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Abstract In this paper we studied a three-parameter absolutely continuous bivariate distribution whose marginals

are generalized exponential distributions. The proposed three-parameter bivariate distribution can be used quite

effectively as an alternative to the Block and Basu bivariate exponential distribution. The joint probability density

function, the joint cumulative distribution function and its associated copula have simple forms. We derive dif-

ferent properties of this new distribution. The maximum likelihood estimators of the unknown parameters can be

obtained by solving simultaneously three non-linear equations. We propose to use EM algorithm to compute the

maximum likelihood estimators, which can be implemented quite conveniently. One data set has been analyzed

for illustrative purposes. Finally we propose some generalization of the proposed model.

Keywords Generalized exponential · Bivariate exponential distribution · Dependence · Measure of association ·
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1 INTRODUCTION

The two-parameter generalized exponential (GE) distribution proposed by Gupta and Kundu [10] has been used

quite successfully to analyze lifetime data and it has received some attention in recent years; see, e.g.[3,15,
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16]. A two-parameter GE distribution with the shape parameter α and the scale parameter λ has the following

cumulative distribution function (CDF)

FGE(x;α ,λ ) =
(

1− e−λx
)α

. (1)

From now on a GE with the CDF (1) will be denoted by GE(α , λ ). When α = 1, it becomes an exponential

distribution with parameter λ , and we will denote it by Exp(λ ). It is well known that the probability density

function (PDF) and the hazard function (HF) of a GE distribution can take different shapes. If the shape param-

eter is less than or equal to one, the PDF and the HF are decreasing functions. When the shape parameter is

greater than one, then PDF is a unimodal, and the corresponding HF is an increasing function. For some recent

developments on the GE distribution, and for its different applications, the readers are referred to [11,18] and

the references cited therein.

In many reliability and life testing experiments, bivariate data arise quite naturally. Among the different

bivariate lifetime model, Marshall-Olkin bivariate exponential model [22] is the most popular one. It is a singular

distribution, that is a pair (X ,Y ) distributed as Marshall-Olkin model has this property that P(X =Y )> 0. Block

and Basu [5] introduced a three-parameter absolutely continuous bivariate exponential distribution by removing

the singular part of the Marshall-Olkin model. Although Block and Basu bivariate exponential distribution does

not have exponential marginals, but its marginals have decreasing PDFs and HFs. Several authors have been

studied applications of the Block and Basu model; see, e.g [2]. A wide survey on different bivariate distributions

can be found in [4,17].

Recently, different bivariate exponential and bivariate generalized exponential (BGE) distributions have been

proposed and studied in the literature; see, e.g. [19–21,24,28,32]. Most of these models are singular distribu-

tions, and they can be used if there are ties in the data. It is not trivial to extend the univariate GE distribution

to the bivariate or the multivariate case. According to Joe [13], Section 4.1, a parametric family of distributions

should satisfy four desirable properties: (a) There should exist an interpretation like a mixture or other stochastic

representation. (b) The margins should belong to the same parametric family and numerical evaluation should

be possible. (c) The bivariate dependence between the margins should be described by a parameter and cover

a wide range of dependence. (d) The distribution and density functions should preferably have a closed-form

representation; at least numerical evaluation should be possible. The aim of this paper is to study a new abso-

lutely continuous bivariate generalized exponential distribution, whose marginals are univariate GE distributions

and fulfill all of the properties (a)–(d). This new three-parameter BGE distribution is obtained using the distri-

bution of minimum order statistics of two independent samples of ordinary exponential distribution when the

sample size is random; see, e.g, [7]. All joint or marginal distributions and density functions, the correspond-

ing moments, the copula and its density have simple analytic representations that can be easily employed in

applications. Moreover, the proposed distribution has positive quadrant dependent property which implies that

the measures of association such as Pearson’s moment correlation, Kendall’s tau and Spearman’s rho for this

distribution vary between 0 and 1, which is a suitable range of dependence for applications.

The maximum likelihood estimators (MLEs) can be obtained by simultaneously solving three non-linear

equations. The MLEs cannot be obtained in explicit forms. For known shape parameter the MLEs of the scale
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parameters can be obtained by using the EM algorithm. In the proposed EM algorithm, at each E-step the

maximization can be performed explicitly. Hence the implementation of the EM algorithm is quite simple in this

case. Finally, the shape parameter can be estimated by maximizing the profile log-likelihood function.

The rest of the paper is organized as follows. We discuss the derivation of the BGE distribution in Section 2.

In Section 3 we study its different properties. Statistical inference is provided in Section 4. The analysis of a real

data set is presented in Section 5. Finally we propose some generalizations and conclude the paper in Section 6.

2 BGE DISTRIBUTION: PDF AND CDF

Following the idea given in [7], let {X1,X2, . . .} and {Y1,Y2, . . .} be two sequences of mutually independent

and identically distributed (i.i.d.) random variables. It is assumed that for k ∈ {1,2,3, . . .}, Xk ∼ Exp(λ1) and

Yk ∼ Exp(λ2). Consider a sequence of independent Bernoulli trials in which the kth trial has probability of
α
k

,

0 < α ≤ 1, k ∈ {1,2,3, ...} and let N be the trial number on which the first success occurs. The discrete random

variable N has the probability mass function

P(N = n) = (1−α)
(

1− α
2

)
. . .

(
1− α

n−1

)
α
n

; n = 1,2, . . . ,

and its probability generating function is given by, see, e.g., [26]

g(t) = E(tN) = 1− (1− t)α ; t ∈ [0,1]. (2)

Let

U = min(X1, ...,XN) and V = min(Y1, ...,YN).

The joint survival function of (U,V ) is then

F(u,v) = P{U ≥ u,V ≥ v}

=
∞

∑
n=1

[P(Xi ≥ u)P(Yi ≥ v)]n P(N = n)

= g
(

e−(λ1u+λ2v)
)

= 1−{1− e−(λ1u+λ2v)}α . (3)

Since F(u,v) = 1−F1(u)−F2(v)+F(u,v), the associated joint distribution function is given by

F(u,v) = (1− e−λ1u)α +(1− e−λ2v)α −{1− e−(λ1u+λ2v)}α , u,v ≥ 0,λ1,λ2 > 0,0 < α ≤ 1. (4)

From (4), by taking v → ∞ or u → ∞, it follows that

U ∼ GE(α ,λ1) and V ∼ GE(α ,λ2). (5)

Therefore, it follows that the marginals of (4) are GE distributions. A pair (U,V ) distributed as (4) is said to have

BGE with parameters α , λ1 and λ2, and it will be denoted by BGE(α ,λ1,λ2). The joint density function of BGE

is given by

f (u,v) = λ1λ2αe−(λ1u+λ2v){1−αe−(λ1u+λ2v)}{1− e−(λ1u+λ2v)}α−2. (6)
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It can be easily seen that the joint PDF of BGE is a decreasing function in both arguments, and it resembles

the joint PDF of the Block and Basu bivariate exponential distribution. Plots of the CDF and PDF of the BGE

distribution are provided in Fig. 1.

(a) (b)

(c) (d)

Fig. 1 Plots of the joint CDF (left panels) and PDF (right panels) of BGE distribution. In (a) , (b) (α,λ1,λ2) = (0.1,1,1) and in (c), (d)

(α,λ1,λ2) = (0.9,1,1).

Since 0 < 1− e−(λ1u+λ2v) < 1, for u,v > 0, by using the binomial series expansion we have

(1− e−(λ1u+λ2v))α =
∞

∑
j=0

(
α
j

)
(−1) je− j(λ1u+λ2v),

and the joint survival function (3) can be rewritten as

F(u,v) =
∞

∑
j=1

(
α
j

)
(−1) j+1e− j(λ1u+λ2v).
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We observe that the infinite series is summable, differentiable and hence by differentiating with respect to u and

v we get

f (u,v) = λ1λ2

∞

∑
j=1

(
α
j

)
(−1) j+1 j2e− j(λ1u+λ2v). (7)

3 PROPERTIES

3.1 MOMENTS & CONDITIONAL MOMENTS

First we provide expressions for the joint moment generating function (mgf) and Pearson’s correlation coefficient

of the BGE model.

Proposition 1 If the random vector (U,V )∼ BGE(λ1,λ2,α) then

(a) the joint m.g.f. of (U,V ), for |t|< λ1 and |s|< λ2, is given by

MU,V (t,s) =
∞

∑
j=1

(
α
j

)
(−1) j+1 λ1λ2 j2

( jλ1 − t)( jλ2 − s)
, (8)

(b) the Pearson’s correlation coefficient of (U,V ) is given by

Corr(U,V ) =
1

κ(α,1)

(
∞

∑
j=1

(α
j

)
(−1) j+1

j2 − γ(α,1)2

)
, (9)

where

γ(α ,β ) =Ψ(α +β )−Ψ(β ), and κ(α,β ) =Ψ ′(β )−Ψ ′(α +β ),

Ψ(t) =
d
dt

lnΓ (t),

is the digamma function, Ψ ′(.) is its derivative and

Γ (t) =
∫ ∞

0
xt−1e−xdx, t > 0,

is the gamma function [9].

Proof Starting from MU,V (t,s) = E(etU+sV ), using (7) we have

MU,V (t,s) = λ1λ2

∫ ∞

0

∫ ∞

0

∞

∑
j=1

(
α
j

)
(−1) j+1 j2e−( jλ1−t)x−( jλ2−s)ydxdy.

Since the quantity inside the summation is absolutely integrable, interchanging the summation and integration

we have the required result. For part (b) using (7), direct calculation shows that the product moment could be

obtained as

E(UV ) =
∞

∑
j=1

(α
j

)
(−1) j+1

λ1λ2 j2 .

Since U ∼ GE(α,λ1) and V ∼ GE(α ,λ2), from [10], using

E(U) =
Ψ(α +1)−Ψ(1)

λ1
, E(V ) =

Ψ(α +1)−Ψ(1)
λ2
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and

Var(U) =
Ψ ′(1)−Ψ ′(α +1)

λ 2
1

, Var(V ) =
Ψ ′(1)−Ψ ′(α +1)

λ 2
2

the expression for correlation coefficient is immediate.

The following result gives the conditional moments of BGE model.

Proposition 2 If the random vector (U,V )∼ BGE(λ1,λ2,α), then the conditional expectation of V given U, is

given by

E(V |U = u) =
λ1

λ2

1
hU (u)

,

where hU (u) = fU (u)/F̄U (u) is hazard rate function of U.

Proof The conditional density function of (V |U = u) is given by

fV |U=u(v) =
λ2

αe−λ1u(1− e−λ1u)α−1

∞

∑
j=1

(
α
j

)
(−1) j+1 j2e−( jλ1u+λ2v).

Thus,

E(V |U = u) =
∫ ∞

0
x fX2|X1=u(x)dx

=
1

α(1− e−λ1u)α−1

∞

∑
j=1

(
α
j

)
(−1) j+1 je−( j−1)λ1u

(∫ ∞

0
jλ2xe− jλ2xdx

)
=

1
αλ2(1− e−λ1u)α−1

∞

∑
j=1

(
α
j

)
(−1) j+1e−λ1( j−1)u

=
1− (1− e−λ1u)α

αλ2e−λ1u(1− e−λ1u)α−1

=
λ1

λ2

FU (u)
fU (u)

.

It is known that (see, e.g., [10]) the hazard rate function of univariate GE distribution with the shape parameter

α , has a decreasing hazard function if α ≤ 1. Therefore, we have the following result.

Corollary 1 If the random vector (U,V )∼ BGE(λ1,λ2,α), then E(V |U = u), is an increasing function in u.

The following results will be useful for development of the EM algorithm. If (U,V ) and N are same as

defined before, then the joint PDF of U , V and N can be written as

f (u,v,n) = n2λ1λ2e−n(λ1u+λ2v)P(N = n); u > 0,v > 0,n = 1,2, . . . . (10)

Hence the conditional probability of N = n, given U and V can be written as

P(N = n|U = u,V = v) = Kn2e−nAP(N = n); n = 1,2, . . . , (11)

where A = λ1u+λ2v, and

K−1 = αe−A{1−αe−A}{1− e−A}α−2.
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Proposition 3 If (U,V )∼ BGE(λ1,λ2,α), and N is same as defined before, then

E(N|U = u,V = v) = Kαe−A(1− e−A)α−3{e−2A(α2 −6α +3)+ e−A(3α +1)−2
}
.

Proof If we denote

h(t) = E
(
te−A)N

,

then it follows that
∞

∑
n=1

n3e−AP(N = n) = h
′′′
(1)+3h

′′
(1)+h

′
(1).

Now the result follows by using the fact that from (2)

h(t) = 1−
(
1− te−A)α

; t ∈ [0,1].

3.2 STRESS-STRENGTH PARAMETER & DISTRIBUTION OF THE MINIMUM

The stress-strength parameter, R = P(U < V ), is useful for data analysis purposes. The following result gives a

convenient form for the stress-strength parameter of BGE model.

Proposition 4 If (U,V )∼ BGE(λ1,λ2,α), then

P(U <V ) =
λ2

λ1 +λ2
.

Proof From (7) we have

P(U <V ) =
∫ ∞

0

∫ y

0
f (x,y)dxdy

=
∞

∑
j=1

(
α
j

)
(−1) j+1 j2

∫ ∞

0

∫ y

0
λ1λ2e− j(λ1x+λ2y)dxdy

=
∞

∑
j=1

(
α
j

)
(−1) j+1

∫ ∞

0
λ2 je− jλ2y(1− e− jλ1y)dy

=
λ2

λ1 +λ2

∞

∑
j=1

(
α
j

)
(−1) j+1

=
λ2

λ1 +λ2
,

which completes the proof.

Proposition 5 If (U,V )∼ BGE(λ1,λ2,α), then

W = min(U,V )∼ GE(α,λ1 +λ2).

Proof

P(W ≥ w) = P(U ≥ w,V ≥ w)

=
∞

∑
n=1

[P(Xi ≥ w)P(Yi ≥ w)]nP(N = n)

= g
(

e−(λ1+λ2)w
)

= 1−
{

1− e−(λ1+λ2)w
}α

which completes the proof.
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3.3 RÉNYI ENTROPY

The entropy of a random vector (U,V ) with the joint pdf f (x,y) is a measure of variation of the uncertainty.

Rényi entropy [27] is defined by

IR(β ) =
1

1−β
log{T (β )},

for β > 0, where

T (β ) =
∫

f β (x,y)dxdy.

Proposition 6 Suppose that (U,V )∼ BGE(λ1,λ2,α). Then

T (β ) =
∞

∑
j=0

∞

∑
k=0

(β
j

)(β (α−2)
k

)
α j+β (λ1λ2)

β−1

( j+ k+β −1)2 . (12)

Proof From (6) and substituting the transformations x = e−λ1u and y = e−λ2v, we have

T (β ) =
∫ 1

0

∫ 1

0
αβ (λ1λ2)

β−1(xy)β−1
(

1−αxy
)β(

1− xy
)(α−2)β

dxdy.

By applying the binomial series expansion to the integrand and integrating with respect to x and y, we have the

required result.

3.4 DEPENDENCE PROPERTIES

In what follows we discuss the dependence properties of the BGE distribution through its associated copula. In

view of Sklar’s Theorem [33], solving the equation

Cα{F1(x),F2(y)}= F(x,y),

for the function Cα : [0,1]× [0,1] → [0,1] yields the underlying copula associated with the pair (U,V ) having

the BGE distribution defined by (4) as

Cα(u,v) = u+ v−{1− (1−u
1
α )(1− v

1
α )}α

= u+ v−uv{u−
1
α + v−

1
α −1}α , (13)

for all u,v ∈ (0,1) and 0 < α ≤ 1. The theory and applications of copulas are well documented in [25]. The

survival copula Ĉα(u,v) = u+ v−1+Cα(1−u,1− v), associated to Cα is given by

Ĉα(u,v) = 1− (1−u)(1− v){(1−u)−
1
α +(1− v)−

1
α −1}α , (14)

for all u,v ∈ (0,1) and 0 < α ≤ 1. The copula (13) is not a member of the Archimedean family of copulas

[25], but its associated survival copula (14) turns to be an Archimedean copula with the strict generator ϕ(t) =

−ln(1− (1− t)
1
α )) (see, Example 3 in [7]).

Recall that for two copulas C1 and C2, we say that C2 is more concordant than C1 (written C1 ≺c C2) if

C1(u,v) ≤ C2(u,v), or equivalently Ĉ1(u,v) ≤ Ĉ2(u,v), for all u,v ∈ (0,1). A pair (X1,X2) with the copula C is

positively quadrant dependent (written PQD) if Π ≺c C, where Π(u,v) = uv is the product copula [25].
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The dependence properties of the BGE distribution depend only on the parameter α . The following result

provides the dependence ordering of the BGE family of distributions with respect to the parameter α .

Proposition 7 The copula Cα defined by (13) is negatively ordered with respect to α; that is for α1,α2 ∈ (0,1],

such that α1 ≤ α2, we have Cα2 ≺c Cα1 .

Proof Since Ĉα is an Archimedean copula with the generator ϕα(t) = −ln(1− (1− t)
1
α ), and ϕα2 ◦ ϕ−1

α1
(t) =

−ln(1− (1−e−t)
α2
α1 ) is non-decreasing in t, for α1 ≤ α2, in view of Theorem 4.4.2 in [25], we have Ĉα2 ≺c Ĉα1 ,

or equivalently, Cα2 ≺c Cα1 .

Corollary 2 Suppose that (U,V )∼ BGE(λ1,λ2,α). Then (U,V ) is PQD.

Proof As a consequence of Proposition 7, for α ≤ 1 we have that Π(u,v) = C1(u,v) ≤ Cα(u,v) for all u,v ∈
(0,1).

Remark 1 Since the BGE distribution defined by (4) has the PQD property, it is suitable to describe the positive

dependence of a random pair (U,V ). However, it is very simple to consider a distribution to describe a negative

dependence. It suffices to consider the copula C∗ given by C∗
α(u,v) = u−Cα(u,1− v). It is obvious that the

properties of a copula C∗
α can be obtained in a simple way from the corresponding properties of a copula Cα ;

see, [25] for detail.

Let (U,V ) and (U ′,V ′) be two continuous random vectors with the same univariate marginals and the re-

spective joint density functions f and g. The pair (U,V ) is said to be more positive likelihood ratio dependent

(PLRD) than the pair (U ′,V ′), denoted by (U,V )≺PLRD (U ′,V ′), if

f (x1,y1) f (x2,y2)g(x1,y2)g(x2,y1)≥ f (x1,y2) f (x2,y1)g(x1,y1)g(x2,y2), (15)

whenever x1 ≤ x2 and x2 ≤ y2 [31]. When U ′ and V ′ are independent, then the pair (U,V ) is said to be PLRD

and the condition (15) reduces to f (x1,y1) f (x2,y2) ≥ f (x1,y2) f (x2,y1). Holland and Wang [12] showed that a

sufficient condition for PLRD in the case of continuous random variables is that ∂ 2

∂x∂y ln f (x,y)≥ 0.

Proposition 8 Suppose that (U,V )∼ BGE(λ1,λ2,α). Then (U,V ) is PLRD.

Proof Let (U,V ) be a random vector with the joint distribution function Gu(x,y) = xα + yα − (x+ y− xy)α ,

x,y ∈ [0,1], 0 < α ≤ 1. Let gu(., .) be the density function associated with Gu(., .). Since ∂ 2

∂x∂y lngu(x,y)≥ 0, for

all x,y ∈ [0,1], 0 < α ≤ 1, by the result of Holland and Wang [12] the pair (U,V ) is PLRD, i.e., (U ′,V ′)≺PLRD

(U,V ), where U ′ and V ′ are independent with the same univariate marginal distribution as U and V . For i = 1,2,

let ϕi(t) be the increasing mapping t →− 1
λi

ln(1− t). Since the pair (U,V ) has the same joint distribution as the

pair (ϕ1(U),ϕ2(V ), in view of Theorem 9.D.2 in [31], we have the required result.

In the following we discuss the tail dependence properties of the BGE distribution. For a pair (U,V ) with the

copula D, the lower (resp, upper) tail dependence coefficient, λL (resp, λU ) is defined by [13,25]

λL(U,V ) = limu→0+
D(u,u)

u
, (16)

and

λU (U,V ) = 2− limu→1−
1−D(u,u)

1−u
. (17)
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Proposition 9 Suppose that (U,V )∼ BGE(λ1,λ2,α). Then

λL(U,V ) = 0, λU (U,V ) = 0.

Proof By taking into account (16), from (13), the lower tail dependence coefficient of (U,V ) can be expressed

as

λL(U,V ) = limu→0+
u(2− (2−u

1
α )α)

u
= 0.

By taking into account (17), the upper tail dependence coefficient of (U,V ) can be expressed as

λU (U,V ) = 2− limu→1−
1−u(2− (2−u

1
α )α)

1−u
= 0.

In the rest of this section we provide expressions for some well-known measures of association for a vector

(U,V ) having BGE distribution. The population version of two of the most common nonparametric measures of

association between the components of a continuous random pair (U,V ) are Kendall’s tau (τ) and Spearman’s

rho (ρ) which depend only on the copula C of the pair (U,V ), and are given by

τ(C) = 4
∫ 1

0

∫ 1

0
C(u,v)dC(u,v)−1, (18)

and

ρ(C) = 12
∫ 1

0

∫ 1

0
C(u,v)dudv−3. (19)

See [25] for detail.

Proposition 10 Suppose that (U,V )∼ BGE(λ1,λ2,α). Then

τ(U,V ) = 1+4αB(2,2α −1)(Ψ(2)−Ψ(2α +1)),

and

ρ(U,V ) = 9−12α2
∞

∑
j=0

(−1) j
(

α
j

)
[B( j,α)]2,

where B(a,b) =
∫ 1

0 xa−1(1− x)b−1dx, denotes the beta function.

Proof First recall that for a copula–based measure of association κ , satisfying Scarsini’s axioms [30] and any pair

of continuous random variables (T,S) with associated copula C, one has κ(T,S) = κ(−T,−S), or equivalently,

κ(C) = κ(Ĉ). Now the result follows from Proposition 9 in [7].

Remark 2 Note that as a consequence of the PQD property of the BGE distribution, for (U,V )∼BGE(λ1,λ2,α),

we have Corr(U,V )≥ 0, τ(U,V )≥ 0 and ρ(U,V )≥ 0.

We provide the values of the Kendall’s tau and the Spearman’s rho for BGE distribution in Table 1. It is

immediate that as α increases, both Kendall’s tau and Spearman’s rho decrease to 0, as it should be. Moreover,

it is observed that
ρs(α)

τ(α)
=

3
2

as α −→ 1, although we could not proved it theoretically.
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α ρ(α) τ(α) ρs(α)
τ(α)

0.0001 0.999999935 0.9998000258 1.000200

0.1001 0.952423077 0.8218848820 1.158828

0.2001 0.854503656 0.6770884892 1.262027

0.3001 0.739507866 0.5547812933 1.332972

0.4001 0.620781827 0.4487290130 1.383423

0.5001 0.504091758 0.3549780000 1.420065

0.6001 0.391946075 0.2708654200 1.447014

0.7001 0.285344232 0.1945181220 1.466929

0.8001 0.184556871 0.1245645610 1.481616

0.9001 0.089498325 0.0599718330 1.492339

Table 1 Kendall’s tau and Spearman’s rho associated with the family of distributions (4) for different values of α ∈ (0,1].

4 STATISTICAL INFERENCE

4.1 MAXIMUM LIKELIHOOD ESTIMATION

In this section we discuss the MLEs of the parameters of BGE distribution, based on a random sample of size m,

namely {(u1,v1), . . . ,(um,vm)} from BGE(λ1,λ2,α). The log-likelihood function becomes

l(θ) = m ln(αλ1λ2)−

(
λ1

m

∑
i=1

ui +λ2

m

∑
i=1

vi

)
+(α −2)

m

∑
i=1

ln
(

1− e−(λ1ui+λ2vi)

)
+

m

∑
i=1

ln
(

1−αe−(λ1ui+λ2vi)

)
(20)

where θ = (α,λ1,λ2). The maximum likelihood estimates can be obtained by maximizing (20) with respect to

the unknown parameters. The three normal equations become;

∂ l(θ)
∂α

=
m
α
+

m

∑
i=1

ln
(

1− e−(λ1ui+λ2vi)

)
−

m

∑
i=1

e−(λ1xi+λ2yi)

1−αe−(λ1ui+λ2vi)
= 0,

∂ l(θ)
∂λ1

=
m
λ1

−
m

∑
i=1

ui +(α −2)
m

∑
i=1

uie−(λ1ui+λ2vi)

1− e−(λ1ui+λ2vi)
+α

m

∑
i=1

uie−(λ1ui+λ2vi)

1−αe−(λ1ui+λ2vi)
= 0,

∂ l(θ)
∂λ2

=
m
λ2

−
m

∑
i=1

vi +(α −2)
m

∑
i=1

vie−(λ1ui+λ2vi)

1− e−(λ1ui+λ2vi)
+α

m

∑
i=1

vie−(λ1ui+λ2vi)

1−αe−(λ1ui+λ2vi)
= 0.

Note that the Newton-Raphson method or other optimization routine may be used to maximize (20).

To avoid that we propose to use the profile likelihood method to compute the MLEs of the unknown parame-

ters. For fixed α , the MLEs of λ1 and λ2 can be obtained by maximizing the profile log-likelihood function with

respect to λ1 and λ2. We use EM algorithm to compute the MLEs of λ1 and λ2 for a given α , and finally we max-

imize the profile log-likelihood function of α , to compute the MLE of α . For implementing the EM algorithm,

we treat the problem as a missing value problem. Suppose along with (u,v), we observe the associated N value

also. Therefore, the complete observations are as follows: {(u1,v1,n1), . . . ,(um,vm,nm)}. Based on the complete

sample, the log-likelihood function without the additive constant becomes

lc(λ1,λ2) = m lnλ1 +m lnλ2 −λ1

m

∑
i=1

niui −λ2

m

∑
i=1

nivi. (21)
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For fixed α , the MLEs of λ1 and λ2 become

λ̂1(α) =
m

∑m
i=1 niui

and λ̂2(α) =
m

∑m
i=1 nivi

. (22)

Now we are in a position to provide the EM algorithm. For fixed α , at the E-step of the EM algorithm, we

construct the pseudo log-likelihood function at the k-th iterate by replacing the true value of N by its expected

value. It takes the following form;

ls(λ1,λ2|λ (k)
1 (α),λ (k)

2 (α)) = m lnλ1 +m lnλ2 −λ1

m

∑
i=1

uiE(N|ui,vi,λ
(k)
1 (α),λ (k)

2 (α),α)

−λ2

m

∑
i=1

viE(N|ui,vi,λ
(k)
1 (α),λ (k)

2 (α),α). (23)

Here λ (k)
1 (α) and λ (k)

2 (α), are the values of λ1 and λ2, respectively at the k-th iterate and E(N|ui,vi,λ
(k)
1 (α),λ (k)

2 (α),α)

can be obtained using Proposition 4. Hence at the M-step, the maximization can be easily performed to obtain

λ (k+1)
1 (α) and λ (k+1)

2 (α) as

λ (k+1)
1 (α) =

m
∑m

i=1 Ciui
and λ (k+1)

2 (α) =
m

∑m
i=1 Civi

, (24)

where Ci = E(N|ui,vi,λ
(k)
1 (α),λ (k)

2 (α),α). Continue the iteration until the convergence is met. Let us denote

these estimates as λ̂1(α) and λ̂2(α). Finally maximize the profile log-likelihood function of α , to obtain the

MLE of α , say α̂ . Therefore, the MLEs of α , λ1 and λ2 become α̂ , λ̂1(α̂) and λ̂2(α̂), respectively.

It can be easily seen that the density function of the BGE distribution satisfies all required conditions for the

MLEs to be consistent and asymptotically normally distributed. We have the following result.

Proposition 11 If θ̂ is the MLE of θ , then

√
n(θ − θ̂)−→d N3(0, I−1). (25)

Here −→d means convergence in distribution and N3(0, I−1), denotes the 3-variate normal distribution with

mean vector 0 and the covariance matrix I−1, and the matrix I is the Fisher information matrix; the elements of

the matrix I are presented in the Appendix.

4.2 TESTING OF HYPOTHESES

We perform the following two testing of hypotheses problems.

PROBLEM 1: Testing whether the two marginals have the same distributions or not, can be carried out as follows:

H0 : λ1 = λ2 versus H1 : λ1 ̸= λ2. (26)

In this case the MLE of λ = λ1 = λ2 can be obtained along the same line as before. The pseudo log-likelihood

function becomes;

ls(λ |λ (k)(α)) = 2m lnλ −λ
m

∑
i=1

(ui + vi)E(N|ui,vi,λ (k)(α),α), (27)
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where λ (k) denotes the estimate of λ at the k-th iteration. If Di = E(N|ui,vi,λ (k)(α), then

λ (k+1)(α) =
2m

∑m
i=1 Di(ui + vi)

. (28)

Similarly, as before the estimate of α can be obtained by maximizing the profile log-likelihood function of α .

Now if we denote the estimates of α and λ as α̃ and λ̃ , respectively, then using the standard likelihood ratio,

which has the asymptotic distribution as follows:

2
(

l(α̂, λ̂1, λ̂2)− l(α̃, λ̃ , λ̃ )
)
−→ χ2

1 .

PROBLEM 2: If we want to test whether the two components are independent or not, the following test can be

performed:

H0 : α = 1 versus H1 : α ̸= 1. (29)

Under the null hypothesis the MLEs of λ1 and λ2 can be obtained as

λ̃1 =
∑m

i=1 ui

m
and λ̃2 =

∑m
i=1 vi

m
. (30)

In this case, since α is in the boundary under H0, the standard results do not apply. But using Theorem 3 of Self

and Liang [29], it follows that

2
(

l(α̂, λ̂1, λ̂2)− l(1, λ̃1, λ̃2)

)
−→ 1

2
+

1
2

χ2
1 . (31)

5 DATA ANALYSIS

In this section we provide the analysis of a real data set from McGilchrist and Aisbett [23]. The data has been

obtained from an experiment, where M individuals are observed and times between recurrence of a particular

type of event are recorded. In this study the recurrence time of infection in kidney patients who are using a

portable dialysis machine are recorded. The infection occurs at the point of infection of the catheter, and when

it occurs, the catheter has to be removed, the infection cleared up and then the catheter reinserted. Recurrence

times are times from infection until next infection. For each patient two such recurrence times are given; namely

first recurrence time (FRT) and second recurrence time (SRT). The data for 23 patients are reported in Table 2

Before, progressing further, we obtain some basic statistics of the first recurrence time and second recurrence

time, and they are reported in Table 3. It is clear from Table 3 that both FRT and SRT have very long right tail.

To get an idea about the shape of the empirical hazard function of the marginals, we provide the scaled TTT

plots of FRT and SRT in Figure 2, as suggested by Aarset [1]. This plot provides an idea of the shape of the

hazard function of a distribution. It has been shown in [1] that the scaled TTT transform is convex (concave)

if the hazard rate is decreasing (increasing). For this data set, it indicates that both of variables have decreasing

empirical hazard functions. Note that from Table 3 the Spearman’s rho and Kendall’s tau for FRT and SRT

data are given by 0.266 and 0.184, respectively. This observation demonstrates an obvious positive dependence

between involved data. This observation shows that the proposed BGE may be used for analyzing this bivariate

data set.
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No. FRT SRT No. FRT SRT

1 8 16 2 22 28

3 447 318 4 30 12

5 24 245 6 7 9

7 511 30 8 53 196

9 15 154 10 7 333

11 96 38 12 185 177

13 292 114 14 152 562

15 13 66 16 12 40

17 132 156 18 34 30

19 2 25 20 130 26

21 27 58 22 152 30

23 119 8

Table 2 Kidney infection data of 23 patients. The patient No., first recurrence time (FRT), second recurrence time (SRT) are reported.

Statistics FRT SRT

Minimum 2 8

1st Quartile 13 26

Median 34 40

Mean 107.391 116.130

3st Quartile 152 177

Maximum 511 562

Standard deviation 136.163 135.868

Pearson’s corr. 0.191

Kendall’s tau 0.184

Spearman’s rho 0.266

rho/tau 1.449

Table 3 Descriptive statistics of the data vector.

We divide all the data points by 100 mainly for computational purposes, it is not going to affect in the

statistical inference. To get initial estimates of λ1 and λ2, we fit exponential distribution to the marginals, and

obtain the initial estimates of λ1 and λ2 as 0.9311 and 0.8611. For each α , we use these initial estimates to

start the EM algorithm. The profile log-likelihood function of α becomes a unimodal function, and it is reported

in Figure 3. Finally maximizing the profile log-likelihood function of α , we obtain the MLEs of α , λ1 and

λ2, and they are α̂ = 0.7099, λ̂1 = 0.7559 and λ̂2 = 0.6551, and the corresponding log-likelihood value is -

49.0371. The associated 95% confidence intervals are 0.7099 ∓ 0.1116, 0.7559 ∓ 0.1457 and 0.6551 ∓ 0.1123,

respectively. To see whether the GE distribution fits the marginal data or not, we compute the Kolmogorov-

Smirnov (KS) distances of GE(0.7099,0.7559) and GE(0.7099,0.6551) to the empirical CDF of FRT and SRT

data, respectively. It is observed that the KS distance between GE(0.7099,0.7559) and empirical CDF of FRT

is 0.1731 and the associated p value is 0.4957. Similarly, the KS distance between GE(0.7099,0.6551) and

empirical CDF of SRT is 0.1689 and the associated p value is 0.5275. Therefore, the GE distribution can be used

to fit the marginals reasonably well, for the above data set.
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Fig. 2 Scaled TTT plots of (a) FRT and (b) SRT.
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Fig. 3 Profile log-likelihood function of α .

We perform the following two testing of hypotheses problems; namely (26) and (29). In the first case (26),

the value of the test statistic is 0.2102. Since the p = 0.6466, we do not reject the null hypothesis. In the second

case the value of test statistic is 4.085. In this case p = 0.0074, hence we reject the null hypothesis. Note that

from Table 1 we see that the population versions of Kendall’s tau and Spearman’s rho for BGE distribution with

estimated parameter α = 0.7 are given by 0.285 and 0.194, respectively. These values are close to the Spearman’s

rho and Kendall’s tau between FRT and SRT, given in Table 3. This observation also shows that the proposed

BGE may be used for analyzing this bivariate data set. The natural question that arises here is whether the BGE

model fits these bivariate data or not. In the next section we provide a copula goodness-of-fit test.
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For comparison purposes we have fitted (i) the three parameters Block and Basu [5] bivariate exponential

model with the pdf

f (x,y) =


λ1λ (λ2+λ3)

λ1+λ2
e−λ1x−(λ2+λ3)y, x < y

λ2λ (λ1+λ3)
λ1+λ2

e−(λ1+λ3)x−λ2y, x > y
(32)

where λ1,λ2,λ3 > 0 and λ = λ1+λ2+λ3 and (ii) the five-parameter absolutely continuous bivariate generalized

exponential distribution of the form

F(x,y) = [(1− e−λ1x)−α1 +(1− e−λ2x)−α2 −1]−α ,

which is constructed based on the Clayton’s copula [25] proposed in Kundu and Gupta [21], to this data set.

Model Estimated parameters Log-likelihood

BEG α̂ = 0.7099 λ̂1 = 0.7559 λ̂2 = 0.6551 -49.0371

Block and Basu model λ̂1 = 0.9297 λ̂2 = 0.8586 λ̂3 = 0.0017 -51.0796

Kundu and Gupta model α̂ = 1.5621 α̂1 = 0.4160 λ̂1 = 0.6811 α̂2 = 0.5392 λ̂2 = 0.7613 -48.7047

Table 4 The MLEs and the values of Loglikelihood

The MLEs and corresponding log-likelihood values are given in Table 4. Therefore, based on the log-

likelihood values, we can say that the proposed BGE model provides a better fit than Block and Basu [5] bivariate

exponential model and is comparable with the Kundu and Gupta [21] model for this data set.

5.1 A COPULA GOODNESS-OF-FIT TEST

Once a model has been stated and estimated the natural question is to check whether the initial model assump-

tions are realistic. In other words we are faced with the so-called goodness-of-fit problem. As an advantage of

the Sklar’s Theorem [25] the marginal distributions and the copula can be chosen independently of one another.

The univariate GE distribution provide adequate descriptions of the FRT and SRT data, individually. Since the

copula of the BGE model has a closed and simple form, one can also try to perform a copula goodness-of-fit test.

A review and comparison of goodness-of-fit procedures is given in [8]. Let (x1,y1), ...,(xn,yn) be observations

from a random vector (X ,Y ). When dealing with bivariate data, the most natural way of checking the adequacy

of a copula model would be to compare the fitted copula and the empirical copula (see, e.g, [6]) of data defined

by

Cn(
i
n
,

j
n
) =

number of pairs (x,y) in the sample with x ≤ x(i),y ≤ y( j)

n
,

where x(i) and y( j), 1 ≤ i, j ≤ n, denote order statistics from the sample. Figure 4 shows graph of the pairs (xi,yi)

and (ui,vi), i = 1, ...,23, for FRT and SRT data.

From simulations provided in [8] a good combination of power and conceptual simplicity is provided by the

Cramer-von Mises statistic:

Sn =
n

∑
i=1

(Cα̂(ui,vi)−Cn(ui,vi))
2 ,
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where Cα̂ is the fitted copula and

ui =
rank of xi among x1, ...,xn

n+1
and vi =

rank ofyi among y1, ...,yn

n+1
.

This statistic measures how close the fitted copula is from the empirical copula of data. The P-value of the

test is computed using a parametric bootstrap procedure described in Appendix A of [8]. To this end, we applied

this procedure to both the FRT and SRT data. The bootstrap values S∗1, . . . ,S
∗
1000 of the Cramer-von Mises test

statistic are generated and we found the proportion of these values that are larger than Sn = 0.0394 as P-value

≈ 0.3. Thus we may conclude that the copula Cα defined by (13) with the association parameter α = 0.7099

performs a good fit for this data set.
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Fig. 4 Pairs of observations (a) and pairs of normalised ranks (b) for FRT and SRT data.

6 CONCLUSIONS

In this paper we studied a bivariate absolutely continuous generalized exponential distribution, whose marginals

are generalized exponential distributions. It has three parameters and the marginals have decreasing hazard func-

tions. Therefore, the proposed model can be used as an alternative to the quite popular Block and Basu bivariate

exponential model. We derive different properties of the proposed model, and also provide the EM algorithm for

computation of the MLEs of the unknown parameters. We have analyzed one real data set, and it is observed that

the proposed model provides a good fit to the data set.

Now we briefly discuss different generalizations of the proposed model. (1) Although we have developed

the methodology for the bivariate case, along the same line multivariate generalized exponential distribution

also can be defined. Several properties can be obtained even for the multivariate case also. (2) Instead of taking
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exponential distribution for X and Y , it is possible to develop the methodology when they follow Weibull distri-

bution. In this case we can obtain bivariate/ multivariate exponentiated Weibull distribution as an alternative to

the already-existent bivariate Weibull models; see, e.g [14]. It will be interesting to develop different properties

of this more flexible distributions. More work is needed along these directions.
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APPENDIX. FISHER INFORMATION MATRIX

From (20) we have

∂ 2l(θ)
∂α2 = − n

α2 −
n

∑
i=1

[
e−(λ1xi+λ2yi)

1−αe−(λ1xi+λ2yi)

]2

,

∂ 2l(θ)
∂λ 2

1
= − n

λ 2
1
− (α −2)

n

∑
i=1

x2
i e−(λ1xi+λ2yi)

(1− e−(λ1xi+λ2yi))2
−α

n

∑
i=1

x2
i e−(λ1xi+λ2yi)

(1−αe−(λ1xi+λ2yi))2
,

∂ 2l(θ)
∂λ 2

2
= − n

λ 2
2
− (α −2)

n

∑
i=1

y2
i e−(λ1xi+λ2yi)

(1− e−(λ1xi+λ2yi))2
−α

n

∑
i=1

y2
i e−(λ1xi+λ2yi)

(1−αe−(λ1xi+λ2yi))2
,

∂ 2l(θ)
∂α∂λ1

=
n

∑
i=1

xie−(λ1xi+λ2yi)

(1− e−(λ1xi+λ2yi))2
+

n

∑
i=1

xie−(λ1xi+λ2yi)

(1−αe−(λ1xi+λ2yi))2
,

∂ 2l(θ)
∂α∂λ2

=
n

∑
i=1

yie−(λ1xi+λ2yi)

(1− e−(λ1xi+λ2yi))2
+

n

∑
i=1

yie−(λ1xi+λ2yi)

(1−αe−(λ1xi+λ2yi))2
,

∂ 2l(θ)
∂λ1∂λ2

= −(α −2)
n

∑
i=1

xiyie−(λ1xi+λ2yi)

(1− e−(λ1xi+λ2yi))2
−α

n

∑
i=1

xiyie−(λ1xi+λ2yi)

(1−αe−(λ1xi+λ2yi))2
.

The Fisher information is I(θ) = [I(θi j)], where Ii j(θ) =−E ∂ 2l(θ)
∂θiθ j

, and θ = (θ1,θ2,θ3) = (α ,λ1,λ2). We shall

now present the exact expressions of Ii j(θ), for i = 1,2,3. Direct calculations show that

I11 = −E
(

∂ 2l(θ)
∂α2

)
=

n
α2

(
1+

∞

∑
j=0

∞

∑
k=0

(−1)kα j+3
(α−2

k

)
( j+ k+3)2

)
,

I22 = −E
(

∂ 2l(θ)
∂λ 2

1

)
=

n
λ 2

1
(1+2α(α −2)A1 +αA2) ,

I33 = −E
(

∂ 2l(θ)
∂λ 2

2

)
=

n
λ 2

2
(1+2α(α −2)A1 +αA2)

I12 = −E
(

∂ 2l(θ)
∂α∂λ1

)
=

nα
λ1

(B1 +B2),

I13 = −E
(

∂ 2l(θ)
∂α∂λ2

)
=

nα
λ2

(B1 +B2),

I23 = −E
(

∂ 2l(θ)
∂λ1∂λ2

)
=

nα
λ1λ2

((α −2)C1 +αC2),
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where

A1 =
∞

∑
j=0

(−1) j
(

α −4
j

)(
1

( j+2)4 − α
( j+3)4

)
,

A2 =
∞

∑
j=0

∞

∑
k=0

(−1) j
(

α −2
j

)
αk 1

(k+ j+2)2 ,

B1 =
∞

∑
j=0

(−1) j+1
(

α −3
j

)(
1

( j+2)3 − α
( j+3)3

)
,

B2 =
∞

∑
j=0

∞

∑
k=0

(−1) j+1
(α−2

j

)
αk

( j+ k+2)3 ,

C1 =
∞

∑
j=0

(−1) j
(

α −4
j

)(
1

( j+2)4)
− α

( j+3)4

)
,

C2 =
∞

∑
j=0

∞

∑
k=0

(−1) j
(α−2

j

)
αk

( j+ k+3)4 .
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