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On a New Class of Codes for
Identifying Vertices in Graphs
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Abstract—We investigate a new class of codes for the optimal
covering of vertices in an undirected graphG such that any vertex
in G can be uniquely identified by examining the vertices that
cover it. We define aball of radius t centered on a vertexv to
be the set of vertices inG that are at distance at mostt from v:

The vertex v is then said to cover itself and every other vertex
in the ball with center v: Our formal problem statement is as
follows: Given an undirected graphG and an integer t � 1, find
a (minimal) set C of vertices such that every vertex inG belongs
to a unique set of balls of radius t centered at the vertices in
C: The set of vertices thus obtained constitutes a code for vertex
identification. We first develop topology-independent bounds on
the size ofC: We then develop methods for constructingC for
several specific topologies such as binary cubes, nonbinary cubes,
and trees. We also describe the identification of sets of vertices
using covering codes that uniquely identify single vertices. We
develop methods for constructing optimal topologies that yield
identifying codes with a minimum number of codewords. Finally,
we describe an application of the theory developed in this paper
to fault diagnosis of multiprocessor systems.

Index Terms—Code construction, coding theory, covering ra-
dius, fault diagnosis, graph theory, multiprocessor systems.

I. INTRODUCTION

GRAPHS find a wide range of applications in several
fields of engineering and information sciences. A graph

can be used to represent almost any physical situation and
the relationship between various entities. Graph models are
therefore often employed in solving a number of practical
problems [7].

In this paper, we investigate the problem of covering the
vertices of a graph such that we can uniquely identify any
vertex in by examining the vertices that cover it. We define
a ball of radius centered on a vertex to be the set of
vertices of that are at distance at mostfrom (The
distance between vertices and is the number of edges in
a shortest path betweenand .) The vertex is then said to
coveritself and every other vertex in its ball. We are interested
in identifying the vertices of using a minimum number of
balls of radius This is formally stated as follows: Given an
undirected graph and an integer , find a (minimal) set
of vertices such that every vertex ofbelongs to a unique set

Manuscript received November 5, 1996; revised August 7, 1997. This work
was supported in part by the National Science Foundation under Grant MIP
9630096, by NATO under Grant 910411, and by a start-up grant from Boston
University’s College of Engineering.

The authors are with Reliable Computing Laboratory, Department of
Electrical and Computer Engineering, Boston University, Boston, MA 02215
USA.

Publisher Item Identifier S 0018-9448(98)00841-4.

of balls of radius centered at the vertices in We view as
an identifying code such that all vertices in it are codewords.

An application of the theory developed in this paper lies in
fault diagnosis of multiprocessor systems. The purpose of fault
diagnosis is to test the system and locate faulty processors. A
multiprocessor system can be modeled as an undirected graph

, where is the set of processors andis the set
of links in the system. Specific software routines are executed
on certain selected processors to carry out diagnosis. The
selection of these processors is done by generating the code
that allows for unique identification of faulty processors. Every
processor corresponding to a codeword vertex tests itself and
all its neigbhoring processors. This corresponds to the use of
balls of radius one centered at the codewords, i.e.,
Hence an optimal code (minimum number of codewords)
minimizes the amount of overhead required to implement fault
diagnosis.

The organization of the paper is as follows. In Section II,
we develop topology-independent bounds on the size of,
and present methods for constructingfor practical topologies
such as meshes, binary and nonbinary cubes, and trees. Section
III addresses the problem of constructing codes that identify
not just single vertices as in the previous sections, but sets of
vertices of up to a given size. Finally, in Section IV, we discuss
the construction of optimal graphs that yield identifying codes
with a minimum number of codewords.

II. CODE CONSTRUCTION

Let be the minimum number of codewords required
to identify every vertex uniquely when a ball of radiusis
used. We first obtain some lower bounds on Let
be the volume of a ball of radiuscentered at vertex , i.e.,
the number of vertices that are at distance at mostfrom

Theorem 1: For a graph with vertices

1)

2) Let Then
, where is the smallest integer such that

where is the
binary entropy function.

3) Let be the smallest integer such that for a certain
, the following conditions are
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satisfied:

(1)

(2)

Then

Proof: The first lower bound follows from the fact that
there are cases ( different vertices and the selection
of no vertex—no vertex is identified) to be distinguished.
Therefore, the information can be encoded in a minimum of

bits.
We prove the second bound as follows. We denote by

the result of the (identification) test
performed by theth codeword. Each is a binary random
variable: Denote by the random variable which
is equal to when no vertex is to be identified and

if the th vertex is to be identified. In the absence
of anya priori knowledge, we assume that all cases are
equiprobable. Thus the entropy Now,
denote by the information in about

given the outcomes of Then

(3)

On the other hand,

(4)

Since (the value of is
uniquely determined by ), we obtain

(5)

However, the probability , hence

(6)

It follows from (4)–(6) that the number of codewords is not
smaller than the smallest such that

To prove the third bound, we consider a binary
matrix where

if the th codeword covers the th vertex, and
otherwise. Denote by the weight (number of

nonzero components) of theth row and by the weight
of the th column. Obviously,

(7)

Our goal is to find the minimum for a given and
provided that all columns of are

nonzero and distinct.
Consider the dual problem: for a given, find the max-

imum number of distinct and nonzero columns. Since,
obviously,

it follows that

(8)

To maximize the number of columns under the constraint
(8), we have to choose the weights of the columns as
small as possible, starting with columns of weight, , etc.,
up to the point where the right-hand side of (8) is exceeded.
Let be an integer such that

(9)

For the maximum possible number of columns, (8)
should turn into an equality. Taking into account (9), let

(10)

where Obviously,

(11)

We need to consider the following three cases.

1)

Then the largest number of columnsand the equality in (8)
are achieved if we use all possible distinct columns of weights

columns of weight and
columns of weight

2)

To maximize and to achieve the equality in (8), we should
use all columns of weights columns of
weight all columns of weight and
columns of weight

3)

Then we should use all columns of weights

In all cases, the total number of columns inis

(12)
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In fact, because of (8), (12) gives an upper bound on the
number of columns for a given number of rows (where
is defined by (9)). It follows that for a given , the minimum
number of rows should satisfy (1). Thus (1) and (2) together
determine a lower bound on the number of codewords for a
given number of vertices.

In the special case of a regular graph where
for all , (9) and (12) take simpler forms

(13)

(14)

A simpler lower bound in the case of a regular graph is
given by Theorem 2.

Theorem 2: The size of an identifying code for a regular
graph with vertices is lower-bounded by

(15)

Proof: As in the proof of Theorem 1, consider the
binary matrix , where if and only if the th
codeword covers theth vertex, and otherwise. The
number of nonzero elements in the matrix is obviously
On the other hand, since at mostcolumns can have weight

and the remaining columns must be of weight at
least , the number of nonzero elements should be at least

Hence,
Therefore,

The lower bound (15) is, in general, weaker than (13) and
(14). However, both bounds coincide if It can be shown
in Theorem 1 (part 3), that if and only if
The latter condition is satisfied for a broad class of graphs if

does not grow too fast with
We next examine some specific graph topologies.

A. Binary Cubes

A binary -cube computer is a multiprocessor system with
processors interconnected as an-dimensional binary

cube. Each processor constitutes a node of the cube and
is a self-contained computer with its own CPU and local
memory. Each also has direct communication paths to

other neighbor processors through the edges of the cube.
An example of a commercial binary-cube computer is the
NCUBE/ten, which is a ten-dimensional system developed by
NCUBE Corporation [8], [14].

Let be the minimum number of codewords required
for identifying the vertices in an -dimensional binary cube
using balls of radius We first consider the case The

specific topology of the -dimensional cube imposes addi-
tional constraints which makes the lower bounds of Theorems
1 and 2 unattainable. A tighter lower bound is given by the
following theorem, a proof of which is given in the Appendix.

Theorem 3: For an -dimensional binary cube, ,

(16)

where is the volume of the ball of radius
two in the Hamming space

The lower bound (16) is achieved if there exists a perfect
covering of the -dimensional cube by balls of radius two,
i.e., a perfect code1 with distance five. The only such case is
for Then all vertices of weight one and four can be
chosen as codewords, and the total number of codewords is
ten, which is given by (16).

Let be the size of an optimal code2 of length
with covering radius , i.e., every vertex is at Hamming

distance at most from a codeword of [4], [5], [9],
[12], [17], [21]. An upper bound on follows from the
theorem below.

Theorem 4: Let be an optimal binary code of length
and covering radius, i.e., has codewords. Then,
for , a code identifying vertices in the -dimensional
binary cube can be selected as
( is the Hamming distance betweenand ).

Proof: We show that every vertex in the cube is
covered by a unique set of codewords.

Case 1:
Let Every neighbor of belongs to and therefore

covers We need to prove that there exists no vertexthat is
covered by the same set of vertices. Let
The codewords covering are

where and Clearly, is the only
vertex that is a neighbor of all these codewords.

Case 2:
Let and Now, is covered by itself and

every neighbor We show that there exists such
that but Note that because there
are no triangles in , there does not exist a vertex such
that Hence, we have only to prove the
existence of for every Let be a neighbor of
Since , there exist exactly two vertices that are at
distance one from both and One of these vertices (from
above) is ; the other is

Case 3:
Let and Suppose is covered by codewords

in Without loss of generality, let
and the codewords covering be

1A binary (n; k; 2l + 1) code is perfect if�l
i=1

K

l
= 2n�k:

2An optimal covering code is one that has a minimum number of code-
words.
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Clearly, there is no vertex other thanthat is at distance one
from all these codewords. Henceis uniquely identified.

Next, suppose Without loss of generality, let
and the only codeword covering be

There must exist at least one vertex in the
covering code such that Thus

It can now be easily seen that each vertex in the above set
contributes codewords to that cover , which contradicts the
assumption that

Finally, suppose Let the two codewords covering
be and Now,
is the only vertex other thanthat is at distance one from both
these codewords. If then is uniquely identified. If

then there exists that generates
as a codeword of Once again, without loss of generality,
let Then which
contradicts our assumption that Hence and is
uniquely identified.

Corollary 1: The number of codewords in an optimal iden-
tifying code with for a binary -cube is
upper-bounded by

(17)

Exact values for small as well as bounds on are
available in the literature; see, e.g., [3]. In particular

Using this and (16), we get

For example, if , then
Therefore, for we have

The ratio of the upper bound to the lower bound

with
Another solution to the identifying code construction prob-

lem for an -dimensional binary cube is obtained by se-
lecting codewords separately for its two constituent

-dimensional cubes. This “divide and conquer” approach,
which implies that , often gives better
results for small than the construction method using
(see Table I). Note that for and we achieved the
lower bound on usingad hocconstruction methods.

The construction of Theorem 4 can be extended in a
straightforward manner for We now construct an
optimal with covering radius ; the number of codewords
in is The identifying code is generated by
selecting vertices that are at distance exactlyfrom the ver-
tices in

TABLE I
NUMBER OF CODEWORDS REQUIRED FOR IDENTIFYING

VERTICES IN BINARY CUBES

Theorem 5: For any given , a code for identifying
vertices in the -dimensional binary cube can be
obtained by selecting as codewords all vertices at distance
exactly from the codewords of an optimal code which
has covering radius , i.e.,

Proof: We first make the following observation: if ver-
tices and are such that there is at least one ball centered
at a vertex in to which belongs but does not
belong, then and can be distinguished using codewords
from Therefore, we only need to prove that any two vertices
can be distinguished if they belong to the same ball of radius

centered at a vertex
Without loss of generality, let

All vertices of weight now belong to and serve as
codewords for identifying a vertex. Given two verticesand

that are in the same ball centered at, we show that we
can always find a codeword such that covers one of
them but not the other. We define to be a vector
with components . In addition, if ,
and is the component-wise negation of Let
and , where is the weight of Assume,
without loss of generality, that It follows therefore
that because otherwise both and will be the same
vertex

Consider now three cases:
1) We choose

such that Then and

2) Note that if then ,
otherwise, and would be identical. Assume that at least
one of two conditions is fulfilled: or is even. Choose

such that

and

Then and
On the other hand,

Thus in both cases, codewordcovers but not
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TABLE II
BOUNDS ON THE NUMBER OF CODEWORDS IN AN OPTIMAL IDENTIFYING CODE WITH t = 2

FOR AN n-DIMENSIONAL BINARY CUBE

3) and is odd. Then and at least
one of two conditions is fulfilled: is even or
Choose such that and

Then

and

Thus in this case, codewordcovers but not

Corollary 2: For , the number of codewords
required for identifying vertices in a binary cube is upper-
bounded by

We next estimate the ratio between the upper bound and
the lower bound on the number of codewords when

is an integer. We know from (15) and Corollary 2 that

Since [3], it follows
that

Using the following well-known upper bound on (see
e.g. [3]):

we obtain

If then using

for and constant, we get3

The ratio of the upper bound to the lower bound
is therefore given by

For , we have as before, while for ,

For the special case of , we have the
following corollary, which follows from the fact that

Corollary 3: The number of codewords required for a bi-
nary cube with dimensions using balls of radius
is upper-bounded by

As special cases, for , we have and
for we have

Table II shows the upper and lower bounds on For
the lower bounds, we used (15) for since
for these cases, and (15) coincides with the bound given by
Theorem 1 (part 3). For , we applied Theorem 1 (part 3)
directly and obtained tighter bounds than given by (15). For

, the covering radius approach cannot be applied with
The last column of the table is based on the following

result, which we prove later (see Corollary 7):

(18)

While it may be intuitively expected that the number of
codewords required for identification decreases asincreases,
this is not necessarily the case. For example, but

3a(n) � b(n)$ limn!1 a(n)=b(n) = 1:
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B. Nonbinary Cubes

The next topology that we examine is a nonbinary cube,
which finds several applications in parallel processing. A-
ary -dimensional cube has processors and each processor
is connected to its neighbors. (Every processor has two
neighbors in each dimension.) Similar practical architectures
include two-dimensional rectangular meshes such as Intel’s
Paragon architecture [10] and three-dimensional meshes such
as the MIT-Intel J-machine [6].

We next consider codeword selection for the identification
of vertices in -dimensional -ary cubes. Every vertex in this
case can be assigned a coordinate vector of
length , where Two vertices

and

are neighbors if

Let be the parity vector corre-
sponding to such that ( ) if is
even (odd). For a -ary code , let be
the binary parity code with codewords .

We use to denote the number of codewords required
to identify vertices in a -ary -cube using balls of radius

. (For the binary case , we had omitted
the superscript.) First we examine the construction of the
identifying code for

Theorem 6: For an -dimensional -ary cube (
even and ), vertex identification is achieved with
a smallest possible number of codewords, i.e.,

, if and only if the identifying code consists of
all codewords such that their parity vectors form the perfect
binary code.

Proof: We first prove that every vertex is covered by a
unique combination of codewords. Every codeword is covered
only by itself because the Hamming distance between any two
parity vectors of codewords is at least three. Next consider
a noncodeword vertex with coordinates and
corresponding parity vector . There are two
vertices with coordinates

and

such that they have the same parity vector
and are neighbors of in the -dimensional nonbinary
cube, belongs to the code, and the Hamming
distance between and is one.
We note that for is uniquely determined by and

To prove necessity, we note that if two vertices in the-ary
-dimensional cube are neighbors, their parity vectors are at

distance . Thus for an identifying code, the covering radius
of the set of parity vectors must be equal to, and the smallest
set with this property is a perfect code.

For the important case of the three-dimensional-ary cube,
we have the following useful corollary, obtained from the
above theorem with

Corollary 4: For a three-dimensional-ary cube ( even
and ), optimal codeword selection is
achieved if and only if the vertices with parity vectors
and are chosen as codewords.

Theorem 6 and Corollary 4 show that the density of code-
words is only for three-dimensional cubes, and tends to
zero as increases. The next theorem is a generalization of
Theorem 6 for arbitrary

Theorem 7: Let be an optimal binary code of length
and covering radius one. Thenis an optimal -ary ( even,

) identifying code for a -ary -dimensional cube if and
only if consists of all vectors such that their parity vector
code

The proof of the theorem is similar to the proof of Theorem
6; the only difference being that the perfect code is
now replaced by an optimal binary code with covering radius
one.

Corollary 5: For an -dimensional -ary ( even,
) cube

(19)

Proof: The lower bound follows from (15). The upper
bound follows from Theorem 7 since

Note that the above construction is not the best for all values
of For example, if we apply this construction to the case

, then and we obtain a set of
codewords in a “checkerboard” pattern, implying a codeword
density of . However, the following theorem gives a better
construction for

Thoerem 8: Let be a minimal number of code-
words in a -ary -dimensional code with covering radius
in the Lee metric [17]. Then for any

(20)

Proof: To prove (20), it is sufficient to show that all
vertices in a Lee ball of radius with center can be
identified by balls of radius centered at all vertices that
belong to the ball of radius centered at Without loss
of generality, we can assume that Then

and

Let We have to consider the following four cases:

1) Then belongs to all balls of radius 1
with centers in
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Fig. 1. Identifying code forn = 2; p = 13 constructed using Theorem 8.
The edges wrap around.

2) Then belongs to two
balls of radius with centers at and ,
respectively.

3)

Then belongs to two balls with centers

and

4)

Then belongs to one ball with center

This completes the proof.

Corollary 6: Let and Then

(21)

Proof: The proof follows from the fact that
and

Fig. 1 shows that construction given by Theorem 8 for
and

However, the above construction is not optimal for
Fig. 2 shows the best known construction for and

We next turn to the code construction problem when balls
of radius greater than one are used. The following theorem
provides a powerful “divide-and-conquer” technique for de-
termining for (Note that is not
defined.)

Theorem 9: The number of codewords required to identify
vertices in a -ary -dimensional cube is given by

where
and

Fig. 2. Identifying code forn = 2; p = 8s with M
(p)
2 (1) = 3

8
p2: The

construction is repeated with period8 and wrapped around.

Proof: Let and be vectors
of length , where and are of length and

, respectively. Let be a vector of length
such that covers but not with a ball

of radius centered at it. Then and
, where is the distance between

vertices and in the -ary nonbinary cube. This implies that

Hence covers with a ball of radius Now,
and which implies that Thus

does not cover with a ball of radius Therefore, the
identifying code for an -dimensional -ary cube can
be constructed using the identifying codes for the smaller
and dimensions in the following way:

and

Corollary 7: As a special case of Theorem 9, we have

where
Proof: From Theorem 9, we have

(When , every vertex in the -ary -dimensional cube
must be selected as a codeword.)

Corollary 8: For any and , we have

Corollary 9 The following upper bounds exist on the num-
ber of codewords in optimal identifying codes for binary and
nonbinary cubes.

1)

2) for any

3) for any and even

4)

5)
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6)

7)

Proof: To prove part 1), we note from Theorem 9 that

Hence the density of codewords in a-ary cube with
dimensions is at most , and decreases with an increase
in Part 2) follows directly from Corollary 7 and part 1). To
prove 3), we use the result

For even and , we have
The proofs of 4) and 5) are similar, but using optimal code
constructions with for binary cubes of dimension, ,
, and (see Table I).

We now determine the ratio between the upper bound
and the lower bound on as It follows from
(19) that if and . We next examine the
case By applying (15) and Corollary 8, we get (for

is even)

and

If , then

Therefore,

which implies that for large

The ratio of the upper bound to the lower bound
is equal to .

We next extend this analysis to First we use the
approximation

for -ary -dimensional cubes if and are constant, and
Thus for and constant and

(22)

Therefore, For example, for , we have
as above, while for

To conclude this section, we note that its main results
(Theorems 6–9) can be easily generalized to the case of
mixed codes with codewords where

(For Theorems 6 and 7, is even and
for all )

C. Other Topologies

The next topology that we consider is a balanced-ary
tree. A number of hierarchical computing systems such as
dictionaries and search machines can be modeled as a tree [2],
[24]. Many parallel algorithms can be mapped on to-ary tree,
and the architecture of a general-purpose multiprocessor can
often be modeled by a tree structure [19]. Another application
of a tree structure is the data network of the Thinking Machine
CM-5 [11], [16].

We can uniquely identify vertices in a-ary -level tree
with by selecting as codewords vertices at levels

where the root is at level one and the leaf
vertices are at level This yields the following bound on the
number of codewords :

(23)

Theorem 10:For a -ary tree with levels , we have
the following bounds on the minimum number of codewords
in the identifying code:

if is odd

if is even

Proof: The upper bounds follow from (23). The lower
bound on is obtained by viewing the-ary -level tree
as containing -level subtrees, each containing
vertices, of which there are leaf vertices. We next show that
at least vertices from each of these subtrees must be
selected as codewords. First we note that at least leaf
vertices must be codewords (to cover the noncodeword leaf
vertices), and in order to distinguish between the level-two
vertices, the root of the subtree must be selected. A similar
argument can be used for cases wheresibling vertices are
selected as codewords. This yields a minimum of
vertices in each subtree, and hence

Corollary 10: For -ary trees with levels,
, while for a -ary tree with levels,

The code construction of Theorem 10 is asymptotically
optimal if since for large , which
coincides with the lower bound. For the binary tree ,
we have

for large , hence the codeword selection is very close to
optimal. Table III lists the number of codewords for binary
and ternary trees.

We next prove that the vertices in a tree are not identifiable
if

Theorem 11: It is not possible to uniquely identify the
vertices of a -ary -level tree for
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TABLE III
NUMBER OF CODEWORDSm(1) FOR (a) BALANCED BINARY

TREE (P = 2); (b) BALANCED TERNARY TREE (p = 3)

(a)

(b)

(a) (b)

Fig. 3. Codewords (shaded) witht = 1 for a (a) hexagonal mesh and (b)
triangular mesh (the ends wrap around).

Proof: Consider the subtree consisting of the sibling leaf
vertices and their parent For

and cannot be distinguished
by any selection of codewords. This is because the vertices in

are at distance two from each other and any vertex
is at the same distance from all the vertices in Hence the
vertices in are not distinguishable if

Finally, we address the problem of code construction for
hexagonal and triangular meshes, the former topology having
received attention recently [23]. Every hexagonal (triangular)
mesh has three (six) neighbors. Fig. 3 shows these topologies
with the codewords (shaded) for vertex identification with

For the hexagonal mesh, the number of codewords
, where is the total number of vertices in the graph.

Every codeword is covered only by itself while every non-
codeword is covered by a unique subset of three codewords.
The lower bound on for this topology obtained from
(15) is

The code construction for the triangular mesh is perfect
since the number of codewords , which corresponds
to the lower bound of (15). In this case, every codeword is

covered only by itself while every noncodeword is covered by
exactly two codewords. The above discussion is summarized
by the following theorem.

Theorem 12:For a hexagonal mesh with vertices
, the number of codewords is given by

while for a triangular mesh with vertices,

III. I DENTIFYING SETS OF VERTICES

We have assumed thus far that only a single vertex in the
graph has to be uniquely identified. In this section, we show
that codeword selection for single vertices provides a near-
complete identification of sets of vertices of higher cardinality.
Let be the fraction of sets of vertices of cardinality
exactly that are uniquely identifiable.

Theorem 13:The fraction of sets of vertices of car-
dinality exactly that are uniquely identifiable with by
a code identifying single vertices (see Section II) is lower-
bounded by

where is the number of vertices at distanceor less
from any given vertex in the graph, and is the number of
nodes in the graph

Proof: A set of vertices is uniquely identifiable if the
distance between any two vertices in this set is at least five.
Note that this condition is sufficient but not necessary. The
fraction of identifiable sets of vertices is therefore lower-
bounded by

For example, for a -ary two-dimensional cube
, and for an -dimensional binary

cube. It follows from the theorem that over 96% of sets of two
vertices in a -dimensional binary cube are identifiable.

Fig. 4 shows the lower bound on the fraction of uniquely
identifiable sets of vertices of higher cardinality in binary
cubes.

Corollary 11: As the number of vertices in a graph with
constant degree tends to infinity, the fraction of sets of
vertices of cardinality exactly that are uniquely identifiable
approaches one if
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(a)

(b)

Fig. 4. Lower bound on the fraction of sets of vertices that are uniquely
identifiable in binary cubes.

Proof: Let

It can be easily seen that for

and

Now

and

if (since is constant).

Fig. 5. An optimal graph for uniquely identifying a single vertex.

IV. OPTIMAL GRAPHS

Finally, we develop a method for the construction of optimal
graphs that require a minimal number of codewords for
identifying sets of vertices. We are interested in generating
a graph with vertices in which the number of codewords
is as close to as possible for the identification
of single vertices and to for identification
of sets of up to vertices.

We first consider identification of single vertices .
Consider a graph with vertices labeled

with vectors of length We select all vectors
of weight one as codewords. Consider any noncodeword

, where is connected to codeword

if and only if (An example of this topology for
and is given in Fig. 5.) This construction ensures that
every vertex is covered by a unique set of codewords, hence
identification of single vertices is achieved using a minimal
code.

We next extend this construction to a general method for
generating optimal graphs (and codes) for identifying sets of
vertices.

Consider a matrix with rows corresponding to codewords
and columns corresponding to vertices in the graph. An entry

in this matrix is one if codeword covers vertex An
optimal graph is constructed by generatingwith a minimum
number of rows. For identifying single vertices,can be any
matrix with different nonzero columns. If the logicalOR of
any columns of yields a unique nonzero vector,
then sets of vertices of cardinality up toare identifiable.

There are sets of cardinality at most Hence
a lower bound on the minimal number of rows of
is given by

It is difficult to find the exact value of However,
near-optimal construction of the matrix (and therefore the
graph) for sets of vertices can be obtained using superimposed
codes of length [13] and techniques for conflict resolution
in multiuser channels with users [18]. For these codes, the
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TABLE IV
NUMBER OF CODEWORDS IN AN OPTIMAL CODE FOR IDENTIFYING

SETS OF VERTICES WITH CARDINALITY UP TO TWO

Fig. 6. Matrix A corresponding to the optimal code for a graph with 16
vertices,l = 2, and 12 codewords.

logical OR of up to columns of their check matrices are unique.
Table IV shows the number of codewords in optimal codes
for sets of vertices with cardinality up to two . As
an example, Fig. 6 shows for a graph with 16 vertices and

V. APPLICATIONS

An application of the results of Sections II and III lies in
the diagnosis of faults in multiprocessor systems. The goal
of diagnosis is to identify faulty processors in the system.
Traditional diagnosis techniques model the multiprocessor
system as a digraph, termed the test graph, whose vertices
denote processors and an edge or test link from
processor to indicates that tests A test link between

and is labeled ( ) if determines to be faulty (fault-
free) [1], [15], [22]. A collection of – values on the test links
is referred to as a syndrome and a central host locates a faulty
processor from the syndrome information. The number of bits
in the syndrome equals the number of test links in the test
graph; this can be extremely large in systems with thousands
of processors, and can easily lead to traffic congestion system
when the syndrome is communicated to the host.

We model a multiprocessor system as an (undirected) graph
, where is the set of processors and is the

set of links in the system [26]. We can now determine an
identifying code on the vertices (processors) such that every
processor is covered by a unique set of codewords. We refer
to the codewords as monitors. Every monitor tests itelf and
all its neighboring processors and sends a single bit value

( ) to the host if it detects (does not detect) the presence
of a fault in its ball. The number of bits in the syndrome
is therefore equal to the number of monitors. Monitors must
be selected such that by using balls of radius one
centered at the monitors, we can diagnose processor faults
in the system. An important design objective, therefore, is to
minimize the number of monitors in any given multiprocessor
system. In addition to minimizing the syndrome length which
results in minimizing traffic to the host, this offers another

important advantage. Since the test program has to reside
on the local memory of every monitor processor, this also
minimizes the amount of memory required to store the test
program. The results of Sections II and III provide a useful
coding theory framework that helps us to optimally solve the
monitor selection problem.

VI. CONCLUSIONS

We have addressed the problem of optimally covering the
vertices of an undirected graph such that any vertex in
is uniquely identified by examining the vertices that cover it.
We defined a ball of radius centered on a vertex to be
the set of vertices in that are at distance at mostfrom ,
where covers itself and every other vertex in the ball with
center Given a undirected graph and an integer ,
we developed methods to find a (minimal) setof vertices
such that every vertex in belongs to a unique set of balls of
radius centered at the vertices in This is equivalent to the
construction of a code over the set of vertices in We first
developed topology-independent bounds on the size ofWe
then developed methods for constructingfor several specific
topologies such as meshes, binary and nonbinary cubes, and
trees. We related the code construction problem for cubes
to that of determining minimal codes with a given covering
radius. We showed that the vertices of a tree are not identifiable
for any We then described the identification of sets
of up to vertices using codes that uniquely identify single
vertices. We also determined optimal topologies that minimize
the number of codewords for any given and Finally, we
briefly described an application of the theory developed in this
paper to fault diagnosis of multiprocessor systems.

APPENDIX

We present here a proof of Theorem 3. The theorem is first
restated for completeness.

Theorem 3: For an -dimensional cube, ,

(24)

where is the volume of the ball of radius
two in

Proof: Note that in , two balls of radius one either do
not intersect or intersect in exactly two points. Consider the

binary matrix , as in the proof of Theorem 1, part
3. Taking into account the above remark,should have the
following specific properties.

1) All columns of must be nonzero and distinct.
2) Any two columns of can have at most two pairs of

’s in the same position.
3) Any two rows either do not have’s in the same

positions, or have exactly two of them, and no three
rows have ’s in the same position.

4) Each row has exactly ’s.
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Denote by the
number of columns of of weight that have a in the th
row. Then, obviously, for any

(25)

and

(26)

Our goal (as in Theorem 1, part 3) is to maximizeunder
the constraints 1)–4) and (25), thereby deriving a lower bound
on for a given Obviously,

(27)

where if

Thus to find an upper bound on, we should maximize

(28)

under conditions 1)–4) and

(29)

Consider a submatrix of formed by columns that have
a common with the chosen row (see (27)). Then is the
number of columns of weight in Delete this row from
We call the obtained submatrix a configuration.Obviously,
a configuration has exactly columns with weights

and uniquely determines
Properties 1)–4) imply that all rows of a configuration are

of weight zero or two, all nonzero rows are distinct, and all
columns are distinct. (We call all these properties together
“Property ”.) It follows that in a configuration, two columns
cannot have more than onein the same row.

Let us prove the following lemmas first.

Lemma 1 If in a configuration, two columns and have
weights and , respectively, , and there exists
a row where has a and has , then does not decrease
if we exchange the and the in and

Proof: If the exchange does not violate Property, the
increment of is

where It is easy to check that if
then

Lemma 2: Let be two columns in a configuration which
do not have ’s in a same row. Let and be their
corresponding weights, Then does not
decrease if we replace columns and by columns and

, respectively, where is the component-wise sum of
and , and in addition, has in the row that had all ’s in he
original configuration. The total weight of is The
column has the only in the same (previously all-zero) row.

Proof: If the replacement does not violate Property,
the increment of is

It is readily seen that if , then

A configuration that maximizes under (29) and is called
optimal. Below we prove a few important properties of an
optimal configuration.

1) In an optimal configuration, if two columns and
have weights and , they do not have common
’s.
Let both of the columns have weight larger than three. Then

their common ’s can be removed without violating property
Now assume that at least one of the columns, say, has

weight Let and be the common ’s in and
be the other in , and be another in Then

and cannot be removed (changed to’s) if and only if
at least one of the following conditions exists:

1) there exists a column with a singlein the same row
as ; or,

2) , and there exists a column with a singlein the
same row as

However, in both cases, we can transfer from to
without violating Property We then obtain columns and

with weights and , respectively. Now
since

for any , the sum will increase. Note that by replacing
and with and we eliminate two columns of weights

larger than one that have a common nonzero component.
2) In an optimal configuration , there is a zero

column, i.e., in To prove this property, note that
in since all columns are distinct. Then, if has

no zero columns, three cases are possible.

1) There are two columns and with weights
As shown above, they have no common. Then

increases if we replace and by a zero column and
a column , respectively.

2) There is a single columnof weight If then
Therefore, without violating , we can remove

both ’s in one of the rows, which will increase
3) There are only columns of weight. Then, without

violating , they can be replaced by a zero column and
a column of weight (their sum), which will increase
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Hence, an optimal configuration has one column of weight
zero, a number columns of weight one, and
columns of larger weights not having any
common ’s. Then, by

(30)

By Lemma 2, does not decrease if we replace this configu-
ration with one where all columns except one have weight,
and one column of weight has rows as all other columns.
Since this configuration satisfies, it is optimal.

It follows that, for an optimal configuration, each ofballs
of radius one centered at codewords corresponding to the rows
of matrix intersect with other balls in the same point,
and all these codewords are at distance two from each other.
The total number of vertices covered by these codewords is

Thus we have shown thatcodewords can identify
at most vertices in , which proves the
lower bound (24). A remarkable fact is that this lower bound
is attainable: there exists a set ofcodewords such that each
of them belongs to an optimal configuration. Indeed, consider
a ball of radius two in and take as codewords all vertices
at distance one from the center of the ball. It is easy to see
that each codeword belongs to an optimal configuration, and
they identify uniquely every vertex in this ball. The center of
the ball is covered by all codewords, a vertex at distance
one from the center is covered only by itself, and each vertex
at distance two by a different pair of codewords.
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