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On a New Class of Codes for
ldentifying Vertices in Graphs

Mark G. Karpovsky,Fellow, IEEE Krishnendu Chakrabartyyember, IEEE and Lev B. Levitin,Fellow, IEEE

Abstract—We investigate a new class of codes for the optimal of balls of radiust centered at the vertices (h We viewC as
covering of vertices in an undirected graphG' such that any vertex  an identifying code such that all vertices in it are codewords.
in G' can be uniquely identified by examining the vertices that An application of the theory developed in this paper lies in

cover it. We define aball of radius ¢ centered on a vertexv to fault di is of i t Th f fault
be the set of vertices inG that are at distance at mostt from wv. ault diagnosis ol multiprocessor systems. € purpose ot tau

The vertex v is then said to coveritself and every other vertex diagnosis is to test the system and locate faulty processors. A
in the ball with center v. Our formal problem statement is as multiprocessor system can be modeled as an undirected graph

follows: Given an undirected graph & and an integert > 1, find G = (V, E)), whereV is the set of processors adglis the set
a (minimal) setC of vertices such that every vertex inG: belongs ¢ |inks in the system. Specific software routines are executed

to a unique set of balls of radiust centered at the vertices in tai lected t t di is. Th
C. The set of vertices thus obtained constitutes a code for vertex 9N Certain Selected processors 1o carry out diagnosis. e

identification. We first develop topology-independent bounds on Selection of these processors is done by generating the(tode
the size ofC. We then develop methods for constructingC for  that allows for unique identification of faulty processors. Every
several specific topologies such as binary cubes, nonbinary cubesprocessor corresponding to a codeword vertex tests itself and

and trees. We also describe the identification of sets of vertices u jis peigbhoring processors. This corresponds to the use of
using covering codes that uniquely identify single vertices. We balls of radius one centered at the codewords, te= 1

develop methods for constructing optimal topologies that yield . L ©
identifying codes with a minimum number of codewords. Finally, Hence an optimal code (minimum number of codewords)
we describe an application of the theory developed in this paper minimizes the amount of overhead required to implement fault

to fault diagnosis of multiprocessor systems. diagnosis.
Index Terms—Code construction, coding theory, covering ra-  The organization of the paper is as follows. In Section II,
dius, fault diagnosis, graph theory, multiprocessor systems. we develop topology-independent bounds on the siz€,of

and present methods for constructihfpr practical topologies

such as meshes, binary and nonbinary cubes, and trees. Section
Il addresses the problem of constructing codes that identify
RAPHS find a wide range of applications in severaiot just single vertices as in the previous sections, but sets of
fields of engineering and information sciences. A grapfertices of up to a given size. Finally, in Section IV, we discuss

can be used to represent almost any physical situation aRé construction of optimal graphs that yield identifying codes
the relationship between various entities. Graph models &@h a minimum number of codewords.

therefore often employed in solving a number of practical
problems [7].

In this paper, we investigate the problem of covering the
vertices of a grapl; such that we can uniquely identify any Let M(¢) be the minimum number of codewords required
vertex inG by examining the vertices that cover it. We defingo identify every vertex uniquely when a ball of raditigs
a ball of radiust centered on a vertex to be the set of used. We first obtain some lower bounds &f(t). Let V;(t)
vertices of G that are at distance at mostfrom v. (The be the volume of a ball of radiuscentered at vertex;, i.e.,
distance between vertices andv; is the number of edges inthe number of vertices that are at distance at mdsim v;.

a shortest path betweefn andv,.) The vertexv is then said to
coveritself and every other vertex in its ball. We are interested
in identifying the vertices ofy using a minimum number of 1) M(t) > [logy(N + 1)].

balls of radiust. This is formally stated as follows: Given an  2) Let N/2 > Vi(t) > Va(t) > --- > Vn(t). Then

undirected graplis and an integet > 1, find a (minimal) set M(t) > K, whereK is the smallest integer such that
of vertices such that every vertex 6fbelongs to a unique set

I. INTRODUCTION

Il. CoDE CONSTRUCTION

Theorem 1: For a graph withlV vertices

K
Vi(t
—_— . _ ok D) 5 logy(N 4 1)
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satisfied: Our goal is to find the minimumk for a given N and
—1 {Vi(¢)},4 = 1,---, N, provided that all columns of4 are
N < Z <K> n nonzero and distinct. _ _
= \J Consider the dual problem: for a gived, find the max-
imum numberN of distinct and nonzero columns. Since,
obviously,

1
-1 K K l K zl‘: ™) EA:V()
; 4 ; ") < (1),
ﬂjQ)<ZW@SZJ@) @ =

J k=1

Then M(t) > K.

=1 j=1
it follows that

N K
Proof: The first lower bound follows from the fact that > wld <> Vi), (8)
there areN + 1 cases §V different vertices and the selection n=1 i=1

of no vertex—no vertex is identified) to be distinguishedrg maximize the number of columns under the constraint
Therefore, the information can be encoded in a minimum @d) \ve have to choose the weights of the columsi§ as
[logo(N + 1)] bits. small as possible, starting with columns of weight2, etc.,

We prove the second bound as follows. We denote by, 1o the point where the right-hand side of (8) is exceeded.
X; (1 = 1,2,---,K) the result of the (identification) test| gt ; pe an integer such that

performed by theth codeword. EachX; is a binary random 1 X .

variable: X; = 0, 1. Denote byY the random variable which — . (K : (K

is equal to0 when no vertex is to be identified arjd(j = Z J <j ) < z_:l Vit) < z_:l J <j ) ©)
1,2,---,N) if the jth vertex is to be identified. In the absence _ Z__ =
of anya priori knowledge, we assume that all+1 cases are For the maximum possible number of columas, (8)
equiprobable. Thus the entrog§(Y) = log,(N + 1). Now, should turn into an equality. Taking into account (9), let

i=1

denote by/(X;;Y/X1,---,X;—1) the information inX; about K -1 K
Y given the outcomes oKy, X5, -, X;_1. Then Zvi(t) = Z j < ) +ml+g (10)
K i=1 j=1 J
> I(XiY/Xy, o, Xig) =H(Y) where0 < g <1—1,0<ml+g <1 (%). Obviously,
i=1
= log,(N 4+ 1). 3 1 [ X -1 K
m= |7 Zm@)-Zy(,) (11)
On the other hand, i=1 j=1 J
I(X;Y/Xy,- -, Xs01) =H(X, /Xy, -, Xi21) We need to consider the following three cases.

HE/Y X Xi)e @ ym < (g 4m s (5),

Since H(X;/Y,X1,---,X;—1) = 0 (the value of X; is Then the largest number of columAgand the equality in (8)
uniquely determined by”), we obtain are achieved if we use all possible distinct columns of weights
K H
H(XY /X0, Xiot) = H(X:/ X0, Xi1) 1,2,--+,1-2,(,%,) — g columns of weighi — 1, andm + g

-1
columns of weightl.
< H(X;). (5) X X
2)m < (3 ),9+m> (7).
To maximize N and to achieve the equality in (8), we should
H(X)) = h< Vi(t) ) 6 Use all columns of weights 2, - - -, 1-2, (X, ) —g columns of
‘ N+1) weight — 1, all (%) columns of weight, andm + g — ()
It follows from (4)(6) that the number of codewords is nofolumns of weight/ + 1.
smaller than the smallegt such thatX | A(Vi(¢)/N +1) > ym=(2)g=0
logy(N + 1).
To prove the third bound, we considerfa x N binary

matrix A = ||axs||. &k = 1,2,---, K;n = 1,2,---,N, where  |n all cases, the total number of columns _nis
arn = 1 if the kth codeword covers theth vertex, and

-1
ar, = 0 otherwise. Denote by, the weight (number of  »r _ <K> +m
nonzero components) of thigh row and byw,(f) the weight = /

However, the probabilitPr{X,; = 1} = V;(¢)/(N +1), hence

Then we should use all columns of weight=2, - - -, 1.

j=1
of the nth column. Obviously, -1 K -1
1 )
N K = <‘K>+ = Z ‘/Z(t)_zj <K>
Z (c) _ (r —~ \J I\ & = J
w,, —Z wy, . @) j=1 i=1 j=1
n=1 k=1 (12)



KARPOVSKY et al. NEW CLASS OF CODES FOR IDENTIFYING VERTICES IN GRAPHS 601

In fact, because of (8), (12) gives an upper bound on tlepecific topology of then-dimensional cube imposes addi-
numberXN of columns for a given numbek’ of rows (where tional constraints which makes the lower bounds of Theorems
is defined by (9)). It follows that for a givefv, the minimum 1 and 2 unattainable. A tighter lower bound is given by the
number of rowsK should satisfy (1). Thus (1) and (2) togethefollowing theorem, a proof of which is given in the Appendix.
determine a lower bound on the number of codewords for a

given numberN of vertices. 0O Theorem 3: For ann-dimensional binary cubey > 3,

. on . 2n+1
In the special case of a regular graph wh&t&) = V(¢) M, (1) > 7;/ 5 = n 5
for all 4, (9) and (12) take simpler forms 2)  nk+1)+
whereV (2) = 14+n+ () is the volume of the ball of radius

1—2 -1 : :
Z <K - 1) < V(D) < Z <KJ— 1>' (13) o in the Hamming spacey'.
=0

(16)

J The lower bound (16) is achieved if there exists a perfect
covering of then-dimensional cube by balls of radius two,
i.e., a perfect codewith distance five. The only such case is

=0

=k K =2 (K - 1 for n = 5. Then all vertices of weight one and four can be
N < Z J T Vi{t) - ' J ' chosen as codewords, and the total number of codewords is
=t J=0 ten, which is given by (16).

(14)  Let K(n,q) be the size of an optimal cotl€* of length

. . n, with covering radiusg, i.e., every vertex is at Hamming
iVA;ns?pI?;;g\;g t;ound In the case of a regular graph Ié?lstance at mosy; from a codeword ofC* [4], [5], [9],

9 Y ' [12], [17], [21]. An upper bound o/, (1) follows from the

Theorem 2: The size of an identifying code for a regulatheorem below.

graph with AV vertices is lower-bounded by Theorem 4: Let C* be an optimal binary code of length

2N (15) and covering radiug, i.e.,C* hasK(n,2) codewords. Then,
for £ = 1, a codeC identifying vertices in ther-dimensional
binary cube can be selected @s= {w|3v € C*, d(v,w) =1}
(d(v,w) is the Hamming distance betweerand w).
Proof: We show that every vertex in the cub@& is
covered by a unique set of codewords.
Case 1:

M) > ——.
#) 2 V() +1
Proof: As in the proof of Theorem 1, consider thex N
binary matrix ||ax,||, whereas,, = 1 if and only if the kth
codeword covers theth vertex, andz;,, = 0 otherwise. The
number of nonzero elements in the matrix is obviously (¢).
On the other hand, since at mdstcolumns can have weight Let v € C*. Every neighbor ofs belongs toC and therefore

1 and the remainingV — K columns must be of weight at coversu. We need to prove that there exists no vertéthat is

least2, the number of nonzero elements should be at leggf . oq by the same set of vertices. ket (v1,va, - -, vn)
K +2(N - K) = 2N — K. Hence,KV() 2 2N - K. The codewords covering are T

Therefore,
2N (@171}2 ...71}”)7(U1752...71}”)7...7(1}171}27...7@”)
M) >K > . O N .
Vi)+1 wherev; € {0,1} andv; = 1 — ;. Clearly, v is the only
The lower bound (15) is, in general, weaker than (13) aalgrtex that is a neighbor of all these codewords.

Case 2:

Let v € C andv ¢ C*. Now, v is covered by itself and
every neighbor’ € C. We show that there exists’ € C such
that d(v,v"”) =1 but d(+/,v”) > 1. Note that because there
are no triangles in7, there does not exist a vertax such
thatd(u, v) = d(u,v") = 1. Hence, we have only to prove the
) existence ofs” for everyv. Let z € C* be a neighbor of/.

A. Binary Cubes Sinced(v, z) = 2, there exist exactly two vertices that are at

A binary n-cube computer is a multiprocessor system withistance one from botl andv. One of these vertices (from
N = 2" processors interconnected asradimensional binary above) isv’; the other isv”.
cube. Each processdr; constitutes a node of the cube and Case 3:
is a self-contained computer with its own CPU and local Letv ¢ C andv ¢ C*. Suppose’ is covered by codewords
memory. EachP; also has direct communication paths tén C (I > 2). Without loss of generality, let = (0,0, ---,0),

n other neighbor processors through the edges of the cubhad the codewords covering be

An example of a commercial binary-cube computer is the
NCUBE!/ten, which is a ten-dimensional system developed by(17 0,0+50),(0,1,0,-++,0), -, (w’ 0, 0).
NCUBE Corporation [8], [14]. l

Let M,(t) be the minimum number of codewords required 1 pinary (n, &, 21 + 1) code is perfect if!_, () =ank.
for identifying the vertices in am-dimensional binary cube 2An optimal covering code is one that has a minimum number of code-
using balls of radiug. We first consider the case= 1. The words.

(14). However, both bounds coincidel ik 2. It can be shown
in Theorem 1 (part 3), thdt< 2 if and only if V(t) < v/2N.
The latter condition is satisfied for a broad class of graphs
t does not grow too fast withV.

We next examine some specific graph topologies.
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Clearly, there is no vertex other tharthat is at distance one TABLE |
from all these codewords. Heneeis uniquely identified. NumBER OF CODEWORDS REQUIRED FOR IDENTIFYING
Next, supposel = 1. Without loss of generality, let VERTICES IN BINARY CuBES

v = (0,0,---,0), and the only codeword’ coveringv be Lower bound | Mi(n) (using | M (n) (divide
(1,0,---,0). There must exist at least one vertexin the . bounifn M K(Tg’2)) and conquer)
covering codeC* such thatd(w,v’) = 1. Thus 4 6 8 _
wE{(1,1,0,---,0),(1,0,1,0,---,0),---,(1,0,---,0,1)}. (55 ig ;2 20

7 29 49 40
It can now be easily seen that each vertex in the above set 10 177 300 320
contributes codewords 0 that covery, which contradicts the 16 7282 14336 20480

assumption that = 1. * Lower bound attained by construction.

Finally, supposd = 2. Let the two codewords covering
be(1,0,---,0) and(0,1,0,---,0). Now, w = (1,1,0,---,0)
is the only vertex other thamthat is at distance one from both

these *codewords. i € Ci ther:w is uniquely identified. If hi0ineq by selecting as codewords all vertices at distance
w ¢ C* then there exists)™ € C* that generategl,0,---,0)  ayactly ¢ from the codewords of an optimal cods which
as a codeword of. Once again, without loss of gene.rahty,haS covering radiugt, i.e.,C = {z|3u € C*, d(z,u) = t}.
let w = (1,0,1,0, - "0); Then(0,0,1,0,---,0) € C Wh'(?h Proof: We first make the following observation: if ver-
co_ntradlc'.[s ou.r.assumptlon thia&= 2. Hencew € C* andv is ticesv; andwv, are such that there is at least one ball centered
uniquely identified. at a vertex inC* to whichw; (v,) belongs buw, (v;) does not
Corollary 1: The number of codewords in an optimal idenbelong, thers; andw, can be distinguished using codewords
tifying code with¢t = 1 for a binary n-cube (n > 3) is from C. Therefore, we only need to prove that any two vertices
upper-bounded by can be distinguished if they belong to the same ball of radius
2¢ centered at a vertex € C*.
Without loss of generality, let

Theorem 5: For any givert < n/2, a codeC for identifying
vertices in then-dimensional binary cubén > 2) can be

M,(1) < nK(n,2). a7)

Exact values for smalh as well as bounds ok’ (n,2) are w=(0,0,---,0).
available in the literature; see, e.g., [3]. In particular

n

K(n,2) < K(|n/2],1)K([n/2],1). All vertices of weightt now belong toC and serve as
codewords for identifying a vertex. Given two verticesand
v9 that are in the same ball centeredwatwe show that we
n-2" can always find a codeword € C such thatr covers one of
— < Mn(1) <nK(|n/2],)K([n/2],1). .
V) — (1) < nK(ln/2], DE([n/2], 1) them but not the other. We define= = - y to be a vector
For example, ifm = 2° — 1, then K(m,1) = 2™/m + 1. W|th_<:(_)mponent35i - xiyi'.m add|t|(_)n,y szitz-y=y,
s andy is the component-wise negation 9f Let w(v;) = [
Therefore, forn = 2% — 2 we have . ;
and w(vy) = Iz, wherew(v) is the weight ofv. Assume,

Using this and (16), we get

n - 2mtt < M(1) < n - 2nt? without loss of generality, that; < I,. It follows therefore
nin+1)+2= 7" T (n42)2 thatls > 1 because otherwise both andwv, will be the same
The ratior,, of the upper bound to the lower bound vertex (Q’O’ 7005 0).
Consider now three cases:
. 2(n? +n +2) Lo 1) w(vy - v3) > t. We chooser € C (w(z) = t)

(n+2)2 such thatz < vy - U2. Thend(z,v1) = I3 — ¢t < ¢, and

. d(z,v2) = t+ 1 > t.
with n — oo. _ .

Another solution to the identifying code construction prob- 2) w(vy - T2) = I3 < t. Note that ifl3 = 0 thenl, > I,
lem for an n-dimensional binary cube is obtained by Se(_)therW|se,v1 an(jz_;Q W(.)md b_e identical. Ass_ume that at least
lecting codewords separately for its two constitugnt — one of two conditions is fulfilled; > 0 or [, is even. Choose
1)-dimensional cubes. This “divide and conquer” approacﬁ, € C' such that
which implies thatM,, (1) < 2M,_1(1), often gives better vy Ve <@, w(z vy -v) = max{0, [I1 /2] — I3}
results for smalh than the construction method usifg(n, 2)

(see Table I). Note that fag = 3 andn = 4, we achieved the @nd
lower bound onlM,, (1) usingad hocconstruction methods. w(z T -7y - Tg) = min{n — lo — Is, t — [11/2]} = l4.

The construction of Theorem 4 can be extended in a
straightforward manner fot > 1. We now construct an Thenw(xz-vi) = [11/2] andd(z,v1) =t +11 —2[11/2] < t.
optimal C* with covering radiugt; the number of codewords On the other hand,
in C* is K(n,2t). The identifying codeC is generated by Az, v2) = t+ 1o — 2(t — I3 — 1u) > t.
selecting vertices that are at distance exattfyom the ver- ’
tices in C*. Thus in both cases, codewogdcoversy; but notwvs.
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TABLE I
Bounbps oN THE NUMBER OF CODEWORDS IN AN OPTIMAL IDENTIFYING CODE WITH ¢ = 2
FOR AN n-DIMENSIONAL BINARY CuUBE

Lower bound | Upper bound Upper bound on Upper bound on
n | V(2) on M,(2) on K(n,4) | M.(2) using K(n,4) | on M,(2) using (18)
4 11 5T 1 — 9
5| 16 6! 2 — 12
6 | 22 8t 2 — 16
8 37 17t 2 56 36
9| 46 261 2 72 80
12| 79 104} 12 792 400
16 | 137 950% 64 7680 6400
20 | 211 98931 512 97220 90000

"Lower bound from Theorem 1 (part 3), Lower bound from (15)

3) w(vy -T2) = 0 andl; is odd. Therw; < we and at least  If n/2t + 1 = 2°, then using
one of two conditions is fulfilledi; is even orl, —[{ > 2. .

Chooser € C such thatw(z - v2) = [l2/2] and V(t) = Z <ﬂ> ~ntJH!
2

w(z - v1) = max{0, [15/2] — o + 11 }. =0
for n — oo and constant, we get
Then

d(@,v2) =t +1>—2[l2/2] < ¢ 2L Tt < M, (1) < (20)2t 2"t () L

and The ratio r., of the upper bound to the lower bound
(n — o0) is therefore given by

d(a:,vl) =t+1l - 2max{0, |—12/2-| -+ ll} > t.
oo = 22712 (41) 72,

Thus in this case, codeword coversv, but notwv;. O

For ¢t = 1, we haver.,, = 2 as before, while for = 2,
Corollary 2: For ¢ < n/2, the number of codewords !

required for identifying vertices in a binary cube is upper-c’OFo:r the' special case of = (45 + 1)t,s > 1, we have the
bounded by following corollary, which follows from the fact that

M, (t) < K(n,2t) <7Z) K(r(2s+1),rs) < (K(2s+1,5))" = 2.

We next estimate the ratig, between the upper bound and Corollary 3: The number of codewords required for a bi-
the lower bound on the number of codewordt,(t) when Nary cube with(4s + 1)t dimensions using balls of radiug
n/2t is an integer. We know from (15) and Corollary 2 thatiS Upper-bounded by

gn-+l n Mopoi(st) < (35T DE gt
mgzwn(t)g(t)f((n,%). (as+1)¢( )_< st )

As special cases, for= 1, we haveMs,(t) < (7)2¢, and

SinceK (ny+ns, t1+t2) < K(ny, t1)K(no, t2) [3], it follows
(i, titte) < Kny, 1)K (ns, 2) [3] for s = 2, we haveMy,(2t) < (gj)?

that Table Il shows the upper and lower boundsh (2). For
on+l < M) < <n> (K(n/2t, 1)) the lower bounds, we used (15) for> 9 sinceV(2) < V2N
o\ A ’ ' for these cases, and (15) coincides with the bound given by
1+ Z <L ) Theorem 1 (part 3). For < 9, we applied Theorem 1 (part 3)
1=0

directly and obtained tighter bounds than given by (15). For

Using the following well-known upper bound dii(q, 1) (see ™ < 4. the covering radius approach cannot be applied with
e.g. [3)): t = 2. The last column of the table is based on the following

result, which we prove later (see Corollary 7):

249
Kla.1) < gy M (2) < My o) (1) - My (1). (18)
we obtain While it may be intuitively expected that the number of
ont1 n on codewords required for identification decreases imgreases,
—— <M, < <t> 2t log, (/24 D)] this is not necessarily the case. For examplg(2) = 7 but
’ Ms(1) = 4.

t
50)
i=0 3a(‘n) ~b(n) < lim, o a(n)/b(n)=1.
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B. Nonbinary Cubes For the important case of the three-dimensigialry cube,
cub®¥e have the following useful corollary, obtained from the

The next topology that we examine is a nonbinary ;
_a above theorem wit, = 3.

which finds several applications in parallel processingp
ary n-dimensional cube hgg® processors and each processor Corollary 4: For a three-dimensiongl-ary cube f even
is connected to it2n neighbors. (Every processor has tWynqy, > 4), optimal codeword selectioﬁ\/[ép)(l) =p?/4) is

neighbors in each dimension.) Similar practical architecturggnieved if and only if the vertices with parity vectdfs 0, 0)
include two-dimensional rectangular meshes such as Inte‘gﬁd(Ll’l) are chosen as codewords.

Paragon architecture [10] and three-dimensional meshes such _

as the MIT-Intel J-machine [6]. Theorem 6 and Corollary 4 show that the density of code-
We next consider codeword selection for the identificatiofords is only0.25 for three-dimensional cubes, and tends to

of vertices inn-dimensionalp-ary cubes. Every vertex in this Z€r0 asn increases. The next theorem is a generalization of

case can be assigned a coordinate ve@trzs, - -, z,,) of 1heorem 6 for arbitrary.

lengthn, where0 < z; < p— 1. Two vertices Theorem 7: Let C* be an optimal binary code of length

z = (21,32, %) and co_verin_g _radius one. Thehis an_optim_alp-ary (2 even,
p > 4) identifying code for gp-ary n-dimensional cube if and
and . . . )
, . , only if C consists of all vectors such that their parity vector
o' ={al, 25, 2} code P(C) = C*.
are neighbors if The proof of the theorem is similar to the proof of Theorem
w—a' =(0,0,--,%£1,0,---,0)(mod p). 6; the only difference being that the perféat n—s, 3) code is

now replaced by an optimal binary code with covering radius
Let P(z) = (p1,p2,---,pn) be the parity vector corre- gne.
sponding to(xy,x2,---,z,) such thatp, = 0 (1) if z; is _ , ) .
even (odd). For a-ary codeC, let P(C) = {P(z)|z € C} be Corollary 5: For ann-dimensionaln = 2°), p-ary (p even,

the binary parity code with codewords, ps, -+, pn ). p > 4) cube
We use]\/[,(f)(t) to denote the number of codewords required " < M(f’)(l) < " (19)
to identify vertices in ap-ary n-cube using balls of radius n4+1-""" ~—n

t (t < n). (For the binary casep = 2, we had omitted

the superscript) First we examine the construction of the F():ir?‘orl: Thef Iowe;hbound fgllowzﬁfr(;rsn 1(15_)- ;D?SUEDGF
identifying codeC for ¢ = 1. ound follows from Theorem 7 sinc& (2°,1) = -

2" /n. O
Theorem 6: For ann-dimensionap-ary cube ¢ = 2°—1,p
even andp > 4), vertex identification is achieved with

a smallest possible number of codewords, iM,,(J’)(l) = 5 = 2 thenC* — {00,11} and we obtain a set gf?/2

p"/(n+1), if and only if the identifying code consists of CPdewords in a “checkerboard” pattern, implying a codeword

a!l codewords such that their parity vectors form the perfeaensity of0.5. However, the following theorem gives a better
binary (n,n — s,3) code. construction forn = 2
Proof: We first prove that every vertex is covered by a -

unique combination of codewords. Every codeword is coveredThoerem 8: Let K®)(n,2) be a minimal number of code-
only by itself because the Hamming distance between any twords in ap-ary n-dimensional code with covering radids
parity vectors of codewords is at least three. Next considierthe Lee metric [17]. Then for any > 4

a noncodeword vertex with coordinatés;, zs,---,z,) and @)

corresponding parity vectofp;,pa,---,p,). There are two M (n) < 20+ DK@ (n,2). (20)
vertices with coordinates

Note that the above construction is not the best for all values
of n. For example, if we apply this construction to the case

Proof: To prove (20), it is sufficient to show that all

¥ = (z),xh, - 1) vertices in a Lee ballB, of radius2 with centerv can be
and identified by balls of radiusl centered at all vertices that
wo_gon 12 m belong to the ballB; of radius1 centered aw. Without loss
= (af, 2", 2" )
of generality, we can assume that= (0,0, ---,0). Then

such that they have the same parity vegiar, g2, -+, ¢n ), '
and 2 are neighbors of: in the n-dimensional nonbinary B = {(0,0,--+,0)}|_J{(0,--+,0,%1,0,--,0) (mod p)}
cube,(q1, g2, - -, g ) belongs to the codé, and the Hamming and
distance betweefp:,p2, -, p,) and (g1, g2, -, qg,) iS ONe. _
We note that fop tf 4, zis uniqzjely dsatermined b:y’)anda:”. B2 =B, U{(O’ /0,£2,0,-+,0) (mod p)}

To prove necessity, we note that if two vertices in thary U{(O, -, +1,0,---,0,£1,0,---,0) (mod p)}.
n-dimensional cube are neighbors, their parity vectors are at
distancel. Thus for an identifying code, the covering radius-€t « € Bz. We have to consider the following four cases:
of the set of parity vectors must be equalliand the smallest 1) = = (0,---,0). Thenz belongs to all balls of radius 1
set with this property is a perfe¢t, n — s,3) code. O with centers inB;.
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O—0O—0—0
&5 56

& &8

O
9
OO0
99

Codeword

Fig. 1. Identifying code fom = 2,p = 13 constructed using Theorem 8.
The edges wrap around.

2) = (0,---,0,£1,0,---,0). Then = belongs to two
balls of radius1 with centers atz and (0,---,0),
respectively.

3) £ =(0,---,0, £1,0,---, £1,0,---,0).

~ -
% J
Thenz belongs to two balls with centers
(07"'707 +1 707"'70) and (07"'707 +1 707"'70)'
~ ~~
[ J
4) T = (07"'707 i270770)
-
Thenz belongszto one ball with center
(07"'707 +1 707"'70)'
~
This completes the proof. O
Corollary 6: Letn = 2 andp = 13s. Then
5
M (1) < 720 (21)

Proof: The proof follows from the fact tha{B;|
5,|Bs| = 13, and K () (3,2) = p?/13.

605

Codeword

Fig. 2. Identifying code fom = 2,p = 8s with Mép)(l) = 2p2 The
construction is repeated with periédand wrapped around.

Proof: Let x = (z1,22) andy = (y1,y2) be vectors
of length n, where z1(y1) and z2(y2) are of lengthe and
n — a, respectively. Letv = (v1,v2) be a vector of length
n such thatv; (vs) coversz(xzz) but noty; (y2) with a ball
of radius s(t — s) centered at it. TherD(vy,21) < s and
D(vg,z2) < t — s, where D(z,y) is the distance between
verticesz andy in the p-ary nonbinary cube. This implies that

D(v,z) = D(vy,21) + D(vg,22) < .

Hencew coversz with a ball of radiust. Now, D(v1,41) > s
and D(va,y2) > t — s, which implies thatD(v,y) > ¢. Thus

v does not cover; with a ball of radiust. Therefore, the
identifying codeC(n, t) for an n-dimensionalp-ary cube can
be constructed using the identifying codes for the smaller
andn — « dimensions in the following way:

C(TL,t) = {(a:,y)|a: € C(CL, 3)7y € C(TL - avt - 3)}
O
Corollary 7: As a special case of Theorem 9, we have

MP/(t) < p* MP) ()

and M (t) < |C(n,1)].

wheren —a > t.
Proof: From Theorem 9, we have

MP(t) < MP(0) - M (8) = p* - MP ().

Fig. 1 shows that construction given by Theorem 8 for

n=2andp = 13. (K13(2,2) = 13, M{"*®(1) = 65.)
However, the above construction is not optimal for= 2.
Fig. 2 shows the best known construction fer= 2 and
p = 8s.

We next turn to the code construction problem when balls

(Whent = 0, every vertex in thes-ary a-dimensional cube
must be selected as a codeword.) O

Corollary 8: For anyp > 2 andt < n, we have

M@P(E) < ME), (11/2]) - M) (11/2)).

of radius greater than one are used. The following theorem

provides a powerful “divide-and-conquer” technique for de- Corollary 9 The following upper bounds exist on the num-
termining MP (t) for ¢ > 1. (Note that Mt@) (t) is not ber of codewords in optimal identifying codes for binary and
defined.) nonbinary cubes.

Theorem 9: The number of codewords required to identify 1) Méf)(t) < 04 - p?;p = 5s.
vertices in ap-ary n-dimensional cube is given by 2) MQ(f) () < 0.4" - p?* for any k > 0,p = 5s
L) <. , ,p = ds.

MP () < MP(s) - MP (¢t — s 3) Mg’s)_l)t(t) < (p¥~1/2%)t, for any s > 0, and even
n —_— a n—a p > 4'
(2) st o2t
Where0 <t <n0<s<t0<s<a0<t—s<n—a 9 Mz (t) <075 2%
andl1 < a <n-—1 5) M{P(t) < 0.5 - 23t
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6) MP(t) = (5/16)t - 25, C. Other Topologies

7) Mif)(t) < (0.125)" - 2%, The next topology that we consider is a balangedry
tree. A number of hierarchical computing systems such as
dictionaries and search machines can be modeled as a tree [2],
MP ) < (MP (1) = 0.41p*. [24]. Many parallel algorithms can be mapped omp1ary tree,
. i . and the architecture of a general-purpose multiprocessor can
Hence the density of codewords inaary cube with2t  fen he modeled by a tree structure [19]. Another application

dimensions is at mosd.4*, and decreases with an increasgy , ree structure is the data network of the Thinking Machine
in ¢. Part 2) follows directly from Corollary 7 and part 1). Tocp.5 [11], [16]

prove 3), we use the result

M((gs)—l)t

Proof: To prove part 1), we note from Theorem 9 that

We can uniquely identify vertices in a-ary [-level tree
(1) < (ME) (1) = (p¥ /2" with ¢ = 1 by selecting as codewords vertices at levels
[, —2,1—4,... where the root is at level one and the leaf
For evenp > 4 ands = 2, we haveMé{’) (t) < 0.25¢ . p®. vertices are at level This yields the following bound on the
The proofs of 4) and 5) are similar, but using optimal codeumber of codewords/(1):
constructions witht = 1 for binary cubes of dimensiof, 3,

4, and5 (see Table I). O 141

P
p?-1

M(1) < (1-p 2l030-DI+D) (23

We now determine the ratio,, between the upper bound

and the lower bound ot/ (#) asn — oc. It follows from  Theorem 10: For ap-ary tree with! levels(l > 3), we have

(19) thatreo = 1if ¢ = 1 andn = 2°. We next examine the e following bounds on the minimum number of codewords
caset = 2. By applying (15) and Corollary 8, we get (forjy the identifying code:

n > 2,p >4, pis even)

2™ +1 _
V(2Z)) — < M) < (My(pya)(1)? e 11’ T 1is odd
PR+ SMU) < BT
and ]%, if 1 is even
n n 9 pe—1
V(2)=1+2n+ (2)4+ (l)2:1+2n+2n .
s Proof: The upper bounds follow from (23). The lower
If n/2 = 2%, then bound onM (1) is obtained by viewing the-ary I-level tree
WP (1) < p"/? as containing'~—3 3-level subtrees, each containitg-p+ p>
n/2( )< nj2’ vertices, of which there ang? leaf vertices. We next show that
Therefore at leastp® + 1 vertices from each of these subtrees must be
' . . selected as codewords. First we note that at lggst 1) leaf
p < MP(2) < " vertices must be codewords (to cover the noncodeword leaf
I+2n+n2 = " ~ n? vertices), and in order to distinguish between the level-two
which implies that for largen vertices, the root of the subtree must be selected. A similar
o ® 4pn argument can be used for cases whergbling vertices are
2 S MP(2)s 5 selected as codewords. This yields a minimumpdf+ 1

vertices in each subtree, and herddg1) > p'—3(p?+1). O
The ratior.., of the upper bound to the lower boufw/2=2°, € zp (41

n — 00) is equal to4. Corollary 10: For p-ary trees with! = 3 levels, M(1) =
We next extend this analysis to> 2. First we use the p* + 1, while for ap-ary tree withl = 4 levels, M(1) =
approximation p(p® + 1).
LN ; ot The code construction of Theorem 10 is asymptotically
V() ~ Z <L) 28~ nf2 /¢! optimal if p — oo since M (1) ~ p'~t for large p, which
=0

coincides with the lower bound. For the binary tige= 2),
for p-ary n-dimensional cubes ip and ¢ are constant, and we have
n — oo. Thus forn/¢t = 2° and constant andp

5.273 < M(1) < (16/3) - 2172

Therefore,r. = #2:~1 /¢, For example, fort = 2, we have forllarge [, hence .the codeword selection is very cIo_se to
/ optimal. Table Il lists the number of codewords for binary
7+ = 4 as above, while fot = 3,r,, = 18.
. . . . nd ternary trees.
To conclude this section, we note that its main results . . . -
. : ‘e next prove that the vertices in a tree are not identifiable
(Theorems 6-9) can be easily generalized to the case fo
. ; ift > 1
mixed codes with codewordéry, s, -+, z,) Wherez; €
{0,1,---,p; — 1}. (For Theorems 6 and 7; is even and  Theorem 11:It is not possible to uniquely identify the
p, >4forali=1,---,n) vertices of ap-ary I-level tree fort > 1.
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TABLE Il covered only by itself while every noncodeword is covered by

NUMBER OF CODEWORDS (1) FOR (&) BALANCED BINARY exactly two codewords. The above discussion is summarized
TRee (P = 2); (b) BALANCED TERNARY TREE (p = 3) by the following theorem

Lower bound, Upper bound
1| N ;1) on M(Q1) | M), on M(1) | M(1)/N | M(1)/m(1) Theorem 12:For a hexagonal mesh with vertices(N —
3 7 5 5 0.714 1 T
1o 10 10 0666 1 o0), the number of codewordd/(1) is given by
5| 31 20 21 0.677 1.05
8 | 255 160 170 0.666 1.0625 04N s M(1) £ 0.5N,
10 | 1023 640 682 0.666 1.0656
11 | 2047 1280 1365 0.666 1.0664 _ _ _ _
12 | 4095 2560 2730 0.666 1.0664 while for a triangular mesh withiV vertices,
16 | 65535 40960 43690 0.666 1.0666
@ M(1) ~ 0.25N.
Lower bound, | Upper bound
I N (1), on M(1) | My, on M(1) | M(1)/N | M(1) /i
3 3 10 10 0.769 i Ill. I DENTIFYING SETS OF VERTICES
‘51 14:;)1 gg 3(1) 00-77552 . 01111 We have assumed thus far that only a single vertex in the
8 3280 2430 2460 075 10123 graphd has to be unlquely |dept|f|ed. In Fh|s sectpn, we show
10 | 29524 21870 22143 0.75 1.0125 that codeword selection for single vertices provides a near-
111 88573 65610 66430 0.75 1.0125 complete identification of sets of vertices of higher cardinality.
12 | 265720 196830 199290 0.75 1.0125 . : P
16 | 21523360 15943230 16142520 075 L0125 Let C(I) be the fraction of sets of vertices of cardinality

exactly/ that are uniquely identifiable.

(b)

Theorem 13:The fractionC(l) of sets of vertices of car-
dinality exactly! that are uniquely identifiable with= 1 by
a code identifying single vertices (see Section II) is lower-

bounded by
-1 .
N —iV(4)
>
o= Ny
@ ‘ () where V(4) is the number of vertices at distandeor less

Fig. 3. Codewords (shaded) with= 1 for a (a) hexagonal mesh and (b)from ar?y given vertex in the graph, ard is the number of
triangular mesh (the ends wrap around). nodes in the grapld.
Proof: A set of vertices is uniquely identifiable if the
] o o distance between any two vertices in this set is at least five.
Proof: Consider the subtree consisting of the sibling leq{ote that this condition is sufficient but not necessary. The

vertices V; = {v1,vg,---,vp} and their parentu,i;. FOr gaction of identifiable sets of vertices is therefore lower-
t > 1, v andv; (1 < 4,5 < p) cannot be distinguished pounded by

by any selection of codewords. This is because the vertices in

V; are at distance two from each other and any veuteg V; NN = V@)N =2V(4)-- (N - (I-1)V(4))
is at the same distance from all the vertices/jn Hence the o) z N
vertices inV; are not distinguishable if > 1. O <l ) I

Finally, we address the problem of code construction for Ut \ WV (4)
hexagonal and triangular meshes, the former topology having = TN=i U
received attention recently [23]. Every hexagonal (triangular) =0

mesh has three (six) neighbors. Fig. 3 shows these topologies . )

with the codewords (shaded) for vertex identification witffOf example,V(4) = 40 for a p-ary two-dimensional cube

t = 1. (p>9), andV(4) = X{, (7) for ann-dimensional binary
For the hexagonal mesh, the number of codewdiig) = cube. It follows from the theorem that over 96% of sets of two

N/2, where N is the total number of vertices in the graphyert.ices in al6-dimensional binary cube are iQentifiabIg.

Every codeword is covered only by itself while every non- Fi9- 4 shows the lower bound on the fraction of uniquely

codeword is covered by a unique subset of three Codeworﬂjse_ntlflable sets of vertices of higher cardinality in binary

The lower bound oM/ (1) for this topology obtained from Cubes.

(15) is 2N /5. Corollary 11: As the number of vertices in a graph with
The code construction for the triangular mesh is perfecbnstant degree tends to infinity, the fraction of sets of

since the number of codewordd;, = N/4, which corresponds vertices of cardinality exactly that are uniquely identifiable

to the lower bound of (15). In this case, every codeword @pproaches one f = o(v/N).



608

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 44, NO. 2, MARCH 1998

1 T RN S T T T T T
o +t =16 90—
095 1 n=20 +-T
09 + i
0.85 - i
Lower 0.8 .
bound
on C(1) g75 | -
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Fig. 4. Lower bound on the fraction of sets of vertices that are uniquely

identifiable in binary cubes.

Proof: Let

-1
[[=1] W =-iv@)/N —q).

=0

It can be easily seen that for< v N

N —iV(4) i(V(4) - 1)
by <1—W)
iV -1
N —1
and
<« (V) -1
-5 -
Now
SLivi) -1 [—1)(V(4) -1
; (J(v)—z )| N)(—l(+)1 )(1—1)
and
- (-DVHE) -1 _
LN ST

if 12/N — 0 (sinceV(4) is constant).

010
Codeword

Fig. 5. An optimal graph for uniquely identifying a single vertex.

IV. OPTIMAL GRAPHS

Finally, we develop a method for the construction of optimal
graphs that require a minimal number of codewords for
identifying sets of vertices. We are interested in generating
a graph withV vertices in which the number of codewords
is as close tdlog, (/N + 1)| as possible for the identification
of single vertices and tflog, Y_'_, (%)] for identification
of sets of up tol vertices.

We first consider identification of single verticés= 1).
Consider a graph witllv = 2™ — 1 vertices labeled

(170707'"70)7(071707'"70)7"'7(1717"'71)

with vectors of lengthh = log, (/V +1). We select all vectors
of weight one as codewords. Consider any noncodeubed
(biby---by), whered; € {0,1}. B is connected to codeword
(07"'7071707"'70)

i—1
if and only if b, = 1. (An example of this topology folN = 7
andn = 3 is given in Fig. 5.) This construction ensures that
every vertex is covered by a unique set of codewords, hence
identification of single vertices is achieved using a minimal
code.

We next extend this construction to a general method for
generating optimal graphs (and codes) for identifying sets of
vertices.

Consider a matrix4 with rows corresponding to codewords
and columns corresponding to vertices in the graph. An entry
a;,; in this matrix is one if codeword covers vertexj. An
optimal graph is constructed by generatitagvith a minimum
number of rows. For identifying single verticed,can be any
matrix with different nonzero columns. If the logicaR of
any k(k < 1) columns of A yields a unique nonzero vector,
then sets of vertices of cardinality up tare identifiable.

There areX!_, () sets of cardinality at most Hence
a lower bound on the minimal number of rowsN, ) of A

is given by
l
r(N,D) > lrlog2 Z <]>7>-‘
1=0

It is difficult to find the exact value of(N,l). However,
near-optimal construction of the matriz (and therefore the
graph) for sets of vertices can be obtained using superimposed
codes of lengthV [13] and techniques for conflict resolution

in multiuser channels witliv users [18]. For these codes, the
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TABLE IV important advantage. Since the test program has to reside
NuUMBER OF CODEWORDS IN AN OPTIMAL CODE FOR IDENTIFYING on the local memory of every monitor processor, this also
SETS OF VERTICES WITH CARDINALITY UP TO TwO L .
minimizes the amount of memory required to store the test
N 1612549 ]64) 125 | 343 | 512 | 2401 program. The results of Sections Il and Il provide a useful
riN,2) [ 12]15]21]24] 25 [ 35 | 40 | 49 coding theory framework that helps us to optimally solve the
monitor selection problem.

1000 0100 0001 1000

0100 1011 0000 0000

0010 000O0O OO0O1O0 O110 VI. CONCLUSIONS

0001 0000 1100 0001

1001 1000 0O0O0O0O 0100 We have addressed the problem of optimally covering the
_ o100 6100 1000 06010 vertices of an undirected grapgh such that any vertex i/
A=l 0000 0010 0110 0000 i i i i . ; i

is uniquely identified by examining the vertices that cover it.

0010 0001 00601 1001 : .

1010 0010 1000 0000 We defined a ball of radiug centered on a vertex to be

0100 00O0CO0O 0100 1100 the set of vertices i that are at distance at masfrom v,

0001 0101 0010 0000 wherev covers itself and every other vertex in the ball with

0000 1000 0001 0011

centerv. Given a undirected grapt¥ and an integet > 1,
Fig. 6. Matrix A corresponding to the optimal code for a graph with 14V€ developed methods to find a (minimal) gebf vertices
vertices,l = 2, and 12 codewords. such that every vertex i@ belongs to a unique set of balls of
radiust centered at the vertices & This is equivalent to the

logicalor of up tol columns of their check matrices are uniqueSONStruction of a codé over the set of vertices itv. We first
Table IV shows the number of codewords in optimal codéi€veloped topology-independent bounds on the size e
for sets of vertices with cardinality up to twd = 2). As then de_veloped methods for co'nstructmgtpr sev.eral specific
an example, Fig. 6 shows for a graph with 16 vertices andtopologles such as meshes, binary an_d nonbinary cubes, and
[ = 9. trees. We related the code construction problem for cubes
to that of determining minimal codes with a given covering
radius. We showed that the vertices of a tree are not identifiable
for any ¢ > 1. We then described the identification of sets
An application of the results of Sections Il and Ill lies inof up to ! vertices using codes that uniquely identify single
the diagnosis of faults in multiprocessor systems. The gaartices. We also determined optimal topologies that minimize
of diagnosis is to identify faulty processors in the systenthe number of codewords for any give¥i and!. Finally, we
Traditional diagnosis techniques model the multiprocessgfiefly described an application of the theory developed in this

system as a digraph, termed the test graph, whose vertiggper to fault diagnosis of multiprocessor systems.
denote processors and an edge or test ljpk p;) from

processop; to p; indicates thap; testsp,. A test link between
p; andp; is labeledl (0) if p; determineg; to be faulty (fault- APPENDIX

free) [1], [15], [22]. A collection of)-1 values on the test links We present here a proof of Theorem 3. The theorem is first
is referred to as a syndrome and a central host locates a fault

processor from the syndrome information. The number of blrtg¥tatEd for completeness.

in the syndrome equals the number of test links in the testTheorem 3: For ann-dimensional cubep > 3,
graph; this can be extremely large in systems with thousands
of processors, and can easily lead to traffic congestion system n - 2" n . ontl
when the syndrome is communicated to the host. V()  nn+1)+2
We model a multiprocessor system as an (undirected) graph
G = (V. £), whereV is the set of processors arid is the whereV (2) = 14+ n+ () is the volume of the ball of radius
set of links in the system [26]. We can now determine an . - 2
identifying code on the vertices (processors) such that evey\)’/o n 25. . . .
. ; Proof: Note that inZ%, two balls of radius one either do
processor is covered by a unique set of codewords. We refer

to the codewords as monitors. Every monitor tests itelf ar?é)t inters_ect or intgrsect in'exactly two points. Consider the

) . ) : ) x N binary matrix 4, as in the proof of Theorem 1, part
all its neighboring processors and sends a single bit valge.l_akin int t the ab vk should h th

o ) g into account the above remark,should have the

1 (0) to the host if it detects (does not detect) the presen]coqlowing specific properties
of a fault in its ball. The number of bits in the syndrome ) o
is therefore equal to the number of monitors. Monitors must 1) All columns of A must be nonzero and distinct. -
be selected such that by using balls of radius ¢ne= 1) ~ 2) ANy two columns ofA can have at most two pairs of
centered at the monitors, we can diagnose processor faults I's in the same posmon. o
in the system. An important design objective, therefore, is toS) ANy two rows either do not havé’s in the same
minimize the number of monitors in any given multiprocessor ~ POSItions, or have exactly two of them, and no three
system. In addition to minimizing the syndrome length which _ '0Ws havel’s in the same position.
results in minimizing traffic to the host, this offers another 4) Each row has exactly + 1 1's.

V. APPLICATIONS
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Denote bymy, (k=1,2,---,K;r=1,2,---,n+ 1) the Lemma 2: Let ¢; be two columns in a configuration which
number of columns ofd of weight» that have al in the kth do not havel's in a same row. Lets; and s; be their
row. Then, obviously, for any corresponding weights2 < s; < s;. Then S does not
decrease if we replace columngandc, by columnsc] and

nif M =1+ 1 (25) 5, respectively, where] is the component-wise sum af
o ! andc;, and in addition, hag in the row that had al0’s in he
original configuration. The total weight of is s;+s2+1. The
and columnd, has the onlyl in the same (previously all-zero) row.
K ntl Proof: If the replacement does not violate PropeRy
N = Z m;" (26) the increment ofS is
e AS:<1+ ! >—<i+i>.
Our goal (as in Theorem 1, part 3) is to maximixeunder 2 it LT
the constraints 1)-4) and (25), thereby deriving a lower boupd readily seen that i < 7, < s, thenAS > 0. 0O

on K for a given N. Obviously,
A configuration that maximizeS under (29) and? is called

N Ko <K jlass K"+1 my optimal. Below we prove a few important properties of an
max [V = Iax Z Z S A - nax Z = Z T optimal configuration.
k=1 r=1 r=1 r=1

1) In an optimal configuration, if two columng and c»

(27) have weightss; > 2 and s, > 2, they do not have common
wherem, = my, if Is. _
Let both of the columns have weight larger than three. Then
n4l — n+1 m their commonl’s can be removed without violating property
max P Z o R. Now assume that at least one of the columns, gayhas
= k=1 weight s; = 2. Let ¢;; andcy; be the commori’s in ¢; and
Thus to find an upper bound oW, we should maximize ¢z, c12 be the otherl in ¢;, andcys be anotherl in c;. Then
c11 andey; cannot be removed (changedds) if and only if
o, at least one of the following conditions exists:
5= Z o (28) 1) there exists a column with a singlein the same row
=t as cio; Of,
under conditions 1)-4) and 2) s; = 2, and there exists a column with a sindlén the
gl same row asps.
Z my=n+1. (29) However, in both cases, we can transégs from c¢; to ¢
j—] without violating PropertyR. We then obtain columng| and

) i ¢, with weightss| = 1 and s}, = s, + 1,, respectively. Now
Consider a submatri® of A formed by columns that have

a commonl with the chosen row (see (27)). Themn,. is the since

number of columns of weightin B. Delete this row from 5. 1 + 1 _1 + 1 < 1 + 1
We call the obtained submatri¥ a configuration.Obviously, si+l s+l 3 s+l s+l s+l
a configuration has exactly. + 1 columns with weights _1 1

si =7 —1( =1,2,---,n+ 1) and uniquely determines 2 s+l

S. Prqperties 1)-4) imply that all rows of a con_wfiguration By anys, > 2, the sums will increase. Note that by replacing
of weight zero or two, all nhonzero rows are distinct, and ayl andes with ¢, and¢, we eliminate two columns of weights

columns are distinct. (We gall all these properties togeth%rrger than one that have a common nonzero component.
“Property R".) It follows that in a configuration, two columns 2) In an optimal configuratior(n > 3), there is a zero

cannot have more than orlein the same row. column, i.e.,m; = 1 in B. To prove this property, note that
Let us prove the following lemmas first. my < 11in B since all columns are distinct. Then, df has

Lemma 11f in a configuration, two columng, andc, have NO zero columns, three cases are possible.
weightss; andss, respectivelys; < sy <n, and there exists 1) There are two columns andc, with weights2 < s; <

a row wherer; has al andey has0, thenS does not decrease s5. As shown above, they have no commbnThen S
if we exchange the and the0 in ¢; andc,. increases if we replace andc¢, by a zero column and
Proof: If the exchange does not violate PropeRy the a columnd = ¢; + ¢, respectively.
increment ofs is 2) There is a single columnof weights > 1. If n > 3 then
1 1 1 1 s > 3. Therefore, without violating?, we can remove
AS=| - + - -\ -+ both 1's in one of the rows, which will increass.
ri—1 ro +1 71 79

3) There are only columns of weight. Then, without
wherer; = s1 + 1,72 = s2 + 1. It is easy to check that if violating R, they can be replaced by a zero column and
r1 < rg thenAS > 0. O a column of weigh® (their sum), which will increasé.
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Hence, an optimal configuration has one column of weighp]
zero, a numbet < n — 1 columns of weight one, and — ¢
columns of larger weights, s2,--,s,—¢ not having any

(5]
commonl’s. Then, by R
n—1 [6]
S si=t (30)
(8]

By Lemma 2,5 does not decrease if we replace this configu-
ration with one where all columns except one have weight [9]
and one column of weight — 1 has rows as all other columns.
Since this configuration satisfigs, it is optimal.

It follows that, for an optimal configuration, eachefalls [11]
of radius one centered at codewords corresponding to the rows
of matrix B intersect withn — 1 other balls in the same point, [12]
and all these codewords are at distance two from each other.
The total number of vertices covered by these codewordsjg
14+n+(' ). Thus we have shown thatcodewords can identify
at mostV/(2) = 1+n+ (1) vertices in23, which proves the [14
lower bound (24). A remarkable fact is that this lower boungs;
is attainable: there exists a setsoftodewords such that each
of them belongs to an optimal configuration. Indeed, consid B
a ball of radius two inZ3 and take as codewords all vertices
at distance one from the center of the ball. It is easy to s&€l
that each codeword belongs to an optimal configuration, apg,
they identify uniquely every vertex in this ball. The center of
the ball is covered by alk codewords, a vertex at distanc
one from the center is covered only by itself, and each vertex
at distance two by a different pair of codewords. O [20]
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