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ON A NEW CLASS OF ABSTRACT IMPULSIVE

DIFFERENTIAL EQUATIONS

EDUARDO HERNÁNDEZ AND DONAL O’REGAN

(Communicated by Yingfei Yi)

Abstract. In this note we introduce a new class of abstract impulsive differ-
ential equations for which the impulses are not instantaneous. We introduce

the concepts of mild and classical solution and we establish some results on the
existence of these types of solutions. An example involving a partial differential
equation is presented.

1. Introduction

In this note we introduce a class of abstract impulsive differential equations for
which the impulses are not instantaneous. Specifically, we study the existence of
solutions for an impulsive problem of the form

u′(t) = Au(t) + f(t, u(t)), t ∈ (si, ti+1], i = 0, . . . , N,(1.1)

u(t) = gi(t, u(t)), t ∈ (ti, si], i = 1, . . . , N,(1.2)

u(0) = x0,(1.3)

where A : D(A) ⊂ X → X is the generator of a C0-semigroup of bounded linear
operators (T (t))t≥0 defined on a Banach space (X, ‖·‖), x0 ∈ X, 0 = t0 = s0 < t1 ≤
s1 ≤ t2 < · · · < tN ≤ sN ≤ tN+1 = a are pre-fixed numbers, gi ∈ C((ti, si]×X;X)
for all i = 1, . . . , N and f : [0, a]×X → X is a suitable function.

The literature on abstract impulsive differential equations considers basically
problems for which the impulses are abrupt and instantaneous. The literature on
this type of problem is vast, and different topics on the existence and qualitative
properties of solutions are considered. Concerning the general motivations, relevant
developments and the current status of the theory, we refer the reader to [1]-[16]
and the references therein.

In this note we consider a class of problems for which the impulses are not
instantaneous. In this paper the impulses start abruptly at the points ti and their
action continues on the interval [ti, si]. We note that the considered problem, the
technical approach, the results and applications presented in this work are totally
new.

As a motivation for the study of systems such as (1.1)-(1.3), we consider the fol-
lowing simplified situation concerning the hemodynamical equilibrium of a person.
In the case of a decompensation (for example, high or low levels of glucose) one
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can prescribe some intravenous drugs (insulin). Since the introduction of the drugs
in the bloodstream and the consequent absorption for the body are gradual and
continuous processes, we can interpret the above situation as an impulsive action
which starts abruptly and stays active on a finite time interval.

Next, we introduce some notation and technical results. In this paper, A :
D(A) ⊂ X → X is the infinitesimal generator of a C0-semigroup of bounded linear
operators (T (t))t≥0 on (X, ‖ · ‖) and [D(A)] represents the domain of A endowed
with the graph norm.

Let (Z, ‖ · ‖Z) and (W, ‖ · ‖W ) be Banach spaces. In this paper, we denote by
L(Z,W ) the space of bounded linear operators from Z into W endowed with the
norm of operators denoted by ‖ · ‖L(Z,W ) and we write L(Z) and ‖ · ‖L(Z) when
Z = W . In addition, Bγ(z, Z) denotes the closed ball with center at z ∈ Z and
radius r in Z. As usual, C(J, Z) (with J ⊂ R) is the space formed by all the
continuous bounded functions defined from J into Z, endowed with the uniform
norm ‖u‖C(J,Z) = supt∈J ‖u(t)‖Z .

To treat the impulsive conditions, we consider the space PC(X) which is formed
by all the functions u : [0, a] → X such that u(·) is continuous at t �= ti, u(t

−
i ) =

u(ti) and u(t+i ) exists for all i = 1, . . . , N, endowed with the uniform norm on [0, a]
denoted by ‖u‖PC(X). It is easy to see that PC(X) is a Banach space. For a function
u ∈ PC(X) and i ∈ {0, 1, . . . , N}, we introduce the function ũi ∈ C([ti, ti+1];X)
given by

ũi(t) =

{
u(t), for t ∈ (ti, ti+1],

u(t+i ), for t = ti.
(1.4)

In addition, for B ⊆ PC(X) and i ∈ {0, 1, . . . , N}, we use the notation B̃i for the

set B̃i = {ũi : u ∈ B}. We note the following Ascoli-Arzelà type criteria.

Lemma 1.1. A set B ⊆ PC(X) is relatively compact in PC(X) if and only if each

set B̃i is relatively compact in C([ti, ti+1], X).

This paper has three sections. In section 2 we study the existence of solutions
for the problem (1.1)-(1.3). In the last section, an application involving a partial
differential equation is presented.

2. Existence of solution

In this section we discuss the existence of mild and classical solutions for the
impulsive system (1.1)-(1.3). To begin, we introduce the following concepts of
solution.

Definition 2.1. A function u ∈ PC(X) is called a mild solution of the problem
(1.1)-(1.3) if u(0) = x0, u(t) = g(t, u(t)) for all t ∈ (tj , sj ] and each j = 1, . . . , N ,
and

u(t) = T (t)x0 +

∫ t

0

T (t− τ )f(τ, u(τ ))dτ

for all t ∈ [0, t1] and

u(t) = T (t− si)gi(si, u(si)) +

∫ t

si

T (t− τ )f(τ, u(τ ))dτ

for all t ∈ [si, ti+1] and every i = 1, . . . , N.
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In the remainder of this work, for a function u : [0, a] → X and J ⊂ [0, a], we
use the notation u|J to represent the restriction of u(·) to the set J .

Definition 2.2. A function u ∈ PC(X) is said to be a classical solution of the
problem (1.1)-(1.3) if u(0) = x0, u(t) = g(t, u(t)) for all t ∈ (tj , sj ] and each
j = 0, . . . , N , u|(si,ti+1] ∈ C((si, ti+1]; [D(A)]) for all i = 1, . . . , N and u(·) satisfies
(1.1).

For convenience, we state some well-known concepts concerning the Cauchy prob-
lem:

w′(t) = Aw(t) + ξ(t, u(t)), t ∈ [c, d],(2.1)

w(c) = z ∈ X.(2.2)

We note that a function u ∈ C([c, d], X) is called a mild solution of (2.1)-(2.2) if

u(t) = T (t− c)z +

∫ t

c

T (t− τ )ξ(τ, u(τ ))dτ, ∀ t ∈ [c, d].(2.3)

A function u ∈ C([c, d], X) is said to be a classical solution of (2.1)-(2.2) if u(c) = x0,
u|(c,d] ∈ C((c, d]; [D(A)]) and u(·) satisfies (2.1) on (c, d].

The next proposition establishes the basic relation between the concepts of mild
and classical solutions. We include the proof of this result for completeness.

Proposition 2.1. If u(·) is a classical solution of (1.1)-(1.3), then u(·) is a mild
solution.

Proof. It is easy to see that the function u|[si,ti+1]
is a classical solution of the

problem

w′(t) = Aw(t) + f(t, u(t)), t ∈ [si, ti+1],(2.4)

w(si) = u(si) ∈ X.(2.5)

Now, from semigroup theory we obtain that u|[si,ti+1]
is a mild solution of (2.4)-(2.5)

and

u|[si,ti+1]
(t) = T (t− si)u(si) +

∫ t

si

T (t− s)f(s, u(s))ds, ∀ t ∈ [si, ti+1].

Finally, by noting that u(s) = g(s, u(s)) for all s ∈ (ti, si], i ≥ 1, we infer that
u(·) is a mild solution of (1.1)-(1.3). �

There is a huge number of papers which consider conditions under which a mild
solution of (2.1)-(2.2) is a classical solution. To shorten our developments, in the
next result we use the notation P (ξ, z) to represent a generic condition on ξ(·) and z
which implies that a mild solution of (2.1)-(2.2) is a classical solution of (2.1)-(2.2).

Proposition 2.2. If u(·) is a mild solution of (1.1)-(1.3) and the conditions
P (f, x0) and P (f, g(si, u(si))), i = 1, . . . , N , are satisfied, then u(·) is a classi-
cal solution.

Proof. For i = 0, 1, . . . , N , the function u|[si,ti+1]
is a mild solution of the problem

(2.4)-(2.5), which implies that u|[si,ti+1]
is a classical solution of (2.4)-(2.5). By

noting that u(t) = g(t, u(t)) for all t ∈ (ti, si], we conclude that u(·) is a classical
solution of (1.1)-(1.3). �
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To prove our results on the existence of solutions we introduce the following
conditions.

H1 The functions gi are continuous and there are positive constants Lgi such
that ‖gi(t, x)− gi(t, y)‖ ≤ Lgi‖x− y‖ for all x, y ∈ X, t ∈ (ti, si] and each
i = 0, 1, . . . , N .

H2 For x ∈ X, the function f(·, x) is strongly measurable on [0, a] and f(t, ·) ∈
C(X,X) for t ∈ [0, a]. There are mf ∈ L1([0, a];R+) and a nondecreasing
function Wf ∈ C([0,∞);R+) such that ‖f(t, x)‖ ≤ mf (t)Wf (‖x‖) for all
(t, x) ∈ [0, a]×X.

H3 The function f(·) belongs to C([0, a]×X;X), and there is a function Lf ∈
L1([0, a];R+) such that ‖f(t, x) − f(t, y)‖ ≤ Lf (t)‖x− y‖ for all x, y ∈ X
and every t ∈ [0, a].

We can now establish our first result.

Theorem 2.1. Assume the conditions H1 and H3 are satisfied and

Θ = C0 max
{
Lgi + ‖Lf‖L1([si,ti+1]), ‖Lf‖L1([0,t1]) : i = 1, . . . , N

}
< 1.

Then there exists a unique mild solution u ∈ PC(X) of the problem (1.1)-(1.3).

Proof. Let Γ : PC(X) → PC(X) be defined by Γu(0) = x0, Γu(t) = gi(t, u(t)) for
t ∈ (ti, si] and

(2.6) Γu(t) = T (t− si)gi(si, u(si)) +

∫ t

si

T (t− s)f(s, u(s))ds, t ∈ [si, ti+1].

From the assumption it is easy to see that Γ is well defined. Moreover, for u, v ∈
PC(X), i ∈ {1, . . . , N} and t ∈ [si, ti+1] we get

‖Γu(t)− Γv(t)‖ ≤ ‖T (t− si)g(si, u(si))− T (t− si)g(si, v(si))‖

+ C0

∫ t

si

‖f(s, u(s))− f(s, v(s))‖ds

≤ C0Lgi‖u− v‖PC(X) + C0

∫ t

si

Lf (s)‖u(s)− v(s)‖ds,

and hence,

‖Γu− Γv‖C([si,ti+1];X) ≤ C0

(
Lgi + ‖Lf‖L1([si,ti+1])

)
‖u− v‖PC(X).

Proceeding as above, we obtain that

‖Γu− Γv‖C([0,t1];X) ≤ C0‖Lf‖L1([0,t1])‖u− v‖PC(X),

‖Γu− Γv‖C((tj ,sj ];X) ≤ C0Lgj‖u− v‖PC(X), j = 1, . . . , N.

From the above we have that ‖Γu−Γv‖PC(X) ≤ Θ‖u−v‖PC(X), which implies that
Γ(·) is a contraction and there exists a unique mild solution of (1.1)-(1.3). �

In the next result we establish the existence of a mild solution via a fixed point
criterion for condensing operators.
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Theorem 2.2. Assume the conditions H1 and H2 are satisfied, the semigroup
(T (t))t≥0 is compact, the functions gi(·, 0) are bounded and

C0‖mf‖L1([0,t1]) lim sup
r→∞

W (r)

r
< 1,

C0‖mf‖L1([si,ti+1]) lim sup
r→∞

W (r)

r
+ (C0 + 1)Lgi < 1, ∀ i = 1, . . . , N.

Then there exists a mild solution u ∈ PC(X) of the problem (1.1)-(1.3).

Proof. Let r > 1 and 0 < θ < 1 be such that

C0‖x0‖+ (C0 + 1) max
i=1,...,N

‖gi(·, 0)‖C((ti,si];X) < (1− θ)r,

C0 max
i=1,...,N

{
‖mf‖L1([si,ti+1])

W (s)

s
+ (C0 + 1)Lgi

}
< θ, ∀ s ≥ r,

C0‖mf‖L1([0,t1])
W (s)

s
< θ, ∀ s ≥ r.(2.7)

Next, we prove that the map Γ introduced in the proof of Theorem 2.1 is a con-
densing map from Br(0,PC(X)) into Br(0,PC(X)). To this end, we introduce the

decomposition Γ =
∑N

i=0 Γ
1
i +

∑N
i=0 Γ

2
i , where Γ

j
i : PC(X) → PC(X), i = 0, . . . , N,

j = 1, 2, are given by

Γ1
iu(t) =

⎧⎪⎪⎨
⎪⎪⎩

gi(t, u(t)), for t ∈ (ti, si], i ≥ 1,
T (t− si)gi(si, u(si)), for t ∈ (si, ti+1], i ≥ 1,

0 for t /∈ (ti, ti+1], i ≥ 0,
T (t)x0 for t ∈ [0, t1], i = 0,

Γ2
iu(t) =

⎧⎨
⎩

∫ t

si

T (t− s)f(s, u(s))ds, for t ∈ (si, ti+1], i ≥ 0,

0 for t /∈ (si, ti+1], i ≥ 0.

We divide the remainder of the proof into five steps.

Step 1. ΓBr(0,PC(X)) ⊂ Br(0,PC(X)).
Let u ∈ Br(0,PC(X)). For i ≥ 1 and t ∈ (ti, ti+1], we get

‖Γu(t)‖ ≤ Lgi‖u(t)‖+ ‖gi(t, 0)‖+ C0(Lgi‖u(t)‖+ ‖gi(t, 0)‖)

+ C0

∫ ti+1

si

mf (s)W (‖u(s)‖)

≤ (C0 + 1)Lgi‖u‖PC(X) + (C0 + 1)‖gi(·, 0)‖C((ti,si];X)

+ C0W (r)‖mf‖L1([si,ti+1])

≤ (C0 + 1)Lgir + (1− θ)r + C0W (r)‖mf‖L1([si,ti+1])

≤ (1− θ)r + θr,

which implies that ‖Γu‖C((ti,ti+1];X) ≤ r for all i ≥ 1. Arguing as above, we find
that

‖Γu‖C([0,t1],X) ≤ C0‖x0‖+ C0W (r)‖mf‖L1([0,t1]) ≤ r,

from which we infer ‖Γu‖PC(X)
≤ r and Γ has values in Br(0,PC(X)).
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1646 EDUARDO HERNÁNDEZ AND DONAL O’REGAN

Step 2. The map Γ1 =
∑N

i=0 Γ
1
i is a contraction on Br(0,PC(X)).

For u, v ∈ Br(0,PC(X)), i ∈ {1, . . . , N} and t ∈ (ti, ti+1], it is easy to see that

‖Γ1
iu(t)− Γ1

i v(t)‖PC(X) ≤ (C0 + 1)Lgi‖u− v‖C((ti,ti+1];X),

which implies that ‖
∑N

i=0 Γ
1
iu −

∑N
i=0 Γ

1
i v‖PC(X) ≤ Θ‖u − v‖PC(X) and Γ1 is a

contraction on Br(0,PC(X)).
Next, we use the notation Γ2

iBr(0,PC(X))(t) = {Γ2
iu(t) : Br(0,PC(X))}.

Step 3. For i = 0, . . . , N and si < s < t ≤ ti+1, the set
⋃

τ∈[s,t] Γ
2
iBr(0,PC(X))(τ )

is relatively compact in X.
Let si < μ < s. For ε > 0 we select 0 < δ < s−μ

2 such that

C0‖mf‖L1(I)W (r) ≤ ε

for all intervals I ⊂ [0, a] with Diam(I) ≤ δ. Then, for τ ∈ [s, t] and u ∈
Br(0,PC(X)) we get

Γ2
iu(τ ) = T (δ)

∫ τ−δ

si

T (τ − θ − δ)f(θ, u(θ))dθ +

∫ τ

τ−δ

T (τ − θ)f(θ, u(θ))dθ

∈ T (δ)Br1(0, X) +Br1,ε(0, X),

where r1 = C0‖mf‖L1([0,a])W (r) and r1,ε = C0‖mf‖L1([τ−δ,τ ])W (r), which implies

that
⋃

θ∈[s,t] Γ
2
iBr(0,PC(X))(θ) ⊂ T (δ)Br1(0, X) + Bε(0, X). Since T (δ)Br1(0, X)

is relatively compact and Diam(Bε(0, X)) → 0 as ε → 0, it follows that⋃
θ∈[s,t] Γ

2
iBr(0,PC(X))(τ ) is relatively compact in X.

In the next step we use the notation introduced in (1.4).

Step 4. The set of functions ˜[Γ2
iBr(0,PC(X))]i, i = 0, . . . , N , is an equicontinuous

subset of C([ti, ti+1];X).

It is obvious that ˜[Γ2
iBr(0,PC(X))]i is right equicontinuous on [ti, si) and left

equicontinuous on (ti, si]. Assume t ∈ (si, ti+1). Since the set Γ2
iBr(0,PC(X))(t)

is relatively compact in X and (T (t))t≥0 is a C0-semigroup, for given ε > 0 there
exists 0 < δ < ti+1 − t such that ‖(T (s) − I)x‖ ≤ ε for all 0 < s < δ and each
x ∈ Γ2

iBr(0,PC(X))(t). Then, for u ∈ Br(0,PC(X)) and 0 < h < δ we get

‖Γ̃2
iu(t+ h)− Γ̃2

iu(t)‖ = ‖Γ2
iu(t+ h)− Γ2

iu(t)‖

≤ ‖
∫ t+h

t

T (t+ h− s)f(s, u(s))ds‖+ ‖(T (h)− I)

∫ t

si

T (t− s)f(s, u(s))ds‖

≤ C0‖mf‖L1([t,t+h])W (r) + sup{ ‖(T (h)− I)x‖ : x ∈ Γ2
iBr(0,PC(X))(t) }

≤ C0‖mf‖L1([t,t+h])W (r) + ε,

which proves that ˜[Γ2
iBr(0,PC(X))]i is right equicontinuous at t.

Proceeding as above, for t = si and h > 0 with si + h < ti+1 we have that

‖Γ̃2
iu(si + h)− Γ̃2

iu(si)‖ = ‖
∫ si+h

si

T (t+ h− s)f(s, u(s))ds‖

≤ C0‖mf‖L1([si,t+si])W (r),

which implies that ˜[Γ2
iBr(0,PC(X))]i is right equicontinuous at si.
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Suppose now that t ∈ (si, ti+1]. Let μ ∈ (si, t]. Since
⋃

s∈[μ,t] Γ
2
iBr(0,PC(X))(s)

is relatively compact in X (see Step 3), for ε > 0 given we select 0 < δ < t−μ
2 such

that ‖(I − T (h))x‖ ≤ ε for all 0 < h ≤ δ and each x ∈
⋃

s∈[μ,t] Γ
2
iBr(0,PC(X))(s).

Under these conditions, for 0 < h ≤ δ and u ∈ Br(0,PC(X)) we see that

‖Γ̃2
iu(t− h)− Γ̃2

iu(t)‖ = ‖Γ2
iu(t− h)− Γ2

iu(t)‖

≤
∫ t

t−h

‖T (t− s)f(s, u(s))‖ds

+‖(I − T (h))

∫ t−h

si

T (t− h− s)f(s, u(s))ds‖

≤ C0‖mf‖L1([t−h,t])W (r) + ‖(I − T (h))Γ2
iu(t− h)‖

≤ C0‖mf‖L1([t−h,t])W (r)

+ sup{ (I − T (h))x‖ : x ∈
⋃

s∈[μ,t]

Γ2
iBr(0,PC(X))(s) }

≤ C0‖mf‖L1([t,t+h])W (r) + ε,

which shows that ˜[Γ2
iBr(0,PC(X))]i is left equicontinuity at t ∈ (si, ti+1]. This

completes the proof that the set ˜[Γ2
iBr(0,PC(X))]i is equicontinuous.

The proof of the next assertion is obvious.

Step 5. For i �= j, the set ˜[Γ2
iBr(0,PC(X))]j is an equicontinuous subset of

C([tj , tj+1];X).

From the above steps and Lemma 1.1 it follows that Γ1 is a contraction, Γ2 is
completely continuous and Γ = Γ1+Γ2 is a condensing operator from Br(0,PC(X))
into Br(0,PC(X)). Finally, from [17, Theorem 4.3.2] we infer there exists a mild
solution of (1.1)-(1.3). �

We complete this section with a result on the existence of a classical solution.
From semigroup theory and Proposition 2.2, we establish without proof the follow-
ing result.

Proposition 2.3. Assume u(·) is a mild solution of (1.1)-(1.3), x0 ∈ D(A),
g(si, u(si) ∈ D(A) for all i = 1, . . . , N and f ∈ C1([0, a];X). Then u(·) is a
classical solution.

3. Example

In this section, X = L2([0, π]) and A : D(A) ⊂ X → X is the operator given by
Ax = x′′ on D(A) := {x ∈ X : x′′ ∈ X, x(0) = x(π) = 0}. It is well known that
A is the infinitesimal generator of a compact semigroup (T (t))t≥0 on X and that
‖T (t)‖ ≤ e−t for all t ≥ 0.
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Consider the impulsive problem

∂

∂t
w(t, ξ) =

∂2

∂ξ2
w(t, ξ) + F (t, w(t, ξ)), (t, ξ) ∈

N⋃
i=1

[si, ti+1]× [0, π],(3.1)

w(t, 0) = w(t, π) = 0, t ∈ [0, a],(3.2)

w(0, ξ) = z(ξ), ξ ∈ [0, π],(3.3)

w(t, ξ) = Gi(t, w(t, ξ)), ξ ∈ [0, π], t ∈ (ti, si],(3.4)

where 0 = t0 = s0 < t1 ≤ s1 < ... < tN ≤ sN < tN+1 = a are fixed real numbers,
z ∈ X, F ∈ C([0, a]× R;R) and Gi ∈ C((ti, si]× R;R) for all i = 1, . . . , N.

To represent the impulsive problem (3.1)-(3.4) in the abstract form (1.1)-(1.3)
we introduce the functions f : [0, a]×X → X and gi : (ti, si]×X → X defined by
f(t, x)(ξ) = F (t, x(ξ)) and gi(t, x)(ξ) = Gi(t, x(ξ)). Next, we say that u ∈ PC(X)
is a mild solution of (3.1)-(3.4) if u(·) is a mild solution of the associated abstract
problem (1.1)-(1.3). The next result follows from Theorem 2.1 and Theorem 2.2.

Proposition 3.1. If any of the following conditions is satisfied, then there exists
a mild solution u ∈ PC(X) of (3.1)-(3.3).

(a) The functions F and Gi are Lipschitz with Lipschitz constants LF and LGi

respectively and max{LGi
+ LF (ti+1 − si), LF t1 : i = 1, . . . , N} < 1.

(b) The functions Gi(·) are Lipschitz with Lipschitz constants LGi
, the function

F (·) is bounded and 2LGi
< 1 for all i = 1, . . . , N .
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