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AbstractÐConsider a hypercube of 2n points described by n Boolean variables and a subcube of 2m points, m � n. As is well-known,

the Boolean function with value 1 in the points of the subcube can be expressed as the product (AND) of nÿm variables. The standard

synthesis of arbitrary functions exploits this property. We extend the concept of subcube to the more powerful pseudocube. The basic

set is still composed of 2m points, but has a more general form. The function with value 1 in a pseudocube, called pseudoproduct, is

expressed as the AND of nÿm EXOR-factors, each containing at most m� 1 variables. Subcubes are special cases of pseudocubes

and their corresponding pseudoproducts reduce to standard products. An arbitrary Boolean function can be expressed as a sum of

pseudoproducts (SPP). This expression is in general much shorter than the standard sum of products, as demonstrated on some

known benchmarks. The logical network of an n-bit adder is designed in SPP, as a relevant example of application of this new

technique. A class of symmetric functions is also defined, particularly suitable for SPP representation.

Index TermsÐPseudocube, pseudoproduct, EXOR-factor, Boolean function, algebraic expression, logical design.
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1 INTRODUCTION

THIS is a contribution to Boolean functions and logical
design, centered on the new concepts of pseudocube and

pseudoproduct.
Consider a hypercube Bn described by the Boolean

variables x0; :::; xnÿ1. The sets of 2m points lying on
subcubes Bm � Bn, m � n, are of paramount importance
in Boolean algebra. In fact, the characteristic function of Bm

(i.e., the function with value 1 in the points of the subcube,
and value 0 elsewhere) can be expressed as the product
(AND) of the nÿm variables having constant value in Bm,
either in direct or complemented form. The synthesis of
arbitrary functions exploits this property.

In this paper, we generalize the concept of subcube to
a more powerful one. The basic set, still composed of 2m

points, is now called pseudocube of degree m. Subcubes
are special cases of pseudocubes. The interesting fact is
that pseudocubes have simple algebraic expressions using
Exclusive OR (EXOR). To get an intuition of how
pseudocubes look, we can put the following initial
definition:

1. any single point is a pseudocube of degree 0;
2. any pair of points is a pseudocube of degree 1;
3. a subset P of 2m points is a pseudocube of degree m

if P can be divided into two disjoint pseudocubes P1,
P2 of degree mÿ 1, and there exists a subset � of
variables such that P2 can be derived from P1 by
complementing the variables of � in each of the
points of P1.

For example, consider the set P of 23 points in B4 shown
in the Karnaugh map of Fig. 1. This set can be divided into
two subsets P1, P2 lying on the subcubes with x0 � 0 and
x0 � 1, respectively, such that P2 can be derived from P1 by
complementing the value of x0 in each of the points of P1. In

turn, P1 can be divided into two subsets P11, P12,
corresponding to x1 � 0 and x1 � 1 (first and second
column of the map), and P12 can be derived from P11 by
complementing the values of x1 and x3. A similar
decomposition clearly holds for P2. Now, P11 and P12 are
pseudocubes of degree 1 by Item 2 above, therefore, P1 is a
pseudocube of degree 2 by Item 3. Similarly, P2 is a
pseudocube of degree 2. Therefore, P is a pseudocube of
degree 3. An algebraic expression for P can be directly
extracted from the set of its points. As we shall see, this
expression is x1 � x2 � �x3.

Pseudocubes will be represented as Boolean matrices of
2m rows (the points) and n columns (the variables). The
definition given above will be substituted by another, based
on the properties of such matrices. The paper is organized
as follows:

Section 2 contains a discussion on Boolean matrices as a
prerequisite to proving the results of the following sections.
In particular, a matrix M is called balanced if its columns
contain half 0s and half 1s, and this property repeats
recursively on any submatrix obtained as the restriction of
M to all the rows where an arbitrary variable has constant
value. In Section 3, we formally define pseudocubes as sets
of points whose matrix is balanced, and prove that
pseudocubes exhibit several nice properties. For a given
pseudocube P of degree m, we define the class ÿ�P � of the
pseudocubes obtained from P by complementing a given
arbitrary subset of variables and show that the elements of
ÿ�P � are disjoint and tessellate Bn. Furthermore, the union
of any two pseudocubes of the same class ÿ is a
pseudocube, and the intersection of two arbitrary pseudo-
cubes is either empty or is a pseudocube.

In Section 4, we introduce the pseudoproduct of degree m
as the characteristic Boolean function of a pseudocube P of
the same degree. Pseudoproducts have a canonical alge-
braic expression indicated as CEX(P ) consisting of the AND
of nÿm EXOR-factors, each containing at most m� 1
literals. CEX(P ) can be built in linear time from the points of
P . If P is a subcube, the EXOR-factors reduce to single
variables and CEX(P ) reduces to the standard product
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expression. In the example of Fig. 1, we have n � 4 and
m � 3 and the canonical expression CEX(P ) = x1 � x2 � �x3

consists of one EXOR-factor. Given two pseudoproducts P1,
P2 belonging to the same class ÿ, we can construct
CEX�P1 [ P2� from CEX�P1� and CEX�P2� in linear time.

We then show how an arbitrary Boolean function f can
be expressed as a sum (OR) of pseudoproducts and
compare this new form (SPP) with the standard sum of
products (SP) and with binary decision diagrams (BDD). In
fact, SP is a particular case of SPP, but the latter is much
shorter in general. As relevant examples of application of
this new technique, we design the logical network of an n-
bit adder (Section 5), and derive the SPP expressions for
some known benchmark Boolean functions (Section 6).
We finally define a class of symmetric functions
insensitive to the complementation of subsets of variables
(Section 7) and show that they are particularly suitable
for SPP representation.

To the best of our knowledge, this approach is
completely new, except for some preliminary results that
we have presented at a conference [10]. We regard this work
as basic theory, mainly directed to the comprehension and
algebraic representation of Boolean functions.

2 SOME PROPERTIES OF BOOLEAN MATRICES

Boolean matrix theory is well-established (e.g., see [2]). We
introduce here some new definitions and properties of these
matrices, with the sole purpose of proving the results
reported in the following. The proofs of the formal
statements of this section have been moved to an appendix,
since they are not crucial to follow the development of our
theory.

Given a binary vector u, its complement �u is the
elementwise Boolean complementation of u. The symbol û
denotes u or �u. 0 and 1 denote vectors of all 0s, or all 1s,
respectively. In the following, we shall always refer to
binary vectors and binary matrices.

Definition 1. A vector u of 2m elements, m � 0, is normal if

1. m � 0 or
2. m > 0

and u � vv̂ with v (hence, v̂) normal. (vv̂ is the concatena-
tion of v and v̂).

Definition 2. A vector u is constant if u � 0 or u � 1;
otherwise u is divided. u is balanced if it is constant or half
of its elements are 0 and half are 1. Two balanced vectors u, v
are concordant if u � v or u � �v; otherwise u, v are
discordant.

Clearly, any vector of one or two elements is normal and
any normal vector is balanced. For example,
00; 0101; 01101001 are normal (and balanced) vectors. By
induction on m we can easily prove:

Proposition 1. Let a vector u of 2m elements be normal. Then,
u � v0 . . . v2mÿkÿ1; 0 � k � m, where each vi consists of 2k

equal elements (i.e., vi � 0 or vi � 1). For k � mÿ 1, we also
have v0 � �v1.

Definition 3. A normal vector u � v0 . . . v2mÿkÿ1 is k-normal,
with k defined as in Proposition 1. A k-normal vector is k-
canonical if vi � 0 for i even and vi � 1 for i odd.

For example, the vector 1100001100111100 is 1-normal,
with m � 4. We have v0 � 11, v1 � 00, v2 � 00, and so on.
The vector 0000111100001111 is 2-canonical. We now extend
the above concepts from vectors to matrices. Unless
differently specified, a matrix will always have 2m rows
r0; . . . ; r2mÿ1 and n columns c0; . . . ; cnÿ1, n � 1 and
0 � m � n.

Definition 4. A matrix M is normal if ri 6� rj for i 6� j and all
the columns are normal. A normal matrix is canonical if its
rows, interpreted as binary numbers, are arranged in
increasing order.

The matrix shown in Fig. 2 is canonical. An important
property of canonical matrices is the following (the proof is
in Appendix A).
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Fig. 1. A pseudocube P of degree 3 (black dots) composed of two
pseudocubes P1, P2 of degree 2.

Fig. 2. A canonical matrix for m � 3, n � 6, with canonical columns
c0; c2; c4.
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Proposition 2. A canonical matrix M contains m columns
ci0 ; . . . ; cimÿ1

of increasing indices, such that cij is
�mÿ jÿ 1�-canonical for 0 � j � mÿ 1.

In a canonical matrix M, the columns ci0 ; . . . ; cimÿ1
of

Proposition 2 are called canonical columns of M (if several
�mÿ jÿ 1�-canonical columns exist, 0 � j � mÿ 1, cij is
the one of smallest index among them). The other columns
are the noncanonical ones. See Fig. 2. We now extend the
concept of balanced vectors to balanced matrices.

Definition 5. The restriction of a matrix M, composed of the
rows whose elements in column ci are equal to 1 (respectively,
equal to 0) is denoted by Mi (respectively, M�i). M is balanced
if all its rows are pairwise different, all its columns are
balanced, and each Mi (hence, M�i) is balanced, 0 � i � nÿ 1.

The notation of Definition 5 is extended by writing Mî

for Mi or M�i. Further restrictions ��Mî�ĵ�k̂::: are indicated as
Mî;ĵ;k̂:::.

For a given matrix, the property of being balanced is
obviously not affected by row permutations. In addition,
particular row permutations preserve normality. The
following Propositions 3 and 4 show that normal and
balanced matrices are the same up to row permutations (the
proofs are in Appendix A).

Proposition 3. Any normal (in particular, canonical) matrix M
is balanced.

Proposition 4. Any balanced matrix M can be transformed into
the corresponding canonical matrix by rearranging the rows,
interpreted as binary numbers, in increasing order.

From a computational point of view, we can test whether
a matrix M is balanced in ��2m � n� time (i.e., in time linear
with the size of the input matrix). The algorithm is as
follows:

Algorithm 1(check balancing of a matrix M)
1. check that all the columns of M are balanced;
2. sort the rows of M as they were binary numbers;
3. check that all the columns thus obtained are normal.

Phase 1 can be trivially executed in ��2m � n�. Phase 2
can be executed in equal time using Radix-Sort. In Phase 3,
the control of normality of each column ch is done in ��2m�

time, recursively checking the normality of ch�0 : 2mÿ1 ÿ 1�,
and then checking that ch�0 : 2mÿ1 ÿ 1� � ch�2mÿ1 : 2m ÿ 1�,
or ch�0 : 2mÿ1 ÿ 1� � �ch�2mÿ1 : 2m ÿ 1�. If Phase 1 or Phase 3

fail, the algorithm stops declaring M nonbalanced.

3 PSEUDOCUBES

Consider a set S � fs0; . . . ; s2mÿ1g of 2m points of Bn, m � n.

We can obviously represent S as a Boolean matrix, with the

rows associated to the points s0; . . . ; s2mÿ1 and the columns

associated to the variables x0; . . . ; xnÿ1. We shall indiffer-

ently refer to points or rows, and to variables or columns.

We formally pose:

Definition 6. A pseudocube of degree m is a set of 2m points

whose matrix is balanced or, equivalently, it is canonical up to

a permutation of rows (Propositions 3 and 4).

Note that any set of one or two points is a pseudocube.

The reader may check that the sets of points marked in the

two Karnaugh maps of Fig. 3 are pseudocubes. For

example, the set marked with b has matrix

x0 x1 x2 x3

0 0 0 0
0 1 0 1
1 1 1 1
1 0 1 0

which is balanced and becomes canonical, permuting the

third and fourth rows. Algorithm 1 can be directly applied

to check if a set S � Bn is a pseudocube.
A cube Bnÿk � Bn, 0 � k � n, is a subset of 2nÿk points,

whose matrix has k constant columns and nÿ k divided

columns. Sorting the rows as increasing binary numbers, we

obtain a canonical matrix. That is, a cube is a special case of

pseudocube where only the canonical columns are divided.

We shall see that pseudocubes maintain some basic proper-

ties generally ascribed to cubes.

Definition 7. For a point s 2 Bn and a subset of variables �, the

transformed point ��s� is obtained from s by complementing

the variables in �. For a set of points S, the transformed set

��S� is the set f��s� : s 2 Sg.
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Fig. 3. Eight pseudocubes in B4: the points of a pseudocube are marked with the same letter. Each map contains a class ÿ.
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Proposition 5. Let P be a pseudocube of degree m and � be a
subset of variables. Then, ��P � is a pseudocube of degree m,
with ��P � � P or ��P � \ P � ;.

Proof Without loss of generality, represent P by the
canonical matrix M and assume that the variables
x0; . . . ; xmÿ1 and xm; . . . ; xnÿ1, respectively, indicate the
canonical and the noncanonical columns of M. Denote by
C and NC the submatrices formed by such columns.
First, consider the effect of complementing variables in
NC, that is, let � � fxm; . . . ; xnÿ1g. The matrix M 0 thus
obtained, associated with ��P �, is still canonical, with the
canonical part C0 � C and a remaining part NC0. In fact,
all the rows in M 0 are distinct, because the subrows in C0

are distinct; and all the columns in NC0 are normal
because variable complementation preserves normality.
Furthermore, the rows of M 0 are sorted in increasing
order since ordering is induced by C0 � C. Then, ��P � is
a pseudocube of degree m. Moreover, for any two points
u 2 P , v 2 ��P �, either some of the entries in C, C0 are

different or all these entries are equal, but some entries in

NC, NC0 are different by the effect of �. Then,

��P � \ P � ;. Consider now complementing a variable

xi in C. This has the same effect as complementing all the

variables xj in NC such that �xj�i � �xj��i, where �xj�k
denotes the restriction of the column xj to Mk. If no such

variable xj exists, then complementing xi amounts to a

permutation of the rows of M, bringing P onto itself.

Therefore, for � � fx0; . . . ; xmÿ1g there is a (possibly

empty) subset � � fxm; . . . ; xnÿ1g such that ��P � � ��P �,
and the previous analysis shows that ��P � \ P � ; for

��P � 6� ;, ��P � � P for ��P � � ;. Finally, if � has

variables in C and in NC, the effect of the two subsets

can be analyzed separately. The previous analysis again

shows that ��P � \ P � ;, or ��P � � P . tu
The proof of Proposition 5 contains the seeds of a more

general result. In fact, distinct subsets of variables �, �
corresponding to noncanonical columns generate disjoint
pseudocubes ��P �, ��P �. Since there are 2nÿm such subsets,
there are at least 2nÿm disjoint pseudocubes generated from
P . Moreover, Proposition 5 also states that no two
pseudocubes generated from P may partially overlap. We
then have:

Theorem 1. For any pseudocube P of degree m, there are exactly
2nÿm disjoint pseudocubes (including P ) of degree m obtained
from P by complementation of variables. These pseudocubes
are exactly the ones obtained by complementing the non-
canonical variables of the canonical matrix in all possible ways.
These pseudocubes form a class, denoted by ÿ�P �, that
tessellates Bn.

Note that ÿ�P � � ÿ���P �� for any �. Two families ÿ in B4

are shown in Fig. 3. x0 and x1 are the canonical variables for
both families. In the first map, the pseudocube marked with
b derives from the one marked with a by complementing
the noncanonical variable x2, or the canonical variable x0.
Then, complementing x0 and x2 brings the pseudocube onto
itself. In the second map, the pseudocube marked with f

derives from the one marked with g by complementing x2

and x3. Complementing x1 brings the pseudocube onto

itself. A relevant result is the following:

Theorem 2. Let P , Q be pseudocubes of degree m, P \Q � ;.
P [Q is a pseudocube (of degree m� 1) if and only if

Q 2 ÿ�P �.
Proof. As in the proof of Proposition 5, represent P by a

canonical matrix M with canonical columns associated to

x0; . . . ; xmÿ1. Also, let R � P [Q.
If part. Let Q � ��P �, with � � fxm; . . . ; xnÿ1g: We

prove that R is a pseudocube. Q can be represented by a
canonical matrix N , obtained from M complementing
the columns of �. Then, R can be represented by the
matrix Z obtained attaching N to M. The columns of Z
belonging to � have the structure v�v, and the other
columns have the structure vv, with v normal since it
comes from M. That is, all the columns of Z are normal,
hence, R is a pseudocube by Proposition 3.

Only if part. Let R be a pseudocube: We prove that
Q 2 ÿ�P �. Choose the canonical matrix N to represent Q,
and attach N to M to form a matrix Z representing R.
Since the columns of Z must be balanced, any variable xi
divided in M (in particular, x0; . . . ; xmÿ1) must be also
divided in N . Take any pair of variables xi; xj 2
fx0; . . . ; xmÿ1g and consider Zi (the restriction of Z to
the rows with xi � 1). We have that xj is divided in Mi

and is balanced in Zi, therefore, it is divided in Ni. That
is, xi and xj are discordant in N . We conclude that
x0; . . . ; xmÿ1 are divided and pairwise discordant in N ,
and form the canonical part of N . The proof now
proceeds by induction on m. The basis m � 1 holds as a
consequence of the fact that any balanced vector of four
elements is normal. Let the assertion hold for mÿ 1.
Note that M0, M�0, N0, N�0 correspond to pseudocubes of
degree mÿ 1 and that M0 [M�0, N0 [N�0, M0 [N0 � Z0

correspond to pseudocubes. Then, by induction, M0, M�0,
N0, N�0 are all in the same class ÿ. Therefore, each column
of Z has the form ûûûû. Consider now the submatrix
W � �::�Z�1��2::�mÿ1 composed of the four starting rows of
M�0, M0, N�0, N0. In each column, W contains the starting
elements of the four vectors û above. The values of these
elements determine if the corresponding û has the actual
configuration u or �u. Being a restriction of Z, W is the
matrix of a pseudocube of degree 2, therefore, its
columns are balanced (hence, normal). It is immediate
to verify that all the corresponding arrangements of
ûûûû can be rewritten as wŵ. That is, P and Q belong to
the same class ÿ. tu

Let us now see how a pseudocube of degree m can be

extended to one of degree m� 1.

Definition 8. Given a pseudocube P of degree m � 1 and a point

u 62 P , the extension EXT �P; u� is a set of points such that

u 2 EXT �P; u�, and P [ EXT �P; u� is a pseudocube of

degree m� 1.

Proposition 6. For any pseudocube P of degree m � 1 and any

point u 62 P , EXT �P; u� exists and is uniquely determined,

and EXT �P; u� 2 ÿ�P �.
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Proof. Take an arbitrary point v 2 P . Consider the subset of
variables � such that ��v� � u and denote ��P � � P 0. By
Proposition 5 and Theorem 2, we have that P 0 is a
pseudocube of degree m and P [ P 0 is a pseudocube of
d e g r e e m� 1. T h a t i s , EXT �P; u� � P 0 a n d
EXT �P; u� 2 ÿ�P �. To prove that EXT �P; u� is unique,
assume by contradiction that another completion P 00

exists, with P 0 6� P 00, and u 2 �P 0 \ P 00�. By assumption,
P [ P 00 is a pseudocube, hence, P 00 2 ÿ�P � by Theorem 2,
which is impossible because also P 0 2 ÿ�P � and
P 0 \ P 00 6� ;. tu

FromtheproofofProposition6,wecanmakethefollowing:

Observation 1. Given three points u; v; w, there exists exactly
one point z such that fu; v; w; zg is a pseudocube.

In this simple case there is an immediate construction for
z since the value of each variable in z can be determined by
balancing the corresponding column. For example:

x1 x2 x3 x4 . . .
u 0 0 0 1 . . .
v 1 0 1 0 . . .
w 1 0 0 1 . . .

z 0 0 1 0 . . .

The concept of extension is needed to prove some further
results. We have:

Proposition 7. Let R be a pseudocube of degree r and P be a
pseudocube of degree p, with r � 2, 1 � p < r, and P � R.
For any point u 2 Rÿ P we have EXT �P; u� � R.

Proof. 1. We first prove the proposition for p � 1 by
induction on r. Let P � fv; wg.

Basis. r � 2. Immediate from Observation 1.
Inductive step. r � 2. Assuming that the hypothesis

holds for r, we prove that it holds for r� 1. Represent the
matrix M of R in normal form, and partition M from the
top into four consecutive normal submatrices A;B;C;D,
each composed of 2rÿ2 rows. AB and CD will denote the
top and bottom halves of M.

a. If v; w; u are all in AB, or all in CD, the
proposition holds by the inductive hypothesis;

b. Let v; w be in AB and u be in CD (all other cases
are similar). Use the permutations PERM1,
PERM2, PERM3 given in Appendix A that
preserve the normality of M. It is easy to see
that, with some permutations where we set
k � mÿ 3, v and w can be brought into A, leaving
u in CD. Then, with one permutation where we
set k � mÿ 2, u is brought into B, leaving v; w in
A. We now have v; w; u in AB, and the inductive
hypothesis applies.

2. We now prove the proposition for any p > 1. Take
an arbitrary point v 2 P . Consider the subset of variables
� such that ��v� � u. We have EXT �P; u� � ��P �. Take
an arbitrary point z 6� u in EXT �P; u�. We prove that
z 2 R, hence, EXT �P; u� � R. Consider the point w such
that ��w� � z. Note that w 2 P . Since fv; wg is a
pseudocube, and �fv; wg � fu; zg 2 ÿ�fv; wg�, then

fv; w; u; zg is a pseudocube by Theorem 2. Therefore,
fzg � EXT �fv; wg; u�, that is z 2 R by point 1. tu

Theprecedingresultsshowhowapseudocubeofdegreem,
and a point external to it, determine a pseudocube of degree
m� 1 containing the two. Indeed, a stronger result holds:

Theorem 3. Given k points s0; . . . ; skÿ1, the pseudocube T of
minimal degree t containing s0; . . . ; skÿ1 is uniquely deter-
mined, and we have dlog2 ke � t � kÿ 1.

Proof. The lower bound is trivial since a pseudocube of
degree < dlog2 ke contains less than k points. To prove
the upper bound, consider the pseudocubes Si,
0 � i � kÿ 1, built as follows:

S0 � fs0g
S1 � fs0; s1g

Si � Siÿ1 if si 2 Siÿ1

Siÿ1 [ EXT �Siÿ1; si� if si 62 Siÿ1.

�
Note that all the Si are uniquely determined by

Proposition 6. We now prove by induction on i that, for
any pseudocube S 3 s0; . . . ; si, we have Si � S.

Basis. i � 0; 1. Trivial.
Inductive step. 2 � i � kÿ 1. Assuming that the hy-

pothesis holds for iÿ 1, we prove that it holds for i. For
any pseudocube S 3 s0; . . . ; si we trivially have
S 3 s0; . . . ; siÿ1, hence, Siÿ1 � S by induction. If
si 2 Siÿ1, we have Si � Siÿ1 and the inductive hypoth-
esis obviously holds for i. If si 62 Siÿ1, we have Si �
Siÿ1 [EXT �Siÿ1; si� and the hypothesis holds by Pro-
position 7. As a consequence, Skÿ1 � any subset
containing s0; . . . ; skÿ1, that is, T � Skÿ1. By construction,
this set is uniquely determined and we have t � (degree
of Skÿ1 � kÿ 1), where equality applies if si 62 Siÿ1 in the
construction of all Si. tu

We finally study how pseudocubes intersect.

Theorem 4. Let P and R be pseudocubes of degree p, r,
respectively. Then, either P \R � ; or P \R is a pseudocube
of degree � p� rÿ n.

P r o o f . T h e c a s e P \R � ; i s t r i v i a l . I f
P \R � fs0; . . . ; skÿ1g, k � 1, then both P and R must
contain the minimum pseudocube T containing
s0; . . . ; skÿ1, as shown in the proof of Theorem 3. This
implies that fs0; . . . ; skÿ1g � T , that is, P \R is a
pseudocube. We now prove a lower bound for jT j.
Consider the set fR1; . . . ; Rhg of the elements of ÿ�R� that
have nonempty intersection with P (R is one of these
elements). P \Ri, 1 � i � h, is a pseudocube as proven
above, with jP \Rij � 2ri for proper ri. For any pair
Rj;Rk, we have that Rj [Rk is a pseudocube by
Theorem 2, therefore, Q � P \ �Rj [Rk� is a pseudo-
cube and jQj � 2q for proper q. We then have
2rj � 2rk � 2q, t h a t i m p l i e s rj � rk. T h e n ,
jP \R1j � . . . � jP \Rhj � 2a, with 2p=h � 2a. The value
of a is minimum if all the elements of ÿ�R� have
nonempty intersection with P , that is, h � 2nÿr. We then
have 2p=2nÿr � 2a, that is, a � p� rÿ n. tu
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At the beginning of this section, we saw that any cube
Bk � Bn, 0 � k � n, is a pseudocube. Let us now discuss
how the main properties of pseudocubes are interpreted for
cubes. Theorem 1 applies directly to cubes, implicitly
defining the tessellation ÿ�C� for a given cube C, whose
members are cubes. Theorem 2 holds only in its ªonly ifº
part. That is, if C and D are cubes of degree m, C \D � ;,
the fact that C [D is a cube implies D 2 ÿ�C�, but the union
of two cubes of the same family ÿ is not necessarily a cube
(but, obviously, is a pseudocube). For a cube C of degree
m � 1 and a point u 62 C, we can sharpen Definition 8 by
letting EXT �C; u� be a set of points containing u such that
C [ EXT �C; u� is a cube of degree m� 1. The existence of
EXT �C; u� is not guaranteed in this case, however, if
EXT �C; u� exists, then it is uniquely determined and
EXT �C; u� 2 ÿ�C�. Theorem 4 holds unchanged for cubes.
Finally, note that no useful adaptation can be done for
Theorem 3 because the smallest cube containing two given
points can be as large as Bn. This occurs, for example, for
t h e p o i n t s x1; x2; . . . ; xn � �0; 0; . . . ; 0� a n d
x1; x2; . . . ; xn � �1; 1; . . . ; 1�.

4 PSEUDOPRODUCTS

Our first concern is now to derive a concise algebraic
expression of the characteristic function of a pseudocube.
We use the Boolean operators OR (symbol +), AND
(symbol �), and EXOR (symbol �). Since these operators are
commutative and associative, they are naturally applied to
any number of variables. In particular, we define an EXOR-
factor as a single variable or as a string of variables
connected by EXOR in any order. The following lemma
contains two equalities that can be easily proven by
induction:

Lemma 1. Let y1; :::; yk be Boolean variables, k � 2. We have:

1. y1 � y2 � . . .� �yk � �y1 � y2 � . . .� yk�;
2.

y1 � y2 � . . . � yk � y1 � y2 � . . . � yk
� �y1 � y2� � �y1 � y3� � . . . � �y1 � yk�:

Lemma 1.1, combined with the commutativity of EXOR,
shows that complementing any variable in an EXOR-factor
amounts to complementing the whole factor. This also
immediately implies:

Lemma 2. ŷ1 � ŷ2 � :::� ŷk � y1 � y2 � :::� yk, if the number
of complementations in the left-hand side is even;
ŷ1 � ŷ2 � :::� ŷk � y1 � y2 � :::� �yk, if the number of com-
plementations in the left-hand side is odd.

We now pose:

Definition 9. Let P be a pseudocube of degree m in Bn; let M be
the canonical matrix of P ; and let xp0

; . . . ; xpmÿ1
and

xpm ; . . . ; xpnÿ1
be the canonical and noncanonical variables,

respectively, with these two sets ordered for increasing values
of the indices. The canonical expression associated with P ,
denoted by CEX�P �, is given by f0 � f1 � . . . � fnÿmÿ1, where
each fi, 0 � i � nÿmÿ 1, is an EXOR-factor containing the
following variables:

1. the canonical variables xpj , 0 � j � mÿ 1 such that
M�0; pm�i� 6�M�2mÿjÿ1; pm�i�; these variables are
ordered for increasing indexes;

2. the noncanonical variable xpm�i if M�0; pm�i� � 1 or
�xpm�i if M�0; pm�i� � 0.

Note that CEX�P � contains an EXOR-factor for each

noncanonical variable. For the pseudocube P1 whose matrix

M1 is shown in Fig. 4 we have:

CEX�P1� ��x1 � x2� � �x0 � x1 � x3��
�x0 � x1 � x4 � �x5� � �x0 � �x6�:

�1�

Note that the canonical matrix of a pseudocube P can be

built in ��2m � n� (linear) time from the set of points of P

by applying Algorithm 1 that, in fact, builds the canonical

matrix M. Once this matrix is known, CEX�P � can be built

in ��m� n� time by first determining the canonical

variables of M and, then, applying Definition 9. The length

of CEX�P � is O��nÿm� �m�.
In Boolean algebra, the characteristic function of a

subcube Bm � Bn is called a product and is expressed as

the AND of nÿm variables in direct or complemented

form. Similarly, we call pseudoproduct of degree m the

characteristic function of a pseudocube of degree m. This

function can be expressed as the AND of nÿm EXOR-

factors. In fact, we have:

Theorem 5. For a pseudocube P , the pseudoproduct can be

expressed as CEX�P �.
Proof By induction on m.

Basis.m � 0. P consists of one point. All the variables
are noncanonical. CEX�P � reduces to a product (min-
term) x̂p0

� . . . � x̂pnÿ1
, built according to Definition 9.2.

Inductive step. m > 1. Denote by P1, P2 the pseudo-
cubes of degree mÿ 1 whose canonical matrices are M�p0

and Mp0
, respectively. Inductively assume that CEX�P1�

and CEX�P2� are valid expressions for P1, P2. Note that
the canonical variables of P1 and P2 are xp1

; . . . ; xpmÿ1
,

while xp0
is constant in P1 and P2, hence, is a

noncanonical variable for the two pseudocubes. Apply-
ing Definition 9.2 to the column p0 of M�p0

and Mp0
, we

h a v e CEX�P1� � �xp0
� f1

1 � . . . � f1
nÿmÿ1 a n d

CEX�P2� � xp0
� f2

1 � . . . � f2
nÿmÿ1. To compare f1

i with

f2
i, 1 � i � nÿmÿ 1, note that the column pm�i of M is

normal. Then, by Definition 9.1, f1
i and f2

i contain the

same canonical variables from among xp1
; . . . ; xpmÿ1

. More-

over, depending on the values of M�0; pm�i� and

M�2mÿ1; pm�i�, both f1
i and f2

i contain xpm�i , or �xpm�i , or

one contains xpm�i and the other contains �xpm�i . Therefore,

we havef1
i � f2

i, orf1
i � �f2

i by Lemma 1.1. Lettingf1
i1 �

f2
i1 ; :::; f

1
ik � f2

ik and f1
ik�1
� �f2

ik�1
; :::; f1

inÿmÿ1
� �f2

inÿmÿ1
,

we have, by Lemma 1.2:
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CEX�P1� � CEX�P2� � f1
i1 � . . . � f1

ik

� ��xp0
� f1

ik�1
� . . . � f1

inÿmÿ1
� xp0

� �f1
ik�1
� . . . � �f1

inÿmÿ1
�

� f1
i1 � ::: � f1

ik � �xp0
� �f1

ik�1
� � . . .

� �xp0
� �f1

inÿmÿ1
�

and this expression coincides with CEX(P). Since
CEX�P1� � CEX�P2� is an expression for the character-
istic function of P , the theorem immediately follows. tu
Since a subcube Bm is a particular case of pseudocube of

degree m, a product is a particular case of pseudoproduct.
The AND expression of a product is a limit case of CEX
expression. In fact, the nÿm variables appearing in the
product have constant values in the corresponding subcube
and constitute the noncanonical variables of the pseudo-
cube. In general, the CEX expression of a pseudoproduct of
degree m contains nÿm EXOR-factors (Definition 9),
hence, at most �nÿm��m� 1� literals.

Unlike for the limit case of a product, the CEX expression
of a pseudoproduct depends, in general, on the ordering of
the variables because the canonical variables of the
pseudocube are chosen according to the (conventional)
values of their indices. For the matrix M1 of Fig. 4, the new
ordering x0x4x5x1x2x3x6 would imply that x0; x4; x5 are the
canonical variables, yielding the new CEX expression:

CEX�P1� � �x0 � x4 � x5 � �x1� � �x0 � x4 � x5 � x2�
� �x4 � x5 � x3� � �x0 � �x6�: �2�

Note that this expression is different from (1) and contains
more literals (but, obviously, the same number of EXOR-
factors).

From Theorem 5, we have that any pseudocube of degree
nÿ 1 has a canonical expression consisting of one EXOR-
factor. Conversely, given an EXOR-factor f , there exists a
pseudocube P of degree nÿ 1 whose pseudoproduct can be
expressed by f (not necessarily in CEX form). To prove this
point, first apply Lemma 2 to transform f into an equivalent

EXOR-factor f 0 with the same variables of f , all in direct

form, or with the last variable complemented. Using

Definition 9, we can then reconstruct the unique pseudo-

cube P such that CEX�P � � f 0.
Given two pseudocubes P1, P2 of degree m such that

there exists a subset � of variables with P2 � ��P1�, we

have that P � P1 [ P2 is a pseudocube of degree m� 1

(Theorem 2). P1 and P2 have the same canonical and

noncanonical variables and � may be limited to noncano-

nical variables (proof of Proposition 5). We now study how

to derive CEX�P � from CEX�P1� and CEX�P2�. Note that

P will have the same canonical variables of P1, P2, plus a

new one taken from the noncanonical variables of P1, P2.
Let fxi0 ; . . . ; xinÿmÿ1

g be the set of noncanonical variables

of P1 and P2 and let � � fxi0 ; . . . ; xikg, k � nÿmÿ 1. We

have CEX�P1� � fi0 � . . . � fik � fik�1
� . . . � finÿmÿ1

, where fij
contains the noncanonical variable xij . By Lemma 1.1, we

then have CEX�P2� � �fi0 � . . . � �fik � fik�1
� . . . � finÿmÿ1

. That is,

CEX�P1� � CEX�P2� � fik�1
� . . . � finÿmÿ1

� �fi0 � . . . � fik � �fi0 � . . . � �fik�:
F o r j�j � 1 ( i . e . , � � fxi0g) , w e h a v e
CEX�P1� � CEX�P2� � fik�1

� . . . � finÿmÿ1
, which is the ex-

pression CEX�P �. xi0 is the new canonical variable of P ,
and does not appear in that expression (in fact, P1 and P2

are identical in the subexpressions with xi0 � 0 and xi0 � 1).
For j�j > 1, we have, by Lemma 1.2:

CEX�P1� � CEX�P2� � fik�1
� . . . � finÿmÿ1

� ��fi0 � fi1���fi0 � fi2� � . . .
� ��fi0 � fik�: �3�

We transform this expression into CEX�P � by the

following rule:

Rule 1. In (3), each subexpression ��fi0 � fij�, 1 � j � k, is an

EXOR-factor that is rearranged as follows
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1. The complementation over fi0 is assigned to its
variable xi0 (Lemma 1.1), that is, fi0 is changed to
f1

i0 with all the canonical variables in direct form; the
new expression �f1

i0 � fij� is simplified by eliminating
each canonical variable y, if any, appearing in both f1

i0

and fij (in fact, y� y � 0 and 0� f � f) to yield the
new expression f2

ij ;
2. If f2

ij contains �xi0 , the complementation is moved
from this variable to the last variable xij of f2

ij to
obtain the expression f3

ij ; note that f3
ij is an EXOR-

factor containing some canonical variables, and the
noncanonical variables xi0 and x̂ij ; include xi0 among
the canonical variables, and reorder this set for
increasing values of the indices, to obtain the
expression gij (x̂ij remains in the last position);

3. Expression (3) has been transformed into the form
fik�1
� . . . � finÿmÿ1

� gi1 � . . . � gik composed of nÿmÿ 1
EXOR-factors, each containing a noncanonical vari-
able: Sort these factors for increasing order of the
indices of such variables.

The expression obtained by Rule 1 is in CEX form. In

fact, this expression is CEX�P � and includes the new

canonical variable xi0 (first variable of �). For example,

consider the canonical matrices of the two pseudoproducts

P1, P2 � ��P1� shown in Fig. 4. The canonical variables are

x0; x1; x4, and � � fx2; x3; x6g. We have:

CEX�P1� � �x1 � x2� � �x0 � x1 � x3� � �x0 � x1 � x4 � �x5�
� �x0 � �x6�

CEX�P2� � �x1 � �x2� � �x0 � x1 � �x3� � �x0 � x1 � x4 � �x5�
� �x0 � x6�

and, applying Rule 1:

CEX�P � � �x0 � x1 � x4 � �x5� � ��x1 � x2� � �x0 � x1 � x3��
� ��x1 � x2� � �x0 � �x6��

� �by rule 1:1��x0 � x1 � x4 � �x5� � ��x2 � x0 � x3�
� �x1 � �x2 � x0 � �x6�

� �by rule 1:2��x0 � x1 � x4 � �x5� � �x0 � x2 � �x3�
� �x0 � x1 � x2 � x6�

� �by rule 1:3��x0 � x2 � �x3� � �x0 � x1 � x4 � �x5�
� �x0 � x1 � x2 � x6�;

where x2 is the new canonical variable.
In summary, for a pseudocube P � P1 [ P2, CEX�P � can

be built from CEX�P1� and CEX�P2� with the following

Algorithm 2. The time is linear with the size of the input

expressions.

Algorithm 2 (build CEX�P � from CEX�P1�, CEX�P2�
1. compare CEX�P1� with CEX�P2� to determine if P1 and
P2 belong to the same class; this occurs when the two
expressions are represented by two identical strings, except,
possibly, for the last variable of each EXOR-factor that may
appear in direct or complemented form. If this is the case,
derive �;

2. ifj�j � 1 (i.e., � � fxi0g
then build CEX�P � by suppressing from CEX�P1� the
EXOR-factor containing xi0
else derive (3) and apply Rule 1.

Algorithm 2 is the basis of a synthesis method to be
discussed in Section 6.

5 EXPRESSING BOOLEAN FUNCTIONS: THE ADDER

The algebraic representation of Boolean functions is a
crucial tool in digital design and symbolic manipulation [7].
After the initial development of Switching Theory, in the
fifties and sixties, there has been a steady interest in the
applications of synthesis techniques that are now directed
to VLSI design [4], [11]. For this purpose, Boolean functions
are represented by algebraic expressions or binary decision
diagrams (BDD) [1], [3]. Let us discuss the role of
pseudoproducts in this area, showing how they can be
used to derive the expression of an arbitrary function. A
comparison will be made with the algebraic representation
in disjunctive form, also called ªsum of productsº (SP), and
with BDDs in some significant cases.

The simplest case is the one of a function that is a
pseudoproduct, hence, is directly expressed in CEX form.
Since such a function is defined on the 2m points of a
pseudocube P , its specification (truth table) has size
��2m � n�. For m � ��n�, the time to build CEX(P) is
exponential in n, although the length of CEX(P) is O�n2�.
This is clearly unavoidable when building any algebraic
expression for P , since the whole specification of P must be
examined.

An obvious example of pseudoproduct is the parity
function in Bn that has value 1 exactly in the points of a
pseudocube of degree nÿ 1. This function is expressed in
CEX form as a single EXOR-factor containing n literals (in
fact, the EXOR of all the variables, one of which in
complemented form) versus a minimal SP containing
n2nÿ1 literals and a reduced BDD containing 2n nonterm-
inal nodes. Some examples in B4 are the eight functions
with value 1 in the pseudocubes of Fig. 3. It can be easily
verified that all of them have CEX expressions shorter than
the corresponding minimal SP forms and a number of
literals smaller than the number of nonterminal nodes of the
reduced BDDs.

In general, an arbitrary function can be expressed as a
disjunction of pseudoproducts, giving rise to a ªsum of
pseudoproductsº (SPP) form. For example, the set of points
of B5 marked with a and/or b in Fig. 5 is the union of two
partially overlapping pseudocubes Pa, Pb. The function with
value 1 in the points of Pa [ Pb is then expressed as CEX�Pa�
+ CEX�Pb�, that is:

x1 � �x0 � x2 � x3� � �x0 � x3� � �x1 � x4�;
while the minimal SP for the same function contains 27
literals, and the reduced BDD contains nine nonterminal
nodes. If a function has to be implemented as a digital
circuit, the role of SPP crucially relies on the use of EXOR
gates (see [8], [13], [22] for their realization). Moreover,
passing from SP to SPP amounts to pass from a two-level to
a three-level circuit. These features have always to be taken
into account, and will not be further repeated.

Important examples of SPP forms are encountered in the
design of an n-bit adder. First, consider a stage of a carry-
ripple adder with three inputs a, b (local digits), and c
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(previous carry), and two outputs s (local sum) and c� (carry
to the next stage). We have:

SP: s � abc� abc� abc� abc,
SPP: s � a� b� c; (one pseudoproduct of degree 2)
SP: c� � ab� bc� ac,
SPP: c� � bc� a�b� c�; (two pseudoproducts of degree1),

where the SPP forms are much more compact.
A more interesting circuit is a fully parallel n-bit adder,

with inputs A � anÿ1anÿ2 . . . a0, B � bnÿ1bnÿ2 . . . b0, and out-
put S � snsnÿ1 . . . s0. Each output si will be obtained as a
function of the inputs ai; . . . ; a0; bi; . . . ; b0, in SP, or SPP,
form. For studying these functions, we make use of the
function carry ci relative to the sum of aiÿ1 . . . a0 plus
biÿ1 . . . b0, although this carry will not be explicitly gener-
ated by the circuit. For SP, define si through the relations:

s0 � a0b0 � a0b0;

si � aibici � aibici � aibici � aibici; i > 0;
�4�

where ci and ci are recursively defined as:

c1 � a0b0;

ci � aiÿ1biÿ1 � biÿ1ciÿ1 � aiÿ1ciÿ1; i > 1;
�5:1�

c1 � a0 � b0

ci � aiÿ1biÿ1 � biÿ1ciÿ1 � aiÿ1ciÿ1; i > 1:
�5:2�

These relations can be used to derive the minimal SP forms
for all the si. In fact, the expressions for si and ci cannot be
further reduced, independently of the fact that, in the right-
hand side of the relations, ai, bi are variables and ci is a
function. For example, we have:

s1 � a1b1a0b0 � a1b1a0 � a1b1b0 � a1b1a0 � a1b1b0 � a1b1a0b0:

Instead of giving the minimal SP expression for each si,
we evaluate the complexity of this expression in terms of
the number �i of its products and the number �i of its

literals. For this purpose, we need to evaluate the numbers
�i, �i, and �i, �i of products and literals of ci and ci,
respectively. From (5.1) and (5.2), we derive the recurrences:

�1 � 1; �i � 2�iÿ1 � 1;

�1 � 2; �i � 2�iÿ1 � 2�iÿ1 � 2;

�1 � 2; �i � 2�iÿ1 � 1;

�1 � 2; �i � 2�iÿ1 � 2�iÿ1 � 2;

that have solutions:

�i � 2i ÿ 1;

�i � i2i;
�i � 2i � 2iÿ1 ÿ 1;

�i � i2i � �iÿ 1�2iÿ1:

From (4), we then have:

�i � 2�i � 2�i � 2i�2 � 2i ÿ 4: �6�
To compute the number of literals of si, note that, when
each term âib̂iĉi of (4) is expanded by substituting the
expression for ĉi, each product appearing in ĉi is multiplied
by two new variables. We then have:

�i � 2�i � 2�i � 4�i � 4�i
� 2i�3 � i2i�2 � 2i�1 � �iÿ 1�2i ÿ 8: �7�

For example, from (6) and (7), we have �1 � 6, �1 � 20, that
are the numbers of products and literals of the minimal SP
form of s1, as found in the algebraic expression for s1 above.
As a conclusion, we note that both �i and �i grow
exponentially with i.

To express si in SPP, we represent our functions in the
recursive maps of Fig. 6 (not necessarily Karnaugh maps)
that are easily constructed from the definition of sum and
carry. Each submap containing a function (e.g., the submap
of si for aibi � 00, containing ci) recursively stands for the
map of that function (i.e., the map of ci labeled with
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aiÿ1; biÿ1). Consider ci. Each pseudocube P of ciÿ1, con-

tained in the submap for aiÿ1biÿ1 � 01, can be transformed

into a pseudocube Q in the submap for aiÿ1biÿ1 � 10 by

complementing aiÿ1 and biÿ1. Therefore, P and Q belong to

the same class ÿ and can be joined to form a pseudocube

R � P [Q (Theorem 2). The corresponding pseudopro-

d u c t s c a n b e c o m b i n e d , t o e a s i l y o b t a i n :

CEX�R� � �aiÿ1 � biÿ1�CEX�P �, where CEX�P � is recur-

sively computed on aiÿ2; . . . ; a0; biÿ2; . . . ; b0. In CEX�R�, aiÿ1

is a new canonical variable and biÿ1 is a new noncanonical

variable. To form a (not necessarily minimal) SPP expres-

sion for ci, we consider all the pseudoproducts of ciÿ1,

pairwise combined as above, plus the pseudoproduct aibi

corresponding to the submap for aiÿ1biÿ1 � 11, which

contains all 1s. We inductively assume that ciÿ1 is expressed

in SPP, to obtain:

c1 �a0b0;

ci �aiÿ1biÿ1 � �aiÿ1 � biÿ1�ciÿ1

�aiÿ1biÿ1 � �aiÿ1 � biÿ1�aiÿ2biÿ2

� �aiÿ1 � biÿ1��aiÿ2 � biÿ2�ciÿ2

� � � �
�aiÿ1biÿ1 � �aiÿ1 � biÿ1�aiÿ2biÿ2

� �aiÿ1 � biÿ1��aiÿ2 � biÿ2�aiÿ3biÿ3 � � � �
� �aiÿ1 � biÿ1� � � � �a1 � b1�a0b0:

�8�

Similarly, we have:

c1 �a0b0 � �a0 � b0�;
ci �aiÿ1biÿ1 � �aiÿ1 � biÿ1�ciÿ1

� � � �
�aiÿ1biÿ1 � �aiÿ1 � biÿ1�aiÿ2biÿ2

� �aiÿ1 � biÿ1��aiÿ2 � biÿ2�aiÿ3biÿ3 � � � �
� �aiÿ1 � biÿ1� � � � �a1 � b1�a0b0

� �aiÿ1 � biÿ1� � � � �a1 � b1��a0 � b0�:

�9�

Consider now si. We can combine the pseudocubes in
the two submaps containing ci and the ones in the two
submaps containing ci, to obtain the expression:

si � �ai � bi�ci � �ai � bi�ci � �ai � bi�ci � �ai � bi�ci: �10�
Combining (8), (9), and (10), we directly obtain an SPP form
for si that can be easily simplified to the following:

si ��ai � aiÿ1 � bi��aiÿ1 � biÿ1�
� �ai � aiÿ2 � bi��aiÿ1 � biÿ1��aiÿ2 � biÿ2�
� � � �
� �ai � a0 � bi��aiÿ1 � biÿ1��aiÿ2 � biÿ2� � � � �a0 � b0�
� �ai � bi��aiÿ1 � biÿ1��aiÿ2 � biÿ2� � � � �a0 � b0�:

�11�
It must be noted that all the pseudoproducts appearing in

(11) correspond to disjoint pseudocubes, because any two of
them respectively contain the disjoint factors �aj � bj� and
�aj � bj�. The last pseudoproduct represents the bottom-left
to top-right diagonal of the map of si, which contains all 1s.

To compare the complexity of this new expression with
the one of a minimal SP form for si, let us evaluate the
number 	i of its pseudoproducts, the number �i of its
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Fig. 6. Map representation of sum and carry in a fully parallel adder.
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EXOR-factors, and the number �i of its literals. By
inspection of (11) we immediately have:

	i � i� 1; �12�

�i � �i� 1��i� 2�
2

� i � 1

2
i2 � 5

2
i� 1; �13�

�i �
Xiÿ1

j�0

�5� 2j� � 2i� 2 � i2 � 6i� 2: �14�

Comparing the values of 	i and �i with �i of (6) may
not be particularly significant, due to the different structure
of the two forms. The superiority of SPP over SP is clearly
proven by examining the number of literals. Note the
quadratic growth of �i versus the exponential growth of �i

shown in (7).
Many other circuits have been proposed for the adder and

is out of our scope to compare them all. We simply recall that
a three-level n-bit adder based on PLAs with input decoders
has been proposed in [16]. This circuit has n2 � 1 PLA
columns (products), hence, a cubic number of literals.

6 MINIMIZATION AND BENCHMARK RESULTS

In the previous section, we have shown that the SPP forms
for addition are very compact. Indeed, this may not be
surprising, due to the presence of EXOR operators in the
CEX expressions of the pseudoproducts and to the
particular distribution of the 1s in the functions to be
represented. However, we speculate on the possibility of
using SPP to express arbitrary functions economically,
hence, to get small circuits.

An important approach based on an AND±EXOR form
was devised long ago by Reed and Muller to represent
arbitrary functions [5], [12]. This form is extensively used
for function classification [19], [20] and has originated
several methods for circuit synthesis. In particular, heur-
istics for generating short AND±EXOR forms, and Decode±
AND±EXOR forms have been, respectively, proposed in
[18], [23] and [15]. Other three-level forms using EXOR are
proposed in [9], [14], [17]. None of these techniques,
however, has reached the maturity of SP minimization.
Our SPP method is a direct generalization of the one for SP
where pseudoproducts are substituted for products and
benefits of a well-established structure.

A basic concept related to SP forms is the one of prime
implicant of a function f , that is, a product implying (i.e.,
covered by) f and not implying any other product implying
f . As is well-known, a minimal SP form for f can be built as
a disjunction of prime implicants only. This concept
immediately extends to the one of prime pseudoproduct, that
is, a pseudoproduct implying f and not implying any other
pseudoproduct of f .

Prime pseudoproducts can be built with successive
pairwise combinations of pseudocubes of smaller order
belonging to the same class ÿ, using Algorithm 2 of
Section 4. This suggests an immediate extension of the
classical SP minimization methods to construct an SPP
form with minimal number of pseudoproducts, composed

of prime pseudoproducts only. For example, the well-
known method of Quine-McCluskey [7] can be immedi-
ately reformulated as follows:

Algorithm 3. (build an SPP with minimal number of
pseudoproducts)
1. Start from the CEX expressions of all the pseudoproducts
of degree k � 1 (i.e., CEX of all the pairs of points);
2. For increasing k, generate the CEX expressions of the
pseudoproducts of degree k� 1 from pairs of pseudopro-
ducts of degree k by applying Algorithm 2 to the
corresponding pseudocubes; for each k, retain only the
pseudoproducts corresponding to pseudocubes that cannot
be combined into larger ones, as the prime pseudoproducts
of degree k;
3. Make a minimal selection of prime pseudoproducts
covering the whole function; the OR of their CEX expres-
sions gives a minimal SPP.

The CEX expression of a pseudoproduct built by
composition of two pseudoproducts of smaller degree
contains one EXOR-factor less than the ones of the two
components. Then, an SPP form with minimal number of
EXOR-factors can also be built with prime pseudoproducts
only. Algorithm 3 can be easily transformed for this
purpose with an immediate adaptation of Step 3. Deriving
an SPP form with minimal number of literals is a more
complex task. First, the number of literals in a CEX
expression may depend on the ordering of the variables,
as noted in Section 4. That is, the minimization holds
relative to a chosen ordering. Second, when two CEX
expressions are combined by Algorithm 2, the number of
literals in the new expression not necessarily decreases. For
P � P1 [ P2, we have, from Rule 1, that CEX�P � and
CEX�P1� (or, similarly, CEX�P2�) differ for a portion of the
formula, respectively, ��fi0 � fi1� � . . . � ��fi0 � fik� simplified
by Rule 1.1 and fi0 � . . . � fik . Although the former portion
contains, in general, fewer literals than the latter, due to the
simplification introduced by the rule, this is not necessarily
true. The most elementary instances of this fact are found in
B3. The points 000 and 111 constitute two pseudocubes P1,
P2 of degree 0. Their union is a pseudocube P of degree 1.
W e h a v e CEX�P1� � x0x1x2, CEX�P2� � x0x1x2,
CEX�P � � �x0 � x1��x0 � x2�. The expressions for P1, P2

have three EXOR-factors (reduced to single variables) and
three literals, while the expression for P has two EXOR-
factors and four literals. As a consequence, the construction
of an SPP with minimum number of literals cannot be
limited to prime pseudoproducts. Indeed, in such a
construction a pseudoproduct can be excluded from
consideration only if is covered by another pseudoproduct
whose expression contains fewer literals.

The above property is implemented in an easy modifica-
tion of Algorithm 3. We have:

Algorithm 4 (build an SPP with minimal number of literals,
under a chosen ordering of variables)
1. Start from the CEX expressions of all the pseudoproducts
of degree k � 0 (single points);
2. For increasing k, generate the CEX expressions of the
pseudoproducts of degree k� 1 from pairs of pseudopro-
ducts of degree k; discard a pseudoproduct of degree k if its
CEX expression contains h literals and is combined into one
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of degree k� 1 whose expression contains � h literals;
3. Make a selection with minimal number of literals from
among the pseudoproducts retained in Step 2 (with
extended terminology, call them also ªprime pseudopro-
ductsº when referring to Algorithm 4).

Depending on the function, the number of literals in a
minimal SPP expression is less than or equal to the number
of literals in a minimal SP expression for the same function.
If the two numbers are equal, Algorithm 4 may, in fact,
generate an SP expression as a special case of SPP.

Comparing Algorithms 3 and 4, we see that the selection in
Step 3 is made from among a larger number of pseudopro-
ducts in Algorithm 4 than in Algorithm 3. This does not
increase the asymptotic worst-case complexity of the method,
since the minimization problem is NP-hard for SP [6] and for
BDD [3], and remains clearly NP-hard for SPP in its two
variants. In other words, all minimization techniques are, in
theory, very hard. In practice, SP minimization is often rather
easy, although some functions of many variables may force us
to derive a suboptimal expression heuristically, due to the
high complexity of the computation required to attain a
minimal form [4], [11]. In SPP minimization, this situation is
much more likely to occur due to the possibly huge number of
prime pseudoproducts of the function. On the other hand, we
may expect that most functions have an SPP expression much
shorter than the corresponding minimal SP, since there are
many more pseudoproducts than products. The results
obtained with some benchmarks confirm these observations,
as we now outline.

We have adopted the benchmarks functions of [21] that
are widely used in the evaluation of synthesis methods (e.g.,
see [4], [15]). The results for eight such functions are shown
in the upper section of Table 1, as samples of the

potentiality of our method (Algorithm 4 has been used for
SPP). All of them have a few input variables so that the
minimal expressions were determined. The different out-
puts of each function have been minimized separately and,
for two of them, the results relative to the single outputs are
reported in the two lower sections of the table. The function
newtpla1 yields identical results in SP and SPP, meaning
that the prime pseudoproducts in the minimal form are, in
fact, prime implicants. For the functions max46, dc2,
newcwp, and dc1, the size of the minimal PSS expression
is about one half of the corresponding SP. The three
functions rd73, z4, and rd53 show a much greater improve-
ment of SPP over SP. Among the results for the single
outputs of rd73 and z4, we find that rd73�2� and z4�3� are,
indeed, single pseudoproducts, with enormous advantage,
in particular for rd73�2�. Single outputs consisting of single
pseudoproducts are encountered in five other cases (not
shown) for the functions studied in Table 1. On the negative
side, we note a generalized greater effort to produce the SPP
minimal forms, due to the highest number of prime
pseudoproducts over prime implicants.

7 A SPECIAL CLASS OF FUNCTIONS

To conclude our discussion on SPP forms, let us now
characterize a class of functions suitable for efficient SPP
representation, based on special symmetries. It is known
that the class of symmetric Boolean functions (i.e., functions
insensitive to variable permutations) is particularly suitable
for BDD representation [3]. For SPP, we define a new type
of symmetry. Given a function f with value 1 in S � Bn and
a subset of variables �, denoted by ��f�, the function with
value 1 in the points of ��S� (see Definition 7).

Definition 10. A function f is auto-symmetric in � if f � ��f�.

In the function f of Fig. 7, complementing x0 and x1

amounts to moving each 1 onto another 1 without changing
the function. That is, f is auto-symmetric in fx0; x1g (but not
in fx0g or in fx1g). Other examples are the function with
value 1 in the points marked a or b in Fig. 5, which is auto-
symmetric in fx0; x3g; and the parity function, which is
auto-symmetric in any subset of variables of even cardin-
ality. If a function is auto-symmetric in two different subsets
�; �, it is clearly auto-symmetric also in �� �. The function
of Fig. 7 is auto-symmetric in fx0; x1g, fx0; x2g, and
fx1; x2g � fx0; x1g � fx0; x2g. For the parity function, note
that if two sets �; � have even cardinality, the set �� � also
has even cardinality.

A product function p is auto-symmetric in any subset of
the variables which do not appear in the AND expression of
p (i.e., in any subset of canonical variables). This is not
necessarily true for pseudoproducts. In fact, if p is a
pseudoproduct auto-symmetric in �, then � must contain at
least one canonical variable (otherwise, ��p� 6� p by Theo-
rem 1). For an arbitrary function, we have:

Proposition 8. Let f be auto-symmetric in � and p be a prime
pseudoproduct of f . Then, 8xi 2 �, the pseudocube P
associated with p is composed of two pseudocubes lying in
the subspaces Bnÿ1 with xi � 0 and xi � 1, respectively.
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Comparison of Benchmark Results

#I: number of input variables
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Proof. Let B0, B1 denote the two subspaces. By definition of
pseudocube, P lies in B0, or in B1, or half in B0 and half
in B1. If P is in B0, then ��P � is in B1 and P [ ��P � is a
pseudocube of greater degree against the hypothesis that
p is prime. Similarly, P cannot lie in B1. tu

Proposition 8 is the basis of a stronger result, relating
auto-symmetry to primality. We have:

Theorem 6. Let f be auto-symmetric in �1; . . . ; �k. Choose the
variables xj1 ; . . . ; xjk such that xji 2 �i, 1 � i � k, and
xji 62 �h, 1 � i < h � k. Let fk be the restriction of f to the
subspace Bnÿk with xj1

. . .xjk � v, where v is an arbitrary
binary vector of k elements. Then, fk and f have the same
number of prime pseudoproducts.

Proof. We prove that each pseudocube associated to a
prime pseudoproduct of f is divided into 2k equal
pseudocubes, lying in the subspaces where xj1

; . . . ; xjk
assume all the possible sets of values. For k � 1 this
thesis follows from Proposition 8. Then, proceed by
induction. Let the thesis hold for the restriction fkÿ1 of f
to the subspace Bnÿkÿ1 with xj1 . . .xjkÿ1

� v, where v is
any binary v ec tor o f kÿ 1 e lements . S ince
xj1
; . . . ; xjkÿ1

62 �k, the variations induced on f by
complementing the variables in �k move the 1s of fkÿ1

onto themselves. That is, fkÿ1 is auto-symmetric in �k.
Therefore, by Proposition 8, each pseudocube associated
with a prime pseudoproduct of fkÿ1 is composed of two
pseudocubes, lying in the subspaces with xj1

. . .xjkÿ1
xjk �

v0 and xj1 . . .xjkÿ1
xjk � v1. The theorem immediately

follows. tu

The function f of Fig. 7 has two prime pseudoproducts of
degree nÿ 1 � 3, with CEX expressions x3 and x0 � x1 � x2,
respectively. The three sets of auto-symmetry of f cannot be
chosen together, to fulfill the conditions of Theorem 6.
Groups of two sets do. We may choose, for example:

�1 � fx0; x1g; �2 � fx0; x2g; xj1
� x1; xj2

� x0;

which fulfill the theorem. Let fk be the restriction of f to the
subspace with x0x1 � 00. Both f and fk have two prime
pseudoproducts, with each of the latter covering one fourth
of the 1s of one prime pseudoproduct of f .

Auto-symmetric functions are then suitable for SPP
representation, in particular when the minimization of the
number of pseudoproducts, or of EXOR-factors, is sought
for. In this case, only prime pseudoproducts are considered
and the study of f can be carried out on the restriction fk.
The algebraic expresson of f is then easily found from the
one of fk. Large values of k in Theorem 6 generally imply
SPP forms composed of a few prime pseudoproducts. If a
function consists of the union of a few auto-symmetric
functions, it is also suitable for SPP representation. In
particular, if f has value 1 in 2m points and k � m, fk
reduces to a single point, hence, f is a pseudoproduct. If
each �i contains only one variable, f is a product.

Significant examples of auto-symmetry are exhibited by
the functions si (sum) and ci (carry) of an n-bit adder,
discussed in Section 5. Refer to the definition of si and ci as
presented in the maps of Fig. 6. Consider a map labeled aj,
bj. After the recursive substitutions of the submaps, the
columns (respectively, the rows) of the map become labeled
with vectors ajajÿ1 . . . a0 (respectively, bjbjÿ1 . . . b0), ar-
ranged in increasing binary order. (This arrangement is
not the one of a Karnaugh map and facilitates the
following). On this map, consider the portion D composed
of the cells lying on the bottom-left to top-right diagonal;
and the upper-left and lower-right triangular portions U
and L separated by D. Denote by dj, uj, `j the functions with
all 1s in D, U , L, respectively. Note that uj � ��`j�,
� � faj; bj; ajÿ1; bjÿ1; . . . ; a0; b0g. It can be easily proven by
induction on i that ci � `iÿ1, hence, ci � uiÿ1 � diÿ1. From
the definition of ci in Fig. 6, we have:

ci � `iÿ1 � aiÿ1biÿ1 � riÿ1; �15�
where riÿ1 is defined in Fig. 8. Similarly, we have:

si � di � ti; �16�
where ti is also defined in Fig. 8.

The function si is defined in B2i. Its components di and ti
are auto-symmetric. In fact, di is auto-symmetric in
fai; big; faiÿ1; biÿ1g; . . . ; fa0; b0g. Therefore, by Theorem 6,
di c a n b e s t u d i e d i n t h e s u b s p a c e Bi w i t h
aiaiÿ1 . . . a0 � 00 . . . 0, where the restriction consists of
one prime pseudoproduct with a single 1. di is then
expressed by one prime prime pseudoproduct, as already
found in (11).

Consider now ti. Recalling that uiÿ1 � ��`iÿ1�, � �
faiÿ1; biÿ1; . . . ; a0; b0g from Fig. 8, we see that ti is auto-
symmetric in fai; big and in fai; aiÿ1; biÿ1; . . . ; a0; b0g. Select-
ing bi from the first set and ai from the second, we have,
from Theorem 6, that ti can be studied in the subspace B2iÿ2

with aibi � 00. That is, we can restrict our study to the
prime pseudoproducts of the function `iÿ1 that is, in turn,
given in (15). This function is composed of the product
aiÿ1biÿ1 and the function riÿ1, which is auto-symmetric in
faiÿ1; biÿ1g (Fig. 8). riÿ1 is then studied in the subspace B2iÿ3

with aiÿ1 � 0. Indeed, the function has its 1s only in
aiÿ1biÿ1 � 01, therefore, the examination can be restricted to
this subspace only. Here, we find `iÿ2 and the reasoning
repeats recursively until the function reduces to a single
point. Since, at each step, we add a new prime pseudopro-
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duct aibj, the function `iÿ1 is expressed by the OR of i prime
pseudoproducts, as already found in (8).

Combining all these results, si is expressed by the OR of
i� 1 prime pseudoproducts that are exactly the ones
included in (11).

8 CONCLUDING REMARKS

In this work, we have introduced the new concept of
pseudocube in Bn, as an extension of the concept of
subcube. Pseudocubes exhibit several properties already
known for subcubes, plus some new strong ones. We have
studied the characteristic function of a pseudocube, called
pseudoproduct, and its algebraic expression in EXOR-AND
form: This is our ªnew Boolean functionº. The expression of
a pseudoproduct is a basic tool for the algebraic representa-
tion of arbitrary Boolean functions, in the form of sum of
pseudoproducts (SPP). Compared with other forms based
on EXOR, SPP is completely new.

We have developed this work to contribute to the
comprehension, classification, and algebraic representation
of Boolean functions. However, we have also argued that
SPP may be an economic form to express functions, leading
to small combinatorial circuits. For this purpose, we have
determined the SPP expressions for the output functions of
a parallel adder, as a significant example of the advantages
of our approach. Experiments on popular benchmarks for
logic synthesis have also given encouraging results.

As in all initial works, much effort is still needed to prove
the versatility of pseudoproducts and their role in Boolean
algebra and circuit design. A challenging issue is to study the
relations between SPP forms and binary decision diagrams
(BDDs) and, in particular, the use of BDDs to build SPP forms,
asdonein[4] forSP.Onthecircuit side,other important logical
networks, like the multiplier, should be designed in SPP form
to assess the usefulness of the new technique.

APPENDIX

Proof of Proposition 2. Examine the columns of M for
increasing values of the indices. At least m columns must
be divided, otherwise the rows of M could not be all
distinct. Let C be the set of such columns. Since the rows
are sorted as binary numbers, the first column c of C is
�mÿ 1�-canonical, hence, c � ci0 . Inductively assume
that, among the first h columns of C, we have discovered

the first j canonical columns ci0 ; . . . ; cijÿ1
, j � h < m. This

implies that the first h columns of C are all �mÿ s�-
normal (or canonical), 1 � s � jÿ 2. Therefore, there
must be at least one column among the remaining
columns of C that is k-normal, k < mÿ jÿ 2, otherwise,
the rows of M cannot be all distinct. The leftmost column
c with such a property is �mÿ jÿ 3�-canonical by the
structure of the binary numbers. That is, c is the �j� 1�th
canonical column cij . tu

Row permutations that preserve normality. For m � 2 and
an arbitrary k � mÿ 2, let the row indices of a normal
matrix M be divided in 2mÿk consecutive groups
g0; g1; . . . ; g2mÿkÿ1, each containing 2k consecutive indices.
Divide the groups in consecutive quartets, each com-
posed of g4i; g4i�1; g4i�2; g4i�3, 0 � i � 2mÿkÿ2 ÿ 1. The
following permutations of rows, indicated by permuta-
tions of the corresponding indices, preserve the normal-
ity of any column, hence, the normality of M:

PERM1: 8i, exchange g4i with g4i�1;
PERM2: 8i, exchange g4i�1 with g4i�2;
PERM3: 8i, exchange g4i�1 with g4i�3.

Proof of Proposition 3. We prove that M is balanced, by
induction on m. This is trivial for m � 0 and m � 1. Let
the property hold for mÿ 1, m > 1. Recall that all the
columns of a normal matrix are balanced. Taking an
arbitrary divided column cj, we execute proper row
permutations to get cj � 01, preserving the normality of
M. If cj is �mÿ 1�-normal and cj � 01, we are done. If
cj � 10, permute the upper and lower 2mÿ1 rows of M to
get cj � 01. This operation obviously preserves the
normality of M. If cj is �k < mÿ 1�-normal, we have
cj � v0v1 . . . v2mÿkÿ1, with each subcolumn vi consisting
of 2k equal elements. Consider the starting quartet
v0v1v2v3 of subcolumns. If v0 � 1 (hence, v1 � 0), apply
PERM1. We now have: v0 � 0, v1 � 1. If v2 � 0 (hence,
v3 � 1), apply PERM2; otherwise, v2 � 1, v3 � 0, apply
PERM3. We now have: v0v1 � 00, v2v3 � 11, and all the
other quartets have been similarly permuted. cj has then
become �k� 1�-normal, and the construction repeats
until cj becomes �mÿ 1�-normal. We then have cj � 01.
Since the performed permutations have preserved the
normality of the matrix, Mj and M�j are also normal,
hence, they are balanced by induction. The above
construction can be repeated for any divided column
cj, hence, M is balanced. tu

Proof of Proposition 4. Let R be the matrix obtained by
rearranging the rows of M. We must prove that R is
normal. For 0 � m � 2, this holds because any balanced
column of one, two, or four elements is normal, as can be
easily verified by inspection of all cases. For m > 2, scan
the columns of R from left to right, to find the first three
columns cr; cs; ct such that cr � 01, cs � 0101, and
ct � 01010101. It can be easily verified that these
columns exist, since R is balanced and sorted. We
now prove, by induction on m, that all the other
columns cj, j 6� r; s; t, are normal. The basis m � 2 has
been proven above. For m > 2, we inductively assume
that any balanced matrix of 2h rows arranged in
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Fig. 8. Map representation of the functions riÿ1 and ti.
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increasing order is normal, for h � mÿ 1. In particular,

this occurs for all the restrictions of R. Denote by �cj�k
the restriction of cj to Rk. Use the notation ~u to indicate

that a vector u is equal to itself or to its complement

and that the same choice is maintained within an

expression (note the difference with û that may indicate

u and �u in two occurrences inside the same expres-

sion). By the inductive hypothesis, we have �cj��r � u~u,

where �cj��r;�s � u � vw (with v � w or v � �w). We now

prove that cj is normal. One of the following two cases

must be inductively verified:

1. �cj��s � �cj��r;�s�cj�r;�s � uu. This implies:

�cj�r;�s;�t � �cj��r;�s;�t � v;

hence, �cj��t � v~vvx � v~vv~v, hence,

�cj�r � �cj�r;�s�cj�r;s;�t�cj�r;s;t � u~vy � u~v~w � u~u:

Therefore, cj � �cj��r�cj�r � u~uu~u � zz normal.

2. �cj��s � �cj��r;�s�cj�r;�s � u�u. T h i s i m p l i e s :
�cj�r;�s;�t � �v, hence,

�cj��t � v~v�vx � v~v�v�~v;

hence,

�cj�r � �cj�r;�s�cj�r;s;�t�cj�r;s;t � �u�~vy � �u�~v�~w � �u�~u:

Therefore, cj � �cj��r�cj�r � u~u�u�~u � z�z normal. tu
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