1, . . . , n) are real eigenvalues of the
matrix A such that λi < 0 for all i, and U = ‖uij‖n

i,j=1 is a nonsingular matrix.
The limit behavior as λ → 0 of the distribution of x(·, λ) is obtained in [5] for the case

of A = UJU−1 where J is a Jordan matrix,1 A = ‖aij‖2
i,j=1, and U = ‖uij‖2

i,j=1.
In this paper, we consider the general case of A = UJU−1 where J is a Jordan matrix,

U = ‖uij‖n
i,j=1 is a nonsingular matrix, and A = ‖aij‖n

i,j=1. We study the limit behavior
as λ → 0 of the vector

x̃ = (x̃1, . . . , x̃n)T = U−1x(·, λ)
under the assumption that the distribution of x(·, λ) is stationary.

Below we show that the components of the vector x̃ are completely determined by the
form of the Jordan blocks. Thus we obtain the limit behavior, as λ → 0, of the part of
the vector x̃ that corresponds to a Jordan block Ji. In doing so, we consider separately
the cases of real and complex eigenvalues λi of the matrix A.

3. Auxiliary results and notation

The process z(t) is completely determined by the heights of the jumps η1, η2, . . . and
by the lengths of the intervals λ−1τ1, λ

−1τ2, . . . between the jumps. All the random
variables ηj , j = 1, 2, . . . , and τi, i = 1, 2, . . . , are independent and P{τi > t} = exp{−t}
for t ≥ 0. Thus we obtain from (4) that

ξ = exp
{
λ−1τ1A

}
η1 + exp

{
λ−1(τ1 + τ2)A

}
η2 + . . .

+ exp

{
λ−1A

j∑
k=1

τk

}
ηj + . . . .

(5)

Below we use the following notation: x̃ = (x̃1, . . . , x̃n)T = U−1x(·, λ);

η̃j =
(
η̃j
1, . . . , η̃

j
n

)T = U−1ηj , j = 1, 2, . . . ;

ξ̃ = (ξ̃1, . . . , ξ̃n)T = U−1ξ; pr = P
{
η̃j

r = 0
}

; p+
r = P{η̃j

r > 0};
sgn z = (sgn z1, . . . , sgn zn)T for z = (z1, . . . , zn)T ∈ R

n;

J = {J1, . . . , Jm} where Ji is the Jordan block of order ki corresponding to the eigenvalue
λi, i = 1, . . . , m, of the matrix A (there could be equal numbers among the λi, i =
1, . . . , m);

∑m
i=1 ki = lm, m = 1, . . . , n; ln = n; νi = λλ−1

i for real λi and κi = λa−1
i for

complex λi = ai + ibi.
Recall that the matrix f(A) is well defined if f(t) is an analytic function. Since

A = UJU−1, the matrix f(J) is well defined and, moreover, f(A) = Uf(J)U−1. Thus
relation (5) can be rewritten in the following form:

ξ = U exp
{
λ−1τ1J

}
× U−1

(
η1 + U exp

{
λ−1τ2J

}
U−1η2 + · · · + U exp

{
λ−1J

j∑
k=2

τk

}
U−1ηj + . . .

)

or
ξ = U exp

{
λ−1τ1J

}
U−1

(
η1 + ξ1

)
,

where the random variables τ1, ξ1, and η1 are independent and the distributions of ξ
and ξ1 are identical.

1I.e., a matrix in the Jordan normal form.
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Therefore

(6) ξ̃ = exp
{
λ−1τ1J

}(
η̃1 + exp

{
λ−1τ2J

}
η̃2 + · · · + exp

{
λ−1J

j∑
k=2

τk

}
η̃j + . . .

)

or

(7) ξ̃ = exp
{
λ−1τ1J

} (
η̃1 + ξ̃1

)
,

where ξ̃1 = (ξ̃1
1 , . . . , ξ̃1

n) = U−1ξ1, the distributions of x̃, ξ̃, and ξ̃1 are identical, and

exp
{
λ−1τ1J

}
=

{
exp{λ−1τ1J1}, . . . , exp{λ−1τ1Jm}

}
,

exp
{
λ−1τ1Ji

}
= exp

{
λ−1τ1λi

}
⎛
⎜⎜⎜⎝

1 λ−1τ1
1! . . . (λ−1τ1)

ki−1

(ki−1)!

0 1 . . . (λ−1τ1)
ki−2

(ki−2)!

. . . . . . . . . . . .
0 0 . . . 1

⎞
⎟⎟⎟⎠ .(8)

It is seen from (6) and (7) that the components of the vector ξ̃ = (ξ̃1, . . . , ξ̃n)T as well
as those of the vector x̃ = (x̃1, . . . , x̃n)T are determined by the Jordan blocks. Thus,
without loss of generality, we restrict our consideration below to the investigation of the
part of the vector x̃ that corresponds to the Jordan block Ji of order ki related to the
eigenvector λi.

Denote by (x̃li−1+1, x̃li−1+2, . . . , x̃li)
T the part of the vector x̃ that corresponds to

the Jordan block Ji and let (η̃j
li−1+1, η̃

j
li−1+2, . . . , η̃

j
li
)T , j = 1, 2 . . . , be the part of the

vector η̃j related to the Jordan block Ji.
We introduce the random events A1 = {η̃1

li
�= 0},

Aj =
{
η̃1

li = 0, . . . , η̃j−1
li

= 0, η̃j
li
�= 0

}
,

B1 = {η̃1
li−1 �= 0}, Bj = {η̃1

li−1 = 0, . . . , η̃j−1
li−1 = 0, η̃j

li−1 �= 0}, j = 2, 3 . . . , and denote
the indicators of events Aj and Bj by 1(Aj) and 1(Bj), respectively. Let P{A1} = p
and P{B1} = q. In what follows we assume that all stochastic processes and random
variables are defined on the same probability space.

4. Main results

We distinguish between the following two cases.
I. An eigenvalue λi < 0 of the matrix A is real (x̃li−1+1, . . . , x̃li are real in this case).
II. An eigenvalue λi < 0 of the matrix A is complex; that is,

λi = ai + ibi, ai < 0, bi �= 0.

In this case, x̃li−1+1, . . . , x̃li are complex. We represent these numbers as follows:

x̃li−1+1 = |x̃li−1+1| exp{iϕli−1+1}, . . . , x̃li = |x̃li | exp{iϕli},
where ϕli−1+1 = arg x̃li−1+1, . . . , ϕli = arg x̃li , ϕli−1+1, . . . , ϕli ∈ (0, 2π).

4.1. Case I.

Theorem 1. If pli = 0 and the distribution of x(·, λ) is stationary, then the distribution
of (∣∣x̃li−1+1

∣∣−νi
, . . . , |x̃li |

−νi , sgn(x̃li−1+1, . . . , x̃li)
)

converges weakly as λ → 0 to the distribution of (α, . . . , α, sgn(η̃1
li
, . . . , η̃1

li
)), where α has

the uniform distribution on the interval (0, 1) and does not depend on η̃1
li
.
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Proof. Since pli = 0 and the distributions of the vectors x̃ and ξ̃ are identical, we use
relations (7) and (8) and obtain(

ξ̃li−1+1, . . . , ξ̃li

)T

= exp
{
λ−1τ1Ji

}(
ξ̃1
li−1+1 + η̃1

li−1+1, . . . , ξ̃
1
li + η̃1

li

)T

= exp
{
λ−1τ1λi

}(
ζ̃1
li−1+1, ζ̃

1
li−1+2, . . . , ζ̃

1
li

)T

,

(9)

where

ζ̃1
li−1+1 =

ki−1∑
m=0

(
λ−1τ1

)m

m!

(
ξ̃1
li−1+m+1 + η̃1

li−1+m+1

)
,

ζ̃1
li−1+2 =

ki−2∑
m=0

(
λ−1τ1

)m

m!

(
ξ̃1
li−1+m+2 + η̃1

li−1+m+2

)
, . . . , ζ̃1

li = ξ̃1
li + η̃1

li .

According to Lemma 6.4 in [1], ξ̃1 P−→ 0̄ as λ → 0 and

P

{
η̃1

li−1+1 +
ki−1∑
m=1

(
λ−1τ1

)m

m!
η̃1

li−1+m+1 = 0

}

= P

{
ki−1∑
m=1

(
λ−1τ1

)m

m!
η̃1

li−1+m+1 = −η̃1
li−1+1

}
= 0,

since the random variables τ1 and η̃1
r (r = li−1 + 1, . . . , li) are independent and

ki−1∑
m=1

(
λ−1τ1

)m

m!
η̃1

li−1+m+1

has an absolutely continuous distribution. Thus

lim
λ→0

ln

∣∣∣∣∣
ki−1∑
m=0

(
λ−1τ1

)m

m!

(
ξ̃1
li−1+m+1 + η̃1

li−1+m+1

)∣∣∣∣∣
−νi

= −λ−1
i lim

λ→0

τki−1
1 η̃1

li

τki−2
1 η̃1

li−1 + λ−1τki−1
1 η̃1

li

= 0.

Therefore relation (9) implies that

∣∣∣ξ̃li−1+1

∣∣∣−νi

= exp{−τ1}
∣∣∣∣∣
ki−1∑
m=0

(
λ−1τ1

)m

m!

(
ξ̃1
li−1+m+1 + η̃1

li−1+m+1

)∣∣∣∣∣
−νi

P−→ exp{−τ1},

∣∣∣ξ̃li−1+2

∣∣∣−νi P−→ exp{−τ1}, . . . ,
∣∣∣ξ̃li

∣∣∣−νi P−→ exp{−τ1},

sgn ξ̃li−1+1
P−→ sgn η̃1

li , sgn ξ̃li−1+2
P−→ sgn η̃1

li , . . . , sgn ξ̃li
P−→ sgn η̃1

li

as λ → 0. Moreover the random variable exp {−τ1} = α has the uniform distribution on
the interval (0, 1) and does not depend on η̃1

li
.

Now Theorem 1 follows, since the convergence in probability of the corresponding
coordinates of the vectors implies the weak convergence of the distributions of the vectors.

�

Theorem 2. If 0 < pli < 1 and the distribution of x(·, λ) is stationary, then the distri-
bution of (∣∣x̃li−1+1

∣∣−νi , . . . , |x̃li |
−νi , sgn x̃li−1+1, . . . , sgn x̃li

)
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weakly converges as λ → 0 to the distribution of (α1/p, . . . , α1/p, γ, . . . , γ), where the ran-
dom variable α has the uniform distribution on the interval (0, 1), while the random
variable γ assumes the values 1 and −1 with the probabilities p+

li
and (1 − p+

li
), respec-

tively, and does not depend on α.

Proof. If 0 < pli < 1, then we get from relations (6) and (8) that(
ξ̃li−1+1, ξ̃li−1+2, . . . , ξ̃li

)T

= exp
{
λ−1τ1λi

}(
ζ̃li−1+1, ζ̃li−1+2, . . . , ζ̃li

)T

,

where

ζ̃li−1+1 =
ki∑

m=1

⎛
⎝(

λ−1τ1

)ki−m

(ki − m)!
η̃1

li−m+1

+
∞∑

j=2

exp

{
λ−1λi

j∑
k=2

τk

} (
λ−1

∑j
k=1 τk

)ki−m

(ki − m)!
η̃j

li−m+1

⎞
⎠,

ζ̃li−1+2 =
ki∑

m=2

((
λ−1τ1

)ki−m

(ki − m)!
η̃1

li−m+2

+
∞∑

j=2

exp

{
λ−1λi

j∑
k=2

τk

} (
λ−1

∑j
k=1 τk

)ki−m

(ki − m)!
η̃j

li−m+2

)
, . . . ,

ζ̃li = η̃1
li +

∞∑
j=2

exp

{
λ−1λi

j∑
k=2

τk

}
η̃j

li
.

Consider the random events

A1 =
{
η̃1

li �= 0
}

, A2 =
{
η̃1

li = 0, η̃2
li �= 0

}
, . . . ,

Aj =
{

η̃1
li = 0, . . . , η̃j−1

li
= 0, η̃j

li
�= 0

}
, . . . .

One can treat Ω = {A1, A2, . . . , Aj , . . .} as the space of elementary events. Moreover
P {Aj} = p (1 − p)j−1, where P {A1} = p.

The restriction of the random variable ξ̃r, r = li−1 + 1, . . . , li, on the elementary
event Aj , j = 1, 2, . . . , is denoted by ξ̃r

∣∣
Aj

. Then

(10)

ξ̃li−1+1

∣∣∣
A1

≡ exp
{
λ−1τ1λi

} (
λ−1τ1

)ki−1

(ki − 1)!
η̃1

li ,

ξ̃li−1+1

∣∣∣
A2

≡ exp
{
λ−1 (τ1 + τ2)λi

} (
λ−1 (τ1 + τ2)

)ki−1

(ki − 1)!
η̃2

li , . . . ,

ξ̃li−1+1

∣∣∣
Aj

≡ exp

{
λ−1λi

j∑
k=1

τk

} (
λ−1

∑j
k=1 τk

)ki−1

(ki − 1)!
η̃j

li
, . . . .

Thus we have∣∣∣∣ ξ̃li−1+1

∣∣∣
A1

∣∣∣∣
−νi

a.s.−→ exp {−τ1},
∣∣∣∣ ξ̃li−1+1

∣∣∣
A2

∣∣∣∣
−νi

a.s.−→ exp {− (τ1 + τ2)}, . . . ,

∣∣∣∣ ξ̃li−1+1

∣∣∣
Aj

∣∣∣∣
−νi

a.s.−→ exp

{
−

j∑
k=1

τk

}
, . . . ,
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as λ → 0; that is,

∣∣∣ξ̃li−1+1

∣∣∣−νi a.s.−→
∞∑

j=1

exp

{
−

j∑
k=1

τk

}
1 (Aj) = χ.

A similar reasoning for ξ̃li−1+2, . . . , ξ̃li shows that

∣∣∣ξ̃li−1+2

∣∣∣−νi a.s.−→
∞∑

j=1

exp
{
−

j∑
k=1

τk

}
1 (Aj), . . . ,

∣∣∣ξ̃li

∣∣∣−νi a.s.−→
∞∑

j=1

exp
{
−

j∑
k=1

τk

}
1 (Aj).

Analogously we obtain that

sgn ξ̃li−1+1 =
∞∑

j=1

sgn η̃j
li
1 (Aj) = γ,

sgn ξ̃li−1+2 =
∞∑

j=1

sgn η̃j
li
1 (Aj), . . . , sgn ξ̃li =

∞∑
j=1

sgn η̃j
li
1 (Aj)

as λ → 0.
Since the random variables

exp{−τj} = αj , j = 1, 2, . . . ,

have the uniform distribution on the interval (0,1), the Laplace transform of χ is given
by

E exp{−sχ} = E exp
{
−s

∞∑
j=1

α1 . . . αj1 (Aj)
}

=
∞∑

k=1

P(Ak)EAk
exp

{
−s

∞∑
j=1

α1 . . . αj1(Aj)
}

=
∞∑

k=1

P(Ak)E exp {−sα1 . . . αk} ,

where

E exp{−sα1 . . . αk} =
∫ 1

0

. . .

∫ 1

0

exp{−sx1 . . . xk} dx1 . . . dxk.

The series

exp{−sx1 . . . xk} =
∞∑

j=0

(−s)j

j!
xj

1 . . . xj
k

converges by the d’Alembert criterion for any x0 = x0
1 . . . x0

k; thus it converges on (0, 1).
By the Weierstrass criterion this series is uniformly convergent on (0, 1). Since the terms
of this series are continuous functions on (0, 1), we get

E exp {−sα1 . . . αk} =
∞∑

j=0

∫ 1

0

. . .

∫ 1

0

(−s)j

j!
xj

1 . . . xj
k dx1 . . . dxk =

∞∑
j=0

(−s)j

j! (j + 1)k
.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



ON A MULTIVARIATE STORAGE PROCESS 87

Hence

E exp{−sχ} =
∞∑

k=1

p(1 − p)k−1
∞∑

j=0

(−s)j

j! (j + 1)k
= p

∞∑
j=0

(−s)j

j!

∞∑
k=1

(1 − p)k−1

(j + 1)k

= p
∞∑

j=0

(−s)j

j!
1

(j + 1)

∞∑
k=1

(
1 − p

j + 1

)k−1

= p
∞∑

j=0

(−s)j

j!
1

j + p
= φ(s)

or

φ(s)(−1)psp = p

∞∑
j=0

(−s)j+p

j! (j + p)
=

∫ s

0

du (φ(u)(−u)p) = −p

∫ s

0

∞∑
j=0

(−u)j+p−1

j!
du

= −p

∫ s

0

(−u)p−1
∞∑

j=0

(−u)j

j!
du = p(−1)p

∫ s

0

up−1 exp{−u} du

= p(−1)pγ(p, s),

where

(−1)p = exp{(2n + 1)pπi} = cos(2n + 1)pπ + i sin(2n + 1)pπ, n = 0,±1,±2, . . . ,

and γ(p, s) is the incomplete gamma function.
Therefore

φ(s) = ps−pγ (p, s).

Using corresponding relations for the inversion of the Laplace–Carson transform [3],
we evaluate the density of χ:

g(t) =

{
ptp−1, 0 < t < 1,

0, t > 1,

and the corresponding distribution function

G(t) =

{
tp, 0 < t < 1,

0, t > 1.

If α has the uniform distribution on (0, 1), then χ = α1/p. The theorem is proved. �

Theorem 3. If pli = 1, pli−1 = 0, and the distribution of x(·, λ) is stationary, then the
distribution of

(
|x̃li−1+1|−νi , . . . , |x̃li−1|−νi , |x̃li |, sgn x̃li−1+1, . . . , sgn x̃li−1, sgn x̃li

)
weakly

converges as λ → 0 to the distribution of
(
α, . . . , α, 0, sgn η̃1

li−1, . . . , sgn η̃1
li−1, 0

)
, where α

has the uniform distribution on (0, 1) and does not depend on η̃1
li−1.

Proof. The proof of Theorem 3 is similar to that of Theorem 1. �

Theorem 4. If pli = 1, 0 < pli−1 < 1, and the distribution of x(·, λ) is stationary, then
the distribution of(

|x̃li−1+1|−νi , . . . , |x̃li−1|−νi , |x̃li |, sgn x̃li−1+1, . . . , sgn x̃li−1, sgn x̃li

)
weakly converges as λ → 0 to the distribution of

(
α1/q, . . . , α1/q, 0, γ, . . . , γ, 0

)
, where α

has the uniform distribution on (0, 1), while the random variable γ assumes the values 1
and −1 with probabilities p+

li−1 and 1 − p+
li−1, respectively, and does not depend on α.

Proof. The proof of Theorem 4 is analogous to that of Theorem 2. Note however that the
random events B1 = {η̃1

li−1 �= 0}, Bj = {η̃1
li−1 = 0, . . . , η̃j−1

li−1 = 0, η̃j
li−1 �= 0}, j = 2, 3 . . . ,

should be substituted for the random events Aj , j ≥ 1, in the proof of Theorem 4. �
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4.2. Case II.

Theorem 5. If pli = 0 and the distribution of x(·, λ) is stationary, then the distribution
of (∣∣x̃li−1+1

∣∣−κi , . . . , |x̃li |
−κi , ϕli−1+1, . . . , ϕli

)
weakly converges as λ → 0 to the distribution of (α, . . . , α, β, . . . , β), where the distribu-
tion of the random variable α is uniform on the interval (0, 1), the distribution of the
random variable β is uniform on the interval (0, 2π), and β does not depend on α.

Proof. Since pli = 0, λi = ai + ibi, and the matrix U is complex, the vector(
ξ̃li−1+1, ξ̃li−1+2, . . . , ξ̃li

)T

is of the form(
ξ̃li−1+1, ξ̃li−1+2, . . . , ξ̃li

)T

= exp
{
λ−1τ1ai

}
exp

{
iλ−1τ1bi

} (
ζli−1+1, ζli−1+2, . . . , ζli

)T
(11)

in view of relations (7) and (8), where

ζr = |ζr| exp {iγr} , γr = arg ζr, γr ∈ (0, 2π), r = li−1 + 1, . . . , li.

Therefore (11) implies that∣∣∣ξ̃li−1+1

∣∣∣−κi

= exp {−τ1}
∣∣exp

{
i
(
γli−1+1 + λ−1τ1bi

)}∣∣−κi P−→ exp {−τ1},∣∣∣ξ̃li−1+2

∣∣∣−κi P−→ exp {−τ1}, . . . ,
∣∣∣ξ̃li

∣∣∣−κi P−→ exp {−τ1}

as λ → 0. Moreover the distribution of the random variable exp {−τ1} = α is uniform
on the interval (0, 1), and

arg ξ̃li−1+1 ≡
(
γli−1+1 + λ−1τ1bi

)
(mod 2π),

arg ξ̃li−1+2 ≡
(
γli−1+2 + λ−1τ1bi

)
(mod 2π), . . . ,

arg ξ̃li ≡
(
γli + λ−1τ1bi

)
(mod 2π)

as λ → 0.
Let fli−1+1(t), fli−1+2(t), . . . , fli(t), t ∈ (0, 2π), be the densities of the random variables(

γli−1+1 + λ−1τ1bi

)
(mod 2π),(

γli−1+2 + λ−1τ1bi

)
(mod 2π), . . . ,(

γli + λ−1τ1bi

)
(mod 2π),

respectively, defined on a circle of length 2π, while f(t) is the density of the random
variable λ−1τ1bi. The random variable λ−1τ1bi (mod 2π) is defined on a circle, and its
density f̃ is given by

f̃(t) =
∞∑

k=0

f (t + 2πk) = λb−1
i

∞∑
k=0

exp
{
−λb−1

i (t + 2πk)
}

=
λ exp

{
−λb−1

i t
}

bi

(
1 − exp

{
−λb−1

i 2π
}) ,

lim
λ→0

f̃(t) = lim
λ→0

exp
{
−λb−1

i t
}
− λb−1

i t exp
{
−λb−1

i t
}

2π exp
{
−λb−1

i 2π
} =

1
2π

.

It is known [2] that the convolution of the uniform density on a circle with an arbitrary
density on a circle is the density of the uniform distribution. Thus

lim
λ→0

fli−1+1(t) =
1
2π

, lim
λ→0

fli−1+2(t) =
1
2π

, . . . , lim
λ→0

fli(t) =
1
2π
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as λ → 0. Therefore the distributions of the random variables

(γli−1+1 + λ−1τ1bi) (mod 2π),

(γli−1+2 + λ−1τ1bi) (mod 2π), . . . , (γli + λ−1τ1bi) (mod 2π)

as λ → 0 coincide with the uniform distribution on the interval (0, 2π), and these random
variables do not depend on α.

Now Theorem 5 follows from the properties of the weak convergence and convergence
in probability. �

Theorem 6. If 0 < pli < 1 and the distribution of x(·, λ) is stationary, then the distri-
bution of (

|x̃li−1+1|−κi , . . . , |x̃li |−κi , ϕli−1+1, . . . , ϕli

)
weakly converges as λ → 0 to the distribution of (α1/p, . . . , α1/p, β, . . . , β) where the ran-
dom variable α has the uniform distribution on the interval (0, 1), the random variable β
has the uniform distribution on the interval (0, 2π), and β does not depend on α.

Proof. The proof of Theorem 6 is analogous to that of Theorem 2.
Since λi = ai + ibi, relation (10) can be rewritten as follows:

ξ̃li−1+1

∣∣∣
A1

≡ exp
{
λ−1τ1ai

}
exp

{
iλ−1τ1bi

} (
λ−1τ1

)ki−1

(ki − 1)!
η̃1

li ,

ξ̃li−1+1

∣∣∣
A2

≡ exp
{
λ−1 (τ1 + τ2) ai

}
exp

{
iλ−1 (τ1 + τ2) bi

} (
λ−1 (τ1 + τ2)

)ki−1

(ki − 1)!
η̃2

li , . . . ,

ξ̃li−1+1

∣∣∣
Aj

≡ exp

{
λ−1ai

j∑
k=1

τk

}
exp

{
iλ−1bi

j∑
k=1

τk

}(
λ−1

∑j
k=1τk

)ki−1

(ki − 1)!
η̃j

li
, . . . ,

where

η̃j
li

=
∣∣∣η̃j

li

∣∣∣ exp{iφj}, φj = arg η̃j
li
, j = 1, 2, . . . , φj ∈ (0, 2π),

and

arg ξ̃li−1+1

∣∣∣
A1

≡
(
φ1 + λ−1τ1bi

)
(mod 2π),

arg ξ̃li−1+1

∣∣∣
A2

≡
(
φ2 + λ−1τ1bi + λ−1τ2bi

)
(mod 2π), . . . ,

arg ξ̃li−1+1

∣∣∣
Aj

≡
(

φj + λ−1τ1bi + λ−1bi

j∑
k=2

τk

)
(mod 2π), . . . .

Then

arg ξ̃li−1+1 =
∞∑

j=1

(
φj + λ−1τ1bi + λ−1bi

j∑
k=2

τk

)
(mod 2π)1 (Aj) .

Therefore∣∣∣∣ ξ̃li−1+1

∣∣∣
A1

∣∣∣∣
−κi

a.s.−→ exp {−τ1} ,

∣∣∣∣ ξ̃li−1+1

∣∣∣
A2

∣∣∣∣
−κi

a.s.−→ exp {− (τ1 + τ2)} , . . . ,

∣∣∣∣ ξ̃li−1+1

∣∣∣
Aj

∣∣∣∣
−κi

a.s.−→ exp
{
−

j∑
k=1

τk

}
, . . . ,
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as λ → 0; that is,

∣∣∣ξ̃li−1+1

∣∣∣−κi a.s.−→
∞∑

j=1

exp
{
−

j∑
k=1

τk

}
1 (Aj) = χ.

As in the proof of Theorem 2, χ = α1/p where the random variable α has the uniform
distribution on the interval (0, 1).

A similar reasoning for ξ̃li−1+2, . . . , ξ̃li yields

∣∣∣ξ̃li−1+2

∣∣∣−κi a.s.−→
∞∑

j=1

exp
{
−

j∑
k=1

τk

}
1 (Aj) , . . . ,

∣∣∣ξ̃li

∣∣∣−κi a.s.−→
∞∑

j=1

exp
{
−

j∑
k=1

τk

}
1 (Aj) ,

arg ξ̃li−1+2 =
∞∑

j=1

(
φj + λ−1τ1bi + λ−1bi

j∑
k=2

τk

)
(mod 2π)1 (Aj) , . . . ,

arg ξ̃li =
∞∑

j=1

(
φj + λ−1τ1bi + λ−1bi

j∑
k=2

τk

)
(mod 2π)1 (Aj) .

Since the random variable λ−1τ1bi (mod 2π) has the uniform density on (0, 2π) as
λ → 0 (see Theorem 5) and the convolution of the uniform density on a circle with an
arbitrary density on a circle is again uniform, the densities of the random variables

γj =
(

φj + λ−1τ1bi + λ−1bi

j∑
k=2

τk

)
(mod 2π), j = 1, 2, . . . ,

are again uniform on (0, 2π) as λ → 0. Thus

arg ξ̃li−1+1 =
∞∑

j=1

γj1 (Aj) = β,

arg ξ̃li−1+2 =
∞∑

j=1

γj1 (Aj) , . . . , arg ξ̃li =
∞∑

j=1

γj1 (Aj)

as λ → 0.
The Laplace transform of the random variable β is given by

E exp {−sβ} = E exp
{
−s

∞∑
j=1

γj1 (Aj)
}

=
∞∑

k=1

P (Ak)E exp {−sγk} ,

where

E exp {−sγk} =
∫ 2π

0

exp {−sxk} d
(xk

2π

)
=

1 − exp {−2πs}
2πs

.

Therefore

E exp {−sβ} =
1
2π

1 − exp {−2πs}
s

∞∑
k=1

p (1 − p)k−1 =
1
2π

1 − exp {−2πs}
s

and thus the random variable β has the uniform distribution on (0, 2π) and does not
depend on α.

Theorem 6 is proved. �
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