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ON A MULTIVARIATE STORAGE PROCESS
UDC 519.21

0. K. ZAKUSYLO AND N. P. LYSAK

ABSTRACT. A multivariate storage process that satisfies the Langevin equation is
studied in the paper.

1. INTRODUCTION
Let a process z(t) = (z1(t), 22(t), ..., 2,(t))T € R™ satisfy the Langevin equation
(1) d;v(t) Az(t) dt + dz(t),
where z(t) = (21(¢), 22( ), - (t)) € R™ is a generalized Poisson process with param-
eter A and jumps n',n ,...,77] ; ArR™ — R" is a linear operator and ||a;||}';—; is

the matrix of its representation in some basis of R".
Equation (1) with initial data x(0) = x¢ has a unique solution in the class of measur-
able processes. This solution can be written in the following form:

(2) x(t) = exp{At}zy + /0 exp{A(t — u)} dz(u).

It is shown in [I] that the process x(t) has the limit distribution as ¢ — oo and this
distribution does not depend on the initial data z( if and only if
a) the eigenvalues of A belong to the left semiplane,
b) E(ln|n'[;|n'[ > 1) < cc.
It is also proved in [I] that the limit distribution is a unique stationary distribution of
the process z(t) if both of the above conditions hold. The characteristic function of the
limit distribution is given by

(3) Y(s) = exp {)\ /000 (1— ¢ (exp{ATu}s)) du}

where o(s) = E{expi(s,n')}.
As is seen from equality (2), the stationary distribution of z(¢) coincides with the
distribution of the vector

(4) §= /000 exp{Au} dz(u).

Moreover, equality (3) implies that the characteristic function of the stationary distri-
bution of x(t) is of the form ¢ (s) = exp{AK(s)} where K(s) does not depend on .
In the stationary regime, x(-,A) can be viewed as values of a stochastically continuous
homogeneous process with independent increments at the moment .
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82 O. K. ZAKUSYLO AND N. P. LYSAK

2. SETTING OF THE PROBLEM

The limit behavior of the distribution of z(-,A) as A — 0 is studied in [I] for the
case of A =UAU! where A = Héij)\iHZj:l, Ai (i =1,...,n) are real eigenvalues of the
matrix A such that A; <0 for all i, and U = [[u;[|7';=; is a nonsingular matrix.

The limit behavior as A — 0 of the distribution of z(-, \) is obtained in [5] for the case
of A=UJU! where J is a Jordan matrix[] 4 = a7 and U = [Ju;||?

ij=11 i,j=1"

In this paper, we consider the general case of A = U.JU ! where J is a Jordan matrix,
U = |luj|7' ;=1 is a nonsingular matrix, and A = |[a;;||}';—;. We study the limit behavior

as A — 0 of the vector
F=(Z1,...,5,)T = U 2(-,\)
under the assumption that the distribution of z(-, A) is stationary.

Below we show that the components of the vector Z are completely determined by the
form of the Jordan blocks. Thus we obtain the limit behavior, as A — 0, of the part of
the vector x that corresponds to a Jordan block J;. In doing so, we consider separately
the cases of real and complex eigenvalues \; of the matrix A.

3. AUXILIARY RESULTS AND NOTATION

The process z(t) is completely determined by the heights of the jumps n',7n?,... and
by the lengths of the intervals A='7;, A\"!7y,... between the jumps. All the random
variables 7, j = 1,2,..., and 74, i = 1,2,..., are independent and P{7; >t} = exp{—t}
for t > 0. Thus we obtain from (4) that

£ =exp {)FlnA} nt +exp {)\*1(71 + TQ)A} "+ ..

) R
+expq AT AZTk 4.
k=1
Below we use the following notation: & = (Z1,...,%,)7 = U 1z(-, \);
s _j T 1 .
V=) =T, =12
5: (glv"wgﬂ)T = Uﬁlg;pr = P{ﬁan = 0} ’p;r = P{ﬁi > 0},

sgnz = (sgnzy,...,sgnz,)’  for z = (21,...,2,)7 €R™;
J=A{J1,...,Jm} where J; is the Jordan block of order k; corresponding to the eigenvalue
Ai, © = 1,...,m, of the matrix A (there could be equal numbers among the A;, i =
L...om); > ki=ln,m=1,....n;l, =n; v; = )\)\;1 for real \; and k; = Aa;l for

complex \; = a; + ib;.

Recall that the matrix f(A) is well defined if f(¢) is an analytic function. Since
A =UJU!, the matrix f(J) is well defined and, moreover, f(A) = Uf(J)U~*. Thus
relation (5) can be rewritten in the following form:

E=Uexp{\ ' J}

J
x Ut (171 + U exp {A_ngJ} U+ + Uexp{)\_lJZTk}U_lnj +.. >
k=2
or
E=Uexp {A_lrlJ} vt (771 + 51) ,
where the random variables 71, ¢!, and ' are independent and the distributions of &
and €' are identical.

T.e., a matrix in the Jordan normal form.
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Therefore
J
(6) E=exp {)\_17'1J} (171 + exp {)\_lrgJ} 4+ exp{)\_lJZTk}ﬁj +.. )
k=2
or
(7) §=exp (A 'nJ} (7 +€),

where ¢ = (f}, ceey é}l) = U~1¢Y, the distributions of Z, &, and €' are identical, and
exp {)\717'1&]} = {exp{/\*lﬁJl}, . 7exp{)\*lﬁJm}} ,

1 Ao (At
T (1§i7)1k)1 )
S
(8) exp{AT i} =exp (AN} 0 1 i =2)1
0 0 .. 1

It is seen from (6) and (7) that the components of the vector £ = (£1,...,&,)T as well
as those of the vector ¥ = (Z1,...,4,)7 are determined by the Jordan blocks. Thus,
without loss of generality, we restrict our consideration below to the investigation of the
part of the vector Z that corresponds to the Jordan block J; of order k; related to the
eigenvector \;.

Denote by (i"l%_l_l,_l,.ili_l_i_g,...,fﬁli)T the part of the vector & that corresponds to
the Jordan block J; and let (] 1,7 o, .-.,7.)T, j = 1,2..., be the part of the
vector 7’ related to the Jordan block J;.

We introduce the random events A; = {7}, # 0},

Aj={it =0, 1 =0, #0},
By ={il_y #0} By ={il_, = 0,....7 _} = 0,3 _, #0}, j =2,3..., and denote
the indicators of events A; and B; by 1(A;) and 1(B;), respectively. Let P{A:} = p
and P{B;} = ¢. In what follows we assume that all stochastic processes and random
variables are defined on the same probability space.

4. MAIN RESULTS

We distinguish between the following two cases.
I. An eigenvalue A; < 0 of the matrix A is real (Z;,_,+1,...,2;, are real in this case).
II. An eigenvalue A; < 0 of the matrix A is complex; that is,

Ai = a; + by, a; <0, b; #0.
In this case, Zi,_,+1,...,%;, are complex. We represent these numbers as follows:
Ty, +1 = |Z1,_, +1] exp{ivr,_ 41}, ce Z1, = |21, | exp{ipy, },
where ¢y, 11 = arg&y,_,41,-.-,91, = arg Ty, Pi,_1+1,---» @1, € (0,2m).
4.1. Case I.

Theorem 1. Ifp;, = 0 and the distribution of x(+, \) is stationary, then the distribution
of
~ —V; ~ —V; ~ ~
(|$li—l+1‘ 7"'7|xli| ’Sgn(mli—l'i‘l?"'?xli))

converges weakly as A — 0 to the distribution of (a, ..., sgn(ﬁlli7 e ,ﬁlli)), where o has
the uniform distribution on the interval (0,1) and does not depend on ﬁll
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84 O. K. ZAKUSYLO AND N. P. LYSAK

Proof. Since p;, =
relations (7) and (8

~ - \T - - T
(G e &) =eo (A} (8 + i G )

- - -\T
ZGXP{)\_lTl)\i} (Clli,1+1aCl1i,1+2a-~-aCzli) )

0 and the distributions of the vectors Z and & are identical, we use
) and obtain

9)

where
k"—l —1 m
g = Z ) a L
lio1+1 — m! li—1+m+1 Mi_14m—+1) >
m=0 ’
k‘i—2 )\71 m
1 (Atm) " s - 1 f1 =l
Cli—1+2 = Z m! (gli_1+m+2 + nli—1+m+2)’ Tt Cli = é-li + M-

m=0
According to Lemma 6.4 in [I], £! P, 0asA— 0and

k;—1 _ m
N — (A7)
P {mlil"‘l + Z %mi—1+m+l = 0}

m=1
k;—1 ()\_17_ )m
1) 1 1
=P { > T amr = 1 0 =0,
m=1 :
since the random variables 7; and ﬁ% (r=1l_1+1,...,1;) are independent and

kil ()\,17_1)771

~1
Z m! M _14m+1

m=1
has an absolutely continuous distribution. Thus

kil (/\717'1)771

—v;

lim In E = (g it
NS0 m) €lz‘71+m+1 + Mi_14m+1
m=0
k}ifl"'l
— A 'lim T —0
- ki—2~1 =1

A=0 T2l AL
Therefore relation (9) implies that

kiel /\_1_\m
c A7l ~ )
Z % (glli—1+m+1 + 771171—1+m+1>

—v;
—v;

éiia| " =exp{-m} L+ exp{-n},
m=0
z “viop - |TVop
fli_1+2’ — exp{—T1}, cees ’&i — exp{—T71},
- P i - P 1 P 1
sgnéy,_,+1 — Sgn,, sgnéy,_,+2 — sgni,, ce sgn &y, — sguiy,

as A — 0. Moreover the random variable exp {—71} = « has the uniform distribution on

the interval (0,1) and does not depend on 7 .
Now Theorem 1 follows, since the convergence in probability of the corresponding
coordinates of the vectors implies the weak convergence of the distributions of the vectors.
|

Theorem 2. If 0 < p;, <1 and the distribution of x(-, \) is stationary, then the distri-
bution of

- —v; - = - -
(’$Zi71+1’ yees | T, l,sgnxli71+1,...,sgnxli)
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weakly converges as A — 0 to the distribution of (a*/?,... a'/? ~,...,v), where the ran-
dom variable « has the uniform distribution on the interval (0,1), while the random
variable v assumes the values 1 and —1 with the probabilities p;: and (1 — plt), respec-
tively, and does not depend on .

Proof. If 0 < p;, < 1, then we get from relations (6) and (8) that
- - “\T . . \T
(§Zi71+1?€l'i—1+27"'76[7;) :exp{)\_lTl/\i} (Cli71+1’<li—1+2""’Cl'i) ’

where

Eli—l‘i’l = Z

X ki—m
oo J )\_1 ]_ T, .
+ ZeXp {)\_1)\1'2776} ( (k_klmk)!) Up—

o J
G, =1 + Zexp {Al)\i ZTk} .-
=2 k=2
Consider the random events
Ay ={i, #0},  Ay={ij, =0, #£0}, ...,
Ay ={ik =0, = 0.0, £ 0},

One can treat Q = {Ay, As,..., Aj,...} as the space of elementary events. Moreover
P{4;} =p(Q1 —p)’!, where P {4;} = p.
The restriction of the random Valiiable &, r=1;_1+1,...,1;, on the elementary
event A;, j =1,2,..., is denoted by £T|A" Then
kifl
(Alhm)t

gli,1+1 A = €xp {)\ 7'1)\ } fl)!mﬁ
1

A+ ))ki_
= _ 1 2 -
(10) &1+ " = exp {)\ (11 +72) )\l} e = 1) ni, ce

J
g _ -1 ( = ~j
fli—l"l'l A, eXp{ )\ ZTk} (kz _ 1)] nlJi’

Thus we have

—v;

22 exp {-71},

gli—l"”l A §Zi71+1 A

1 2

—vi J
a.s.
—= exp —E T ¢ ol
k=1

gli—l‘i’l

Aj
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as A — 0; that is,

& i
’gli,_l-i-l‘ i}Zexp{ZTk}l(AJ)X
Jj=1 k=1

A similar reasoning for gli71+27 e ,éli shows that
v o J
’éli_1+2‘ lﬁZexp{—ZTk}l(Aj), e
j=1 k=1
s o0 j
‘gli gZexp{—ZTk}l(Aj).
j=1 k=1

Analogously we obtain that

sgn éli—lJrl = Z sgn ﬁljll (A]) =7,
j=1

sgnéy,_ 4o = ngnﬁ{jl(ﬁlj), e sgné;, = ngnﬁljil(Aj)
j=1 j=1

as A — 0.
Since the random variables

exp{—7;} = aj, i=1,2...,

have the uniform distribution on the interval (0,1), the Laplace transform of x is given

by
Eexp{—sx} = Eexp{sZal o4l (Aj)}
j=1
= Z P(Ax)Ea4, exp{—sZal e ajl(Aj)}
k=1 j=1
= Z P(Ar)Eexp{—saj...ax},
k=1
where
1 1
Eexp{—saj...ap} = / . / exp{—szy ...z }dx; ... dag.
0 0
The series

S

7!

exp{—szy ...} = Z

Jj=0

converges by the d’Alembert criterion for any z° = z9 .. .xg; thus it converges on (0, 1).

By the Weierstrass criterion this series is uniformly convergent on (0, 1). Since the terms
of this series are continuous functions on (0,1), we get

e 1 T_gyi . . e _s)J
Eexp{—sal...ak}:Z/ / ( T) x{...xidml...d:ﬂkzzi
=00 o J

. . k°
L VESY:
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Hence
e N i 8 S (s S (L)
Eexp{ X}—;p(l p) Jgoj,(jJrl)k—sz::o i kzd G+ 1k
RSN GO BRSNS e ' W C N G0 L SRV
_p; 5! (j+1);(j+1) _pj; PRSI
—1)PsP = WMZS w)(—=u)P) = — swﬂu
NS =p Y S | o) ”/Z .
_ s_up—loo_(_u)j w=p(—1)P Sup‘lex —u} du
—p/0<>;0j!dp<1>/o pl-u}d
:p(fl)pw(pvs)a
where

(-1)? = exp{(2n + V)pmi} = cos(2n + 1)p7 + isin(2n + 1)pm, n=0,+1,+2 ...,
and y(p, s) is the incomplete gamma function.
Therefore
¢(s) = ps Py (p,s).
Using corresponding relations for the inversion of the Laplace—Carson transform [3],
we evaluate the density of x:

ptP~l, 0<t<1,
(t) =
0, t>1,

and the corresponding distribution function

tP, 0<t<,
G(t) =
0, t>1.

If a has the uniform distribution on (0, 1), then x = a!/?. The theorem is proved. O

Theorem 3. Ifp;, =1, pj,—1 =0, and the distribution of (-, \) is stationary, then the
distribution of (|:ili_1+1\*”i, co @17 |2 | sen Fry 1, - - - S8R Ty, 1, SE0 :ili) weakly
converges as A — 0 to the distribution of (a, ey, 0,8gn 77111.71’ ...,8gn ﬁllﬁl, 0), where o
has the uniform distribution on (0,1) and does not depend on ﬁll,i—l'

Proof. The proof of Theorem 3 is similar to that of Theorem 1. O

Theorem 4. Ifp;, =1, 0 < p;,—1 <1, and the distribution of x(-,\) is stationary, then
the distribution of

(120,77 (@ |77 |20 ] sgn @y 1, 580 3y, 1, 580 3,

weakly converges as A\ — 0 to the distribution of (al/q, coal10,y, .. .,7,0), where a
has the uniform distribution on (0,1), while the random variable v assumes the values 1
and —1 with probabilities p;;l and 1 — pltfl, respectively, and does not depend on a.

Proof. The proof of Theorem 4 is analogous to that of Theorem 2. Note however that the
random events By = {ij} _; # 0}, B; = {ijl _; =0,..., 4} =0, _, #0},j=2,3...,
should be substituted for the random events A;, j > 1, in the proof of Theorem 4. [
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4.2. Case II.
Theorem 5. If p;, = 0 and the distribution of x(-, X) is stationary, then the distribution
of
~ —Riq ~ —Kj
(’xli—lJrl‘ 7"'7|xli 7@li—1+17"'7@li>
weakly converges as X\ — 0 to the distribution of (o, ..., (3,...,0), where the distribu-

tion of the random variable a is uniform on the interval (0,1), the distribution of the
random variable B is uniform on the interval (0,27), and B does not depend on .

Proof. Since p;, =0, \; = a; + ib;, and the matrix U is complex, the vector

. - N
(G, & it2e - &)

is of the form
B B \T
<€li71+1) Eli71+2’ R 7§l1)

=exp {A 'ma; fexp {iNT b} (Gt G2y e - Clq,)T

in view of relations (7) and (8), where

(11)

<7“ = ‘Cr‘eXP{i%}v Tr :argC’!‘a Yr € (0,27’(’), T:li—1+la-'-ali-
Therefore (11) implies that

~ — K ks

’leIH‘ =exp{-71} |exp {Z (’Ylifl+1 + Afllei)}} m P exp{—-71},
—Kj —Ki P

— exp{—71}

- p -
‘ﬁli,ﬁz — exp{—T1}, S ‘ﬁli

as A — 0. Moreover the distribution of the random variable exp {—71} = « is uniform
on the interval (0, 1), and

arggli—1+1 = (A/li_lJrl + )\717'1bi) (mod 2’]‘(’)7
arg glj_ﬁg = (’}/li_1+2 + )Flﬁbi) (mod 2), el
(v, + A" b)) (mod 2m)

arg 5li
as A — 0.
Let fi,_,+1(8), fi._y+2(t), ..., fi,(t), t € (0,27), be the densities of the random variables

(V41 + A7 b;)  (mod 27),
(Viioy 42 + A7 b)) (mod 27), e
(i, + A"tmb;)  (mod 27),

respectively, defined on a circle of length 27, while f(¢) is the density of the random
variable 2\71T1bi. The random variable A™17b; (mod 27) is defined on a circle, and its
density f is given by

ft)= i f(t+2mk) = \b; iexp {=Xb; ' (t+2nk)} = ;

k=0 k=0

Xexp {—Ab; 't}
i (1 — exp {—)\b;127r}) ’

RN VAN | -l
lim F(t) = lim exp {—Ab; 't} — \b; ffxp{ Ab; 't} _ i
A—0 A—0 27 exp {—)\bi 271'} 2m

It is known [2] that the convolution of the uniform density on a circle with an arbitrary
density on a circle is the density of the uniform distribution. Thus
1

: 1 : . 1
)1\1_>H10fli71+1(t): %’ )]‘\1_>H10fli—1+2(t): %’ SRR )l\li%fli(t): %
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as A\ — 0. Therefore the distributions of the random variables
(Y41 + A1) (mod 27),
(Yi_y42 + A" ki) (mod 2m), e (Y, + A7'bi)  (mod 2m)

as A — 0 coincide with the uniform distribution on the interval (0, 27), and these random
variables do not depend on a.
Now Theorem 5 follows from the properties of the weak convergence and convergence

in probability. (I
Theorem 6. If 0 < p;, < 1 and the distribution of x(-, X) is stationary, then the distri-
bution of

(|£li—1+l|7ﬁ/i? teey |‘%l@ |7Hia Pliq+1y -+ Salq,)
weakly converges as X\ — 0 to the distribution of (al/p, a3 0B) where the ran-

dom variable o has the uniform distribution on the interval (0,1), the random variable 3
has the uniform distribution on the interval (0,27), and B does not depend on «.

Proof. The proof of Theorem 6 is analogous to that of Theorem 2.
Since \; = a; + ib;, relation (10) can be rewritten as follows:

exp {A"1ra;} exp {ix ! b.}Mﬂ

A Xp T1Q5 Xp T10; (k171)| nlia

(At + m))ki_l —
(kl_l)! 77[,» M)

. ki1
~ J J ()\*122:171@) ;
§liot1 " = exp {/\_lai ];Tk} eXp{M_lbi ;Tk} (e —1)! s

gli—l‘i’l

Ezi_1+1 = exp {)\*1 (11 + 72) ai} exp {i)\*l (11 + 72) bl-}

where
i = ’ﬁ{i’exp{i¢j}, 6y =argii,  j=1,2.., @ c(0,2m),
and
arg &, 11 W= (p1+A7'7mb;)  (mod 2r),
1
argé&, 41| = (¢2 + A Lmb; + )fngbi) (mod 27), e
2
B J
arg &l ;41 4, = <¢j + A7 b+ Ay, kZQTk> (mod 27),
Then
0 J
argél, ,+1 = Z (gbj + A7 b 4+ AT ZTk) (mod 2m)1(4,).
Jj=1 k=2
Therefore
~ —Ri N —K;
i1 == exp{-7}, €ZH+1} ——exp{—(m1 +72)}, :
Ay Az

— K

J
a.s.
ﬁexp{_zm},
k=1

gli—1+1 A
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90 O. K. ZAKUSYLO AND N. P. LYSAK

as A — 0; that is,

o J

‘gli_1+l‘_m 22 eXP{ZTk}l (A;) = x.

j=1 k=1

As in the proof of Theorem 2, y = a'/? where the random variable a has the uniform
distribution on the interval (0, 1).

A similar reasoning for &, ,4o,... ,g}i yields
Ri 5 g e J
‘EZHH =2 ZeXP{—ZTk}l (45), e
j=1 k=1
~ Ki i J
& izexp{—zm}lw,
j=1 k=1
00 J
arglelJrg ZZ (¢j+)\_llei+)\_lbiZTk) (mod 27T)1(Aj), ey
j=1 k=2
S J
argfli = Z (d)j + A b AT, ZTk> (mod 2m)1(4;).
j=1 k=2

Since the random variable A='71b; (mod 27) has the uniform density on (0,27) as
A — 0 (see Theorem 5) and the convolution of the uniform density on a circle with an
arbitrary density on a circle is again uniform, the densities of the random variables

J
;= <¢j + A" b + A Zm> (mod 27),  j=1,2,...,
k=2

are again uniform on (0,27) as A — 0. Thus

arg, 41 = v1(4;) =5,
=1

argd, 42 = wl(4;), ..., argd, =) vl(4))
j=1 j=1

as A — 0.
The Laplace transform of the random variable 3 is given by

Eexp{—s8} = Eexp{sz'yjl (Aj)} = Z P (Ax)Eexp {—svi},

k=1

where
27
1—exp{-2
Eexp {—sy} Z/ eXp{—sxk}d(;c—k) - M.
0 T

2ms
Therefore

1 1—exp{—27ms} <= k-1 1 1—exp{—2ms}
Eexp (s} = gt ORI §7 ) (g o - LLZ P {2m)
k=1

and thus the random variable 8 has the uniform distribution on (0,27) and does not
depend on a.
Theorem 6 is proved. (Il
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