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Invariant 

Abstract: Component is one of the most basic topological concepts for digital images. 
However, there is still few simple method, to date, permitting to distinguish holes 
from external borders. Such theoretic difficulty on components leads to quite complex 
and unnatural algorithms on component analysis. In this paper, the author proves that 
there exists, in 2D images, a basic topological invariant called total curvature. The 
total curvature on a border is the sum of local curvature representing the external 
angle of polygon vertices. We have discovered an important binary feature of this 
invariant: it equals to 2n for external contours and -2n for hole contours, independent 
of the orientation of contour tracing. The binary characteristics of total curvature 
reveals that external contours are global convex despite of local concavities and hole 
contours are global concave despite of local convexities. Therefore hole and external 
contours can be unified as total convex and total concave borders. Classifying all the 
borders of images by total curvature provides directly the number of both components 
and holes and it can be calculated easily in digital images. 

I Introduction 

Digital topology has been extensively explored in the past [1]. The effort was 
concentrated on a graph-theory approach which is widely accepted in computer 
science community. Digital topology provides a theoretic basis for various elementary 
operations in image processing such as thinning, border following, contour filling, 
object counting and extraction and the like. 

Two concepts are fundamental in digital topology: connectedness and component. 
The problem of connectedness has been extensively studied in the past through 
skeletonization. Our interest in this paper is focused on the properties of  two 
dimensional connected components, which is not well explored, according to the 
author, comparing to the abundant literature on connectedness. Undoubtedly, 
component analysis is an important issue in image processing, since components are 
basic elements of images and they represent generally objects or parts of object. The 
research on this issue, basically on parallel component labelling, is quite active [2]. 

Regions or connected components are entirely enclosed by their external contour in 
single connection case or with included holes in case of multiply connection. 
Intuitively, if we can detect all the borders and distinguish outer contours from hole 
contours in images, then the description of components is straightforward. In digital 
topology, people generally use Euler characteristics to describe component since Euler 
number equals to the number of components minus the number of holes. 

The problem is that from computational viewpoint, Euler number is not really 
helpful for component analysis. This is because even to determine the number of 
components in images, we must determine first the number of holes and then deduce 
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the number of components from Euler number. But detecting holes in an images is an 
unsolved problem, in practice, although the concept of hole is intuitive Z 2. 

Until very recently, there was no satisfactory method presented in literature 
detecting directly inner contours. Suzuki and Abe proposed an algorithm being able to 
describe the nested structure of borders and hence differentiate outer contour from 
holes indirectly [3]. The differentiation of components from holes is not based on 
border's characteristics but on the nested structure of whole image: background 
surrounds components, components may include holes and holes may, in turn, 
surround objects, etc. [4]. Even to extract a small component, the whole image must be 
analysed first. Another tentative was based on mathematical morphology which has a 
serious drawback to change the topological features of images [5]. 

The only theoretical work on holes and their detection was carried out by Lee, 
Poston and Rosenfeld in 1991 [6]. The idea consists of counting the transition number 
of normal vector on contours in a given direction to distinguish holes from 
components. Their work provides the first theoretic method for component analysis. 
The problem revealed is that the normal vector of boundary is intrinsically 
discontinuous. Therefore they suggested to use a continuous smoothing function 
replacing the digital lattice and normal vectors are calculated with the smoothing 
function. Counting the winding number cannot be realized directly with digital images, 
unfortunately. 

In general, due to the barrier to distinguish external borders from hole borders, 
component analysis algorithms remain generally unnatural and complex. A typical 
example is sequential component labelling through raster scanning, which requires 
either time consuming iterative label propagation or using complex and memory 
consuming equivalence relationship [7]. 

II Proposition 

In this communication, we prove that total curvature - the sum of local curvature on 
borders representing the complement of internal angles at border vertices - is a very 
attractive and basic topological invariant. The real important discovery is that, in fact, 
the total curvature of an arbitrary borders has only two constant values 27t or - 2n, 
relying on whether the border is external or internal. 

The binary characteristics of total curvature reveals the intrinsic property of 
contours: external contours are global convex despite of local concavity and hole 
contours are global concave despite of local convexity. Therefore external contours 
and hole contours can be unified as total convex and total concave borders based on 
the concept of total curvature. Classifying all the borders of images by total curvature 
provides directly the number of both components and holes. The computation of total 
curvature allows a very simple separation of outer contours from hole contours. 
Applying this method to digital images is extremely simple. 

We start to examine total curvature of polygons and then apply the invariant to 
digital images. Computation results are given to illustrate the simplicity and usefulness 
of the invariant. 

III Topological Invariant of Polygon 

We will describe in this section the invariant property of single closed polygons, 
since all digital images can be described by single closed polygon (we denote simply 
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by polygon in this paper). Discussing the invariant of polygons provides an universal 
theory for 2D digital images which is completely independent of neighborhood used. 
This is a major advantage. The proof of the following results can be found in [8]. 
Definition 3.1 : Local curvature A(x i at vertex Ai of a polygon equals to n - fli, with fli 
the interior angle of the polygon at Ai (Fig. 1). 

Figure h Local Curvature in R 2 

Definition 3.2: For any polygon, the total curvature is the sum of local curvatures on 
all the vertices 2 a a  i . 

i 

Remark: the local curvature is independent of the direction in which all the vertices 
of the polygon are traversed. In fact the local curvature at Ai is positive if the internal 
angle A i is convex and negative if concave. 
Proposition 3.3 : For any convex polygon of M edges, the sum of interior angles 

[5 i (P) = (M-2)rt. 
i 

Denote 13 i (P) the i th interior angle of P and [~ (P) the jth concave interior angle of 

P, with [3~(P) >r~. 

Lemma 3.4: Any polygon P of N concave interior angle (Z[~(PI)  = N > 1) can be 

divided into two parts P 1 & P2, by a segment starting from a vertex of P, such that 
1) the number of concave interior angles in each polygon reduced at least 1: 

Z[~(P1) <N-1 and Z[~c(P 2) <N-l ;  
i i 

2) the sum of interior angle of P1, P2 and P have the following relation: 
~,~i(P1)+]~i(P2)-~ = ] ~ i ( P )  where 
i i i 

7 = 0 if the segment does not cut any edge of P and no new vertex is generated and 
y = 1 if the segment cuts an edge of P and a new vertex is generated. 

Lemma 3.4 is essential for the proof of theorem 3.5. 
Theorem 3.5: For any polygon of M edges, the sum of its interior angles is (M-2)m 
Theorem 3.6: For any polygon P, its total curvature is 2re. 

This theorem is fundamental for our method and evident by theorem 3.5. 
Corollary 3. 7: For a special sort of polygon in which two different polygon paths 
coincide, its total curvature is 27t. 

This theorem is very useful for discussing holes. It allows us to cut a region with a 
open polygon inside the region and discuss the two sides of the same open polygon. 
Proposition 3.8: For any open polygon P0PlP2...Pn-lPn, the sum of vertex curvatures 
calculated from both sides of the open polygon excluding the two extremities is zero. 

Corollary 3.7 and proposition 3.8 are useful for theorem 3.9. 
Theorem 3.9: For any multiply connected region bounded by two polygons, the total 
curvature of its hole polygon equals to -2re. 

In topology, vertices, sides and surfaces are major concerns as they have practical 
meaning in many application fields. In contrary, the property of boundary has not 
attracted the interest of topologists. Here we provide, by total curvature, a simple way 
to distinguish external borders from holes of polygon. Note that the distinction of hole 
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borders from external borders is not at all related to the direction of border tracing. It is 
based on the intrinsic global convexity and global concavity of borders. 

IV Contour Invariant in Digital Images 

When applying the new property of polygon invariance to digital images, we follow 
basic definitions on discrete geometry described in [1]. 
Definition 4.1 : Let Piq, Pi and Pi+l be three consecutive contour pixels and separate its 
j-neighbors into object side and background side. Let Z Pi-1PiPi+l be the interior angle 
(in object side) at Pi. Local curvature at Pi LC(Pi) represents the complementary angle 
of Z Pi-1PiPi+l : 7c - / Pi-1PiPi+l (Fig. 2). Note shaded pixels are interior points. 

P~;'-P,;-E *I'P,~ 
| | e 

(a) (b) 
Figure 2: Local curvature in 8-neighbors; 

The value of local curvature LC(Pi) a 0 if Z Pi-1PiPi+l is convex (Fig.2.a) or LC(Pi) 
< 0 when Z Pi-I PiPi+l is concave. (Fig. 2.b) As local curvature is a new concept in 
digital images, we illustrate in Figure 3 examples of local curvature in 8-neighbors. By 
the definition of contour, LC may have discrete values {-2, -1, 0, 1, 2, 3, 4}. In the 
figure, dark shaded circles designate object/contour pixels, clear shaded circles stand 
for the current edge points, and the numeric in center represents LC at these points. 
For simplicity, we omit those that can be obtained by rotation of multiples of 90 ~ . 

@ 
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�9 0 0  0 0 0  

0 0 0  @@@ 
Figure 3: configurations of different local curvatures. 

Definition 4.2: Total curvature TC (OC) is the sum of local curvature LC on a contour 
0C and denoted by Y, LC(Pi[P i ~ 3C). 

i 

A special case is an isolated object point, since the definition of local curvature 
requires at least two connected points. We define the total curvature of an isolated 
point is 2r~. The problem does not exist for hole contours since the minimum perimeter 
of hole contours is 4 corresponding to a hole of isolated pixel. 

Corollary 4.3: In digital images, TC( 0C +) = - TC(c~C-) = N, where N equals 8 for 
rectangular tessellation and 6 for hexagonal tessellation. 
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V Result 

Without loss of generality for sequential processing, we adopt the left-hand 
convention to trace all the borders of multiple connected regions. But in fact, the 
definitions of local curvature and total curvature are independent of contour tracing 
orientation. 

As computational illustration, we present results of external and hole contour 
distinction through a very simple algorithm. The algorithm scans once the whole 
image to find out all the contours - both outer contours and hole contours, by a 
classical contour following procedure. Contours are encoded with Freeman direction 
codes and the difference of two consecutive codes is calculated during contour tracing 
which provides directly the local curvature of contour pixels. The total curvature is 
obtained simply by summing local curvatures. It is then used to classify outer contours 
and hole contours. The algorithm is extremely simple. 
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Contour No.l: Perimeter 255, Total Curvature = 8 => outer contour 
Contour NO.2: Perimeter 22, Total Curvature = 8 => outer contour 
Contour No.3: Perimeter iii, Total Curvature = 8 => outer contour 
Contour No.4: Perimeter 14, Total Curvature = 8 => outer contour 
Contour No.5: Perimeter 67, Total Curvature =-8 => hole contour 
Contour No.6: Perimeter 26, Total Curvature = 8 => outer contour 
Contour No.7; Perimeter 16, Total Curvature =-8 => hole contour 
Contour NO.8: Perimeter 18, Total Curvature =-8 => hole contour 

Figure 4: Components with distinguished outer and hole contours 
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Figure 4 illustrates the resulting images in which a and b represent local curvature 
value - 1 and -2 on contour pixels. 

A practical advantage of the proposed method to evaluate topological property is 
that it may insensitive to noise. This is because the perimeter of contours provides the 
information on the size of components or holes. Depending on applications, small 
components and holes can be ignored during processing to provide robust topological 
property. 

VI Conclusion 

In digital space, there is still few simple method, to date, allowing to distinguish 
holes from other contours. Consequently, the difficulty leads to quite complex and 
unnatural algorithms in image analysis. In this paper, a novel invariant called total 
curvature has been presented. The total curvature of borders has an important binary 
characteristics : It equals to 2rt for external contours and -2~ for hole contours. This 
means that borders of components are global convex and borders surrounding holes are 
global concave. The interesting feature can be used to distinguish external contours 
from hole contours. The application of total curvature is straightforward in digital 
space. The distinction of holes from external contours is of a great importance, since 
regions or connected components can be entirely determined by external contours and 
holes. Thanks to the proposed invariant, a new approach of image analysis is available 
and methodology of image analysis can be greatly simplified in terms of computational 
and algorithmic complexity. A very simple algorithm can be derived using the 
invariant property of border - total curvature to detect, extract and describe connected 
components without labelling. 
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