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Abstract: A new discrete SEIADR epidemic model is built based on previous continuous models.

The model considers two extra subpopulation, namely, asymptomatic and lying corpses on the

usual SEIR models. It can be of potential interest for diseases where infected corpses are infectious

like, for instance, Ebola. The model includes two types of vaccinations, a constant one and another

proportional to the susceptible subpopulation, as well as a treatment control applied to the infected

subpopulation. We study the positivity of the controlled model and the stability of the equilibrium

points. Simulations are made in order to provide allocation and examples to the different possible

conditions. The equilibrium point with no infection and its stability is related, via the reproduction

number values, to the reachability of the endemic equilibrium point.

Keywords: vaccination controls; nonlinear dynamics and control systems; epidemic models;

discrete models

1. Introduction

We present an SEIADR epidemic model (Susceptible-Exposed-symptomatic Infectious-

Asymptomatic Infectious- Dead infected-Recovered) based on typical descriptions of the spread

of an infectious disease made in the background literature [1–6]. We will adapt the continuous time

model from previous papers, such as [7], into a discrete model. We incorporate two subpopulations,

namely, asymptomatic and dead infective corpses to the SEIR module. In this way, the model can be

useful for diseases where the lying corpses are infective like, for example, Ebola virus disease, with

eventual asymptomatic infectious. Our motivations for the discretization are an improvement in the

manipulation of the dynamic equations and a major control in the adjustments of the sampling period,

which will facilitate the adaptation of the model into a real situation, which this work is ultimately

aimed at. The model has four types of infected subpopulations so that each of the possible stages of

the disease is characterized by a different subpopulation. This makes the model interesting for its

application for studies in the Ebola disease and similar diseases in which the re-emergences of the

presence of infectious individuals cannot be explained otherwise [8]. The infected stage of the alive

population is split into three different subpopulations, namely, the exposed, the symptomatic infectious

and the asymptomatic infectious subpopulation, where an individual may be contagious even if

he/she/it does not show the symptoms of the disease [9,10]. Furthermore, we have designed our model

in order to take into account the deceased infectious individuals as a new infectious subpopulation,

so we can prove their importance in dynamics of the population as the contagiousness is still present on

some of the corpses, that must be disposed with great care [9,11–13]. Thus, the final stages of the illness

under study can be split into live and immune individuals, i.e., recovered (R) subpopulation, and
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infectious and dead individuals, i.e., dead (D) subpopulation. Given this, it has been widely studied

the non negativity of the solutions [14–16] and the use of perturbations and nonlinear incidence rates

(as seen in [17–19] and [19–22], respectively). Reducing the disease within the population should be

main objective of the control measures proposed i.e., vaccination strategies and the medical treatment

of the infectious subpopulation through antiviral treatment or care of the symptoms, which we will

also include in our equations. This type of control strategies have been proposed in many models in

the literature [3,9,14,15,23–27]. The stability analysis and control optimization of a a subpopulation

of infectious individuals in treatment with vaccination is addressed in [28], and a time-delay model

with a strategy of impulsive vaccination and a saturated incidence rate is addressed in [29]. For both

the continuous and the discrete-time dynamic system with closed-loop stabilizing controllers, the

properties of convergence of the state-trajectory to the equilibrium points and their global stability

are very important tools for analyzing and designing those models. See, for instance [30–33], and

some of the references therein. Therefore, we pay special attention to those properties in the proposed

and studied controlled discrete epidemic model subject to a feedback vaccination control applied on

the susceptible and to a feedback control on the infected subpopulation and to the relevance of the

reproduction number, linked to the controller gains in the rates of convergence. Another relevant

pillar of the study performed in this paper is the relevance of the discretization concerned to the

positivity of the solution sequences and the attainability or un-attainability of the endemic equilibrium

point depending on the value of the reproduction number. On the other hand, and concerned with

the advantages statement of discrete epidemic models, we might point out that the performance of

their continuous-time counterparts can be essentially kept if the discretization process is performed

with good adjustments of the sampling period and the auxiliary discretization parameters in such

a discrete-model. In particular, the computing time and the computer memory storage needs for

control implementation can be reduced. A discrete epidemic model has been proposed, analyzed

and discussed in [34] involving two interacting populations, the vector and the avian populations.

The stability analysis and the stability properties of the equilibrium points of a pair of SIRS models

subject to two viruses has been performed in [35]. Also, an important computational work has been

implemented to illustrate the validity of the obtained results. On the other hand, the design of the

stabilizing controllers have been recently invoked and developed with a well-worked mathematical

rigor in [36,37], respectively. Finally, a study of the nonlinear phenomena of bifurcation and chaos has

been detailed in [38] for a discrete SI epidemic model with fractional order while [39] gives a relevance

of the fractional framework to the statement of fractional-type discrete epidemic models especially

through the list of commented listed “ad hoc” references. In this paper, a discrete SEIADR model is

proposed as a more generic variant of the SEIR one. A multiple set of possible control parameters is

proposed, and all the different possible predictions about the population dynamics are studied through

simulations in order to confirm the performed study.

The main novelties of this paper are:

• The characterization of the relations between the stability of the disease free equilibrium (DFE)

point and the reachability of the endemic (END) one for the discrete SEIADR model under

positive conditions.

• The study of the stability and positivity properties and the equilibrium points and their properties.

• The study through numerical examples of the influence of the controller gain in the equilibrium

points and in the rates of convergence even under a similar reproduction number.

The paper is organized as follows. Section 2 describes the SEIADR model with vaccination

campaigns and antiviral treatments. A study of the disease free and the endemic equilibrium points

is made. The discretization of the continuous model and the conditions for the positivity of the

subpopulations are described in detail in Section 3. Section 4 gives and discusses the stability of the

equilibrium points of this discrete model through the use of the next generation matrix applied to

the disease free equilibrium point. Some results of simulations of the dynamics with a reproduction
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number above and under one are presented at Section 5. Conclusions based on these results are

presented in Section 6.

2. The Continuous SEIADR Model

The dynamics of the SEIADR model is defined by the following equations:

S(t) = b1 − V + ηR(t)− S(t)

(

βI(t) + βAA(t) + βDD(t)

N(t)
+ b2 + KV

)

, (1)

E(t) = S(t)

(

βI(t) + βAA(t) + βDD(t)

N(t)

)

− (b2 + γ)E(t), (2)

I(t) = pγE − (b2 + τ0 + Kξ + α)I(t), (3)

A(t) = (1 − p)γE − (b2 + τ0)A(t), (4)

D(t) = αI(t) + (I(t) + A(t))b2 − µD(t), (5)

R(t) = V + KξI(t) + KVS(t) + τ0(A(t) + I(t))− (b2 + η)R(t), (6)

with N(t) = S(t) + E(t) + I(t) + A(t) + D(t) + R(t) being the total population, where S, E, I, A, D and

R are the Susceptible, Exposed, Symptomatic Infectious, Asymptomatic Infectious, Dead Infectious

corpses and Recovered subpopulations respectively. See [7] for a discussion of the continuous-time

model. The parameters of the model are:

• b1 is the recruitment/birth rate,

• b2 is the natural average death rate,

• β, βA, βD are the disease transmission coefficients from the susceptible to the symptomatic and

asymptomatic infectious, and to the infective corpses subpopulations, respectively,

• 1/η is the average duration of the immunity period which reflects a transition state from the

recovered to the susceptible,

• γ is the transition rate from the exposed to the symptomatic and asymptomatic infectious,

• α is the extra average mortality being associated with the disease which affects to the symptomatic

infectious subpopulation,

• τ0 is the natural recovery rate for the whole infectious subpopulation (i.e., A + I ),

• p is the exposed subpopulation fraction which becomes symptomatic infectious,

• 1−p is the exposed subpopulation fraction which becomes asymptomatic infectious,

• 1/µ is the average time of infectiousness after death,

• V, KV and Kξ are the constant vaccination gain, the proportional vaccination control gain and

the antiviral treatment control gain respectively. The constant vaccination is bounded such that

V ∈ [0, b1], so a fraction V/b1 ∈ [0, 1] of the new individuals of the system (newborn, immigrants)

is vaccinated.

Remark 1. We define a set of auxiliary parameters to be then used as follows: BE = b2 +γ, BI = b2 + τ0 +Kξ +

α, BA = b2 + τ0, BR = b2 + η, f = γp
BI

, fA = γ(1−p)
BA

, fD = fA
b2
µ + f b2+α

µ , G1 = BR + BE − b2 + µ fD
BR−b2

b2
,

F = f β + fAβA + fDβD and G2 = (BR + KV)(b2 fD − α f ).

After using these auxiliary parameters in the Equations (1)–(6) the resulting equilibrium points of

the solutions are:

• A disease-free equilibrium point given by (SDFE, 0, 0, 0, 0, RDFE) where

SDFE =
BRNDFE − V

BR + KV
, RDFE =

KV NDFE + V

BR + KV
(7)
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with the total population at this point defined as NDFE = b1
b2

.

• An endemic one given by (SEND, EEND, IEND, AEND, DEND, REND) where:

SEND = BE
G2SDFE + b2G1NDFE

G2BE + b2FG1
, EEND =

(SDFE − SEND)(BR + KV)

G1
,

IEND = f EEND, AEND = fAEEND, DEND = fDEEND,

REND = RDFE +
(SDFE − SEND)(BE − (b2 + µ fD(1 + KV/b2)))

G1
, (8)

with the total population at this point given by:

NEND = SEND + EEND + IEND + AEND + DEND + REND =
SENDF

BE
.

3. Discretization of the SEIADR

In some epidemic models, the vaccination and treatment control actions can be exerted with

feedback information of the subpopulations, commonly the susceptible and infectious as the one

presented in this paper. Since amounts of data on the subpopulation levels and parametrical

computations to exert the controls through time have to be processed and monitored, the use of

computer-controlled actions may be necessary. Generally speaking, the discretization of dynamic

systems offers several potential computational advantages towards the controller synthesis, namely:

1. Normally feedback control actions are exerted by discrete-time controllers, especially, if the

volume of data to be processed is relevant since the computational load has to be supported

by a computer. Therefore, it can be preferred to start with a discrete-time model of the process,

which then generates discrete sequences of measurable data, than a continuous-time one since

then discrete control sequences are directly generated by processing the available sequence of

discrete measurable data. Note also that the discretization of a continuous-time model towards

the use of a computer for taking actions is always an approximation of the continuous time-model.

However the sampling period of a discrete-time model is a design parameter, which does not

imply an approximation when running the model.

2. It could be argued that in fact the use of a continuous-time model can be used for control

generations through a computer but, in this case, the discretization period has to be very

small in order to consider approximately valid the continuous-time control generation from

continuous-time data. That is, there is no freedom to select the discretization sampling period.

Note that if a discrete controller is accommodated to a discrete-time model then there is an

important freedom in the choice of the sampling period, which takes the role of an extra

control parameter which can be eventually time-varying, if it is compatible with the stability

and bandwidth.

3. There is an important saving in data memory storage needs when implementing control actions,

since only a discretized sequence of measurements needs to be stored and the control actions can

be exerted along a set of time instants while the computer can exert alternative monitoring or

computation actions. Thus, the computing time for control implementation is reduced.

So, the use of a discrete-time feedback controller being accommodated to a discrete-time

model does offer relevant advantages over related to a fast discretization of a closed-loop tandem

of continuous-time and controller configuration in order to make an “ad hoc” computational

control implementation. A discrete SEIADR model is formulated based on previous examples, as
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those of [34,39,40], i.e., on the approximation of the subsequent derivative of the vector x(t) =

(S(t), E(t), I(t), A(t), D(t), R(t))

ẋ(t) →
x(t + T)− x(t − T)

2T
+ a(x(t + T)− 2x(t) + x(t − T)) (9)

where xk is defined as xk = x(kT) so that the derivatives at the moments xk is implemented in

the equation:

ẋk =
xk(1 + 2aT)− 4aTxk − xk(1 − 2aT)

2T

The parameters “a” and T are real positive constants, being T the sampling period that we choose

in order to adjust our model as desired, and “a” a modulating parameter introduced in order to

guarantee the system’s positivity further described later on Proposition 1. Thus, the discrete equations

result to be

Sk+1 = 2T
1+2aT

(

(

2a − b2 + KV + βIk+βAAk+βDDk
Nk

)

Sk + b1 − V + ηRk

)

+
(

1−2aT
1+2aT

)

Sk−1,

(10)

Ek+1 = 2T
1+2aT

(

(βIk + βAAk + βDDk)
Sk
Nk

+ (2a − BE)Ek

)

+
(

1−2aT
1+2aT

)

Ek−1, (11)

Ik+1 = 2T
1+2aT (γpEk + (2a − BI)Ik) +

(

1−2aT
1+2aT

)

Ik−1, (12)

Ak+1 = 2T
1+2aT (γ(1 − p)Ek + (2a − BA)Ak) +

(

1−2aT
1+2aT

)

Ak−1, (13)

Dk+1 = 2T
1+2aT (b2Ak + (b2 + α)Ik + (2a − µ)Dk) +

(

1−2aT
1+2aT

)

Dk−1, (14)

Rk+1 = 2T
1+2aT

(

V + KVSk + τ0(Ak + Ik) + KξIk + (2a − BR)Rk

)

+
(

1−2aT
1+2aT

)

Rk−1, (15)

Positivity of the Solution

In this section, we will prove that the subpopulations affected by the disease always remain

non-negative, provided that the initial condition is non-negative. The parameter “a” will be used to

tune the discrete model so that its positivity is guaranteed. In the following, the notation for a vector

x ≥ 0 means that all its components are non negative. We refer to a model with nonnegative solutions

as a positive system.

Proposition 1. Assume that b1 ≥ V and that for any k ≥ 1, xk ≥ 0, xk−1 ≥ 0

1

2T
> a >

1

2
max [BE, BI, BR, µ, max [β, βA, βD] + b2 + KV ] (16)

for which a necessary condition is T ≤ 1
[BE,BI,BR,µ,max[β,βA,βD]+b2+KV ]

. Then xk+1 ≥ 0. As a consequence, if

x0 ≥ 0 and x−1 ≥ 0 then xk ≥ 0; ∀k ≥ 0.
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Proof. Assume that xk = (Sk, Ek, Ik, Ak, Dk, Rk) ≥ 0. Then, from the discrete dynamic

Equations (10)–(15) the positivity for the values of xk+1 = (Sk+1, Ek+1, Ik+1, Ak+1, Dk+1 , Rk+1) is

studied as:

Sk+1 ≥
2T

1 + 2aT

(

2a − (b2 + KV)−
(βIk + βA Ak + βDDk)

Nk

)

Sk (17)

=
2T

1 + 2aT
(2a − (b2 + KV)− (βni + βAna + βDnd)) Sk (18)

≥
2T

1 + 2aT
(2a − (b2 + KV + max[β, βA, βD])) Sk ≥ 0, (19)

Since I
N + A

N + D
N = ni + na + nd ≤ 1. Also

Ek+1 ≥
2T

1 + 2aT
(2a − BE)Ek ≥ 0, (20)

Ik+1 ≥
2T

1 + 2aT
(2a − BI) Ik ≥ 0, (21)

Ak+1 ≥
2T

1 + 2aT
(2a − BA)Ak ≥ 0, (22)

Dk+1 ≥
2T

1 + 2aT
(2a − µ)Dk ≥ 0, (23)

Rk+1 ≥
2T

1 + 2aT
(2a − BR)Rk ≥ 0. (24)

So xk+1 = (Sk+1, Ek+1, Ik+1, Ak+1, Dk+1, Rk+1) is non negative provided that xk ≥ 0. As a result

via compute induction if x0 ≥ 0 and x−1 ≥ 0 then xk ≥ 0, ∀k ≥ 0.

Remark 2. Note that the modulating discretization parameter “a" can grow at most linearly with the half of

the inverse of the sampling period. As a result of proposition, if x0 ≥ 0 and x−1 = 0 then xk ≥ 0 ∀k ≥ 0.

4. Equilibrium Points: Positivity and Stability

From the discrete dynamic Equations (10)–(15), we calculate the equilibrium points such that

xk+1 = xk = xk−1 leading to:

S∗ =
2T

1 + 2aT

(

−

(

b2 + KV +
(βI∗ + βAA∗ + βDD∗)

N∗

)

S∗ + b1 − V + ηR∗ +
1 + 2aT

2T
S∗
)

, (25)

E∗ =
2T

1 + 2aT

(

(βI∗ + βAA∗ + βDD∗)
S∗

N∗
+

(

1 + 2aT

2T
− BE

)

E∗

)

, (26)

I∗ =
2T

1 + 2aT

(

γpE∗ +

(

1 + 2aT

2T
− BI

)

I∗
)

, (27)

A∗ =
2T

1 + 2aT

(

γ(1 − p)E∗ +

(

1 + 2aT

2T
− BA

)

A∗

)

, (28)

D∗ =
2T

1 + 2aT

(

b2A∗ + (b2 + α) I∗ +

(

1 + 2aT

2T
− µ

)

D∗

)

, (29)

R∗ =
2T

1 + 2aT

(

V + KVS∗ + τ0(A
∗ + I∗) + KξI∗ +

(

1 + 2aT

2T
− BR

)

R∗

)

. (30)

The resulting equilibrium points are equal to the continuous-time model counterpart. The

disease free equilibrium point is defined as (SDFE, 0, 0, 0, 0, RDFE), with SDFE and RDFE defined as in

Equation (7), while the endemic equilibrium point (SEND, EEND, IEND, AEND, DEND, REND) is defined

as in Equation (8). Observe that, from Proposition 1, for a non-negative initial state, the system remains

positive, so if SDFE − SEND < 0 the values at the endemic equilibrium of the infectious subpopulations,

defined in Equation (8), are negative. Therefore, the endemic equilibrium is not reachable.
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4.1. Local Asymptotic Stability of the DFE Point

In this section, we will study the disease free equilibrium point (DFE) xDFE and obtain the

Reproduction number, which would reveal us if it is locally stable or unstable. The stability of the DFE

point is studied by constructing the next generation matrix. First we define the vector yk as

yk = [Ek, Ik, Ak, Dk, Ek−1, Ik−1, Ak−1, Dk−1, Sk, Rk, Sk−1, Rk−1]

and then linearize around the DFE point (xk = xk−1 = xDFE), so we get the constant Jacobian matrix:

J =
∂yk+1

∂yk

∣

∣

∣

∣

xDFE

=

(

F − Σ 0

∆ C

)

.

We focus on the the 8 × 8 submatrix F − Σ, related to the infectious subpopulations E, I, A, and

D, while F represents the appearance of new set of infections and Σ would describe the transitions

between those infectious subpopulations. Thus, we define F as

F =
2SDFET

NDFE(1 + 2aT)





























0 β βA βD 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0





























and Σ as

Σ =































2T(BE−2a)
2aT+1 0 0 0 2aT−1

2aT+1 0 0 0
−2Tpγ
2aT+1

2T(BI−2a)
2aT+1 0 0 0 2aT−1

2aT+1 0 0
−2T(1−p)γ

2aT+1 0
2T(BA−2a)

2aT+1 0 0 0 2aT−1
2aT+1 0

0
−2T(b2+α)

2aT+1
−2Tb2
2aT+1

2T(µ−2a)
2aT+1 0 0 0 2aT−1

2aT+1

−1 0 0 0 0 0 0 0

0 −1 0 0 0 0 0 0

0 0 −1 0 0 0 0 0

0 0 0 −1 0 0 0 0































.

The next generation matrix (NGM) will be defined as:

F(I + Σ)−1 =




























a11 a12 a13 a14
1−2aT
1+2aT a11

1−2aT
1+2aT a12

1−2aT
1+2aT a13

1−2aT
1+2aT a14

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0





























with

a11 = SDFE
NDFE

F
BE

, a12 = SDFE
NDFE

(βµ+βD(b2+α))
BI

, a13 = SDFE
NDFE

(βAµ+βDb2)
BAµ , a14 = SDFE

NDFE

βD
µ ,
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The spectral radius of the NGM, defined as the maximum of the absolute value of all possible

eigenvalues of the NGM, ρ(F(I + Σ)−1) will correspond to the reproduction number

R0 =
SDFEF

NDFEBE
=

SDFENEND

SENDNDFE
. (31)

We have concluded from the above discussion the following result:

Theorem 1. The DFE point is locally asymptotically stable if R0 < 1, while if R0 > 1, then the DFE point

is unstable.

4.2. Conditions of Positivity of the Equilibrium Points

Here we will establish the conditions for the positivity, and thus, the potential reachability for any

non-negative initial conditions, of the equilibrium points. Note that any non-negative solutions under

Proposition 1 can reach an equilibrium point only if that has non-negative components.

4.2.1. DFE Point

The following result is direct:

Proposition 2. xDFE ≥ 0 if V ≤ b1(1 + µ/b2).

Proof. Note that IDFE = ADFE = EDFE = DDFE = 0. Also note that SDFE ≥ 0 if V ≤ b1(1 + η/b2) from

(7) and NDFE = b1/b2 > 0. Then, again from (7), RDFE ≥ 0. As a result, xDFE ≥ 0.

4.2.2. END Point

The positivity of the END point relies on the positivity of ∆S = (SDFE − SEND) as it is seen in (8)

to guarantee that EEND ≥ 0. Let us define:

x ≡ −
NDFE − NEND

SDFE − SEND
=

∆N

∆S
=

G2

b2G1
.

It is direct to see that the reproduction number, defined in (31), can be equivalently written as

R0(∆S, x) = (1 +
∆S

SEND
)(1 + x

∆S

NDFE
), (32)

so if x ≥ 0, this implies that the reachability of the END point is given a reproduction number R0 > 1,

as ∆S > 0 ⇔ R0 > 1, and ∆S < 0 ⇔ R0 < 1. The case x = 0 is not relevant for the analysis.

Proposition 3. The non negativity of x is guaranteed if µ <
b2

2 BI+b2(ατ−b2Kξ )p
BAαp .

Proof. The parameter x can be written as x = G2
b2G1

, so that the positivity of G1 is easily proven as

G1 = b2 + η + γ + µ fDη/b2 > 0

Thus sign(G2) = sign(b2 fD − α f ) = sign(γ
b2

2 BI−p(BAαµ+b2(b2Kξ−τα))
BABIµ

), so

γ
b2

2BI − p(BAαµ + b2(b2Kξ − τα))

BABIµ
> 0, i f

b2
2BI − p(BAαµ + b2(b2Kξ − τα)) > 0,

G2 > 0 i f µ <

b2
2BI + b2(ατ0 − b2Kξ)p

BAαp
. (33)



Mathematics 2019, 7, 18 9 of 19

The subsequent result establishes that the existence of a reachable END point, which is defined by

the positivity of x, will be also characterized by the reproduction number.

Proposition 4. If b2 < µ, then the END point is reachable for any non-negative initial conditions if and only if

R0 ≥ 1 ⇔ ∆S ≥ 0. If R0 = 1 then the END point is coincident with the DFE one.

Proof. From (32), one gets:

R0(∆S, x) =
SDFE(NDFE + x∆S)

NDFE(SDFE − ∆S)
. (34)

We study first the solution for the critic value of the reproduction number R0 = 1. It follows

from (32) that R0 = 1 if either ∆S = 0 or x = −NDFE
SDFE

.

The derivative at the critic points will be

R′
0(∆S, x) =

d(R0)

d(∆S)
=

SDFE(NDFE + xSDFE)

NDFE(SDFE − ∆S)2
(35)

which gives us

1. R′
0(∆S,−NDFE/SDFE) = 0, ∀∆S ∈ R, and

2. for x 6= −NDFE
SDFE

⇒ R′
0(∆S = 0, x) = 1

SDFE
+ x

NDFE
so that if

(x > −NDFE/SDFE ⇔ R′
0(∆S = 0, x) > 0),

then ∀∆S > 0 ⇒ R0 > 1, since R0(∆S, x) is non-decreasing with respect to ∆S for all real

x > −NDFE
SDFE

.

We know that x depends on the parameter p (i.e., the fraction of exposed which become

symptomatic) as

x = x(p) =
G2(p)

b2G1(p)
(36)

=
γ (BR + KV)

(

−pBA (b2 (α + b2)− αµ) + b2
2BI(p − 1)

)

b2BIγηµ(p − 1)− µBA (γηp (α + b2) + b2BI (b2 + γ + η))
,

so that the derivative with respect to p is

x′(p) = dx(p)
dp = (µ − b2)

(αγη+αBA(b2+γ+η))
µ(BP)

+
b2(αγη+b2(b2+γ+η)(α+kξ))

µ(BP)
(37)

with

BP =
(b2

2 BA(α+BA+kξ)+b2(B2
A(γ+η)+BA(η(α+γ)+αγ+(γ+η)kξ)−γη(p−1)(α+kξ))+αγηpBA)2

b2γBA(b2+η+KV )(α+BA+kξ)
> 0.

Since µ > b2, then x′(p) > 0, ∀p ∈ [0, 1], so the minimum value of x(p) would be x(0) and then:

x(p) ≥ x(0) =
−γb2(η + b2 + KV)

(b2 + τ)(b2 + η + γ)µ + γηµ
. (38)

Thus, if

x ≥ x(0) > −
NDFE

SDFE
, (39)

(so that R0(∆S, x) is non-decreasing with respect to ∆S) ⇒ ∆S > 0 ⇔ R0 > 1.
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The inequality from (39) becomes through Equation (7):

NDFE

SDFE
≥

b2 + η + KV

b2 + η
> −x(0) =

(b2 + η + KV)γb2/µ

γη + (b2 + τ)(b2 + η + γ)
, (40)

which can be reduced to 1 >
b2/µ

1 + τ
b2+τ + BA

γ

, which is true if b2 < µ.

On the other hand, the value of the susceptible subpopulation in the END point is defined

from (8) as

SEND =
NDFE + xSDFE

F/BE + x
=

(NDFE + xSDFE)

(R0 + xSDFE/NDFE)NDFE/SDFE
, (41)

which will be positive if x > −NDFE/SDFE and R0 ≥ 1. Note that for R0 = 1 the endemic equilibrium

point is coincident with the DFE one since ∆S = 0, so it is reachable. Then R′
0(∆S) > 0 and the

existence of the END point is characterized by R0 ≥ 1.

4.3. Global Stability

We know that the reproduction number of (31) can be rewritten as

R0 =
b2γ

(

b1

(

η
b2
+ 1
)

− V
) (

p(α+b2)βD+βµp
α+b2+kξ+τ0

− (p−1)(µβS+b2βD)
b2+τ0

)

b1µ (b2 + γ) (b2 + η + KV)
(42)

and by using the relative disease transmission coefficients βAr = βA/β and βDr = βD/β we can

rewrite the reproduction number as

R0 = β
b2γ

(

b1

(

η
b2
+ 1
)

− V
) (

p(α+b2)βDr+µp
α+b2+kξ+τ0

− (p−1)(µβAr+b2βDr)
b2+τ0

)

b1µ (b2 + γ) (b2 + η + KV)
. (43)

Furthermore, the Jacobian matrix J on the equilibrium points is equal to

J =

(

A B

I6 0

)

(44)

with B = 1−2aT
1+2aT I6 and A = 2T

1+2aT Q, being

Q =



















q11 q12 q13 q14 q15 q16

q21 q22 q23 q24 q25 q26

0 pγ 2a − (b2 + τ0 + kξ + α) 0 0 0

0 γ − pγ 0 2a − (b2 + τ0) 0 0

0 0 α + b2 b2 2a − µ 0

KV 0 kξ + τ0 τ0 0 2a − η − b2



















,

with

q11 = 2a − b2 − KV − BEE∗(N∗−S∗)
N∗S∗

q12 = BEE∗

N∗

q13 = BEE∗−βS∗

N∗ q21 = BEE∗
(

1
S∗

− 1
N∗

)

q22 = 2a − γ − b2 −
BEE∗

N∗ q23 = βS∗−BEE∗

N∗

q14 = BEE∗−S∗βA
N∗ q15 = BEE∗−S∗βD

N∗

q16 = η + BEE∗

N∗ q24 = βAS∗−BEE∗

N∗

q25 = βDS∗−BEE∗

N∗ q26 = − BEE∗

N∗

(45)
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and {N∗, S∗, E∗} → {NDFE, SDFE, 0} for the Jacobian matrix associated to the DFE point JDFE, and

{N∗, S∗, E∗} → {NEND, SEND, EEND} for the Jacobian matrix associated to the END point JEND. The

matrix Q corresponding to JDEF, namely, QDFE of the JDFE will then be equal to:

QDFE =





















2a − b2 − KV 0 − βSDFE
NDFE

− βASDFE
NDFE

− βDSDFE
NDFE

η

0 2a − γ − b2
βSDFE
NDFE

βASDFE
NDFE

βDSDFE
NDFE

0

0 pγ 2a − (b2 + τ0 + kξ + α) 0 0

0 (1 − p)γ 2a − (b2 + τ0) 0 0

0 0 α + b2b2 2a − µ 0

KV 0 kξ + τ0τ0 0 2a − (η + b2)





















QDFE = 2aI6 −





















b2 + KV 0
βSDFE
NDFE

βASDFE
NDFE

βDSDFE
NDFE

−η

0 γ + b2 − βSDFE
NDFE

− βASDFE
NDFE

− βDSDFE
NDFE

0

0 −pγ b2 + τ0 + kξ + α 0 0

0 (p − 1)γ b2 + τ0 0 0

0 0 −α − b2 − b2 µ 0

−KV 0 −kξ − τ0 − τ0 0 η + b2





















(46)

Assume that (16) hold. Then, the following result guarantees the global stability under positivity

conditions of Proposition 1.

Theorem 2. The following properties hold:

(i) The total population Nk; ∀k ≥ 0 is positive and bounded for any given non-negative initial conditions.

(ii) The discrete SEIADR epidemic model is globally Lyapunov’s stable for any given finite non-negative initial

conditions irrespective of the value of the reproduction number.

(iii) if R0 ≤ 1 then the DFE point is the unique reachable equilibrium which is globally asymptotically stable.

Proof. Since Nk = SK + EK + IK + AK + DK + RK; ∀k ≥ 0, subject to any finite initial conditions

satisfying min(S0, E0, I0, A0, D0, R0) ≥ 0, it turns out that Nk ≥ 0; ∀k ≥ 0 since all the subpopulations

are non-negative for any sample from Proposition 1. Now, by summing up (10)–(15), one gets the

following evolution equation for the total population:

Nk+1 =
1 − 2aT

1 + 2aT
Nk−1 +

2T

1 + 2aT
[2aNk + b1 − µDK − b2(EK + RK + SK)]; ∀k ≥ 1 (47)

One gets from (47) that:

N̂k+1 +
2Tν

1 + 2aT
(DK + EK + RK + SK)e1 � AN N̂k +

2Tb1

1 + 2aT
e1; ∀k ≥ 1 (48)

where ν = min(b2, µ) and

AN =

(

4aT/(1 + 2aT) (1 − 2aT)/(1 + 2aT)

1 0

)

, (49)

with N̂k = [Nk Nk−1]
T ; e1 = (1, 0)T and the notation “�” in M = (Mij) � N = (Nij) with M

and N being of the same order means that Mij ≤ Nij; ∀i, j, that is, the inequalities holds for

all the corresponding matrix entries of M and N. It turns out by direct inspection that AN is

positive (in the sense that it has no negative entries) and convergent (i.e., stable in the discrete

sense) since its eigenvalues are within the unity ratio circle in the complex plane. Now, assume that

the sequence {N̂k}
∞

k=0 is unbounded to prove its boundedness by contradiction arguments. Then,
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it has a subsequence {N̂kn
}∞

n=0 ⊆ {N̂k}
∞

k=0 which is strictly increasing with {kn}∞

n=0 being a strictly

increasing sequence of non-negative integers, that is, {N̂kn
}∞

n=0 → ∞ as n → ∞ and one gets via

recursive calculations from (48) and Proposition 1 that:

0 � N̂kn+1
+ Σ

kn+1−1
i=kn

(AN)
(kn+1−(i+1))(Di + Ei + Ri + Si)e1, (50)

� (AN)
(kn+1−kn)N̂kn

+ Σ
kn+1−1
i=kn

(AN)
(kn+1−(i+1)) 2Tb1

1 + 2aT
e1; ∀k ≥ 1, (51)

since AN is a convergent matrix so that spectral radius r(AN) = in f ‖AN‖ = |λmax(AN)| < 1 , AN ≻ 0

and {N̂kn
}∞

n=0 is a non-negative strictly increasing sequence. Then one has from (51):

‖N̂kn+m+1
+ Σ

kn+m+1−1
i=kn

(AN)
(kn+m+1−(i+1))(Di + Ei + Ri + Si)e1‖

≤ ‖(AN)
(kn+m+1−kn)N̂kn

‖+ ‖Σ
kn+m+1−1
i=kn

(AN)
(kn+m+1−(i+1)) 2Tb1

1+2aT e1‖; ∀k ≥ 1

≤ ρkn+m−1−kn‖N̂kn
‖+ 2Tb1(1−ρkn+m+1−kn )

(1+2aT)ρ
∀m ≥ 0, ∀k ≥ 1 (52)

for some matrix norm ‖•‖ such that ‖AN‖ ≤ ρ = r(AN) + ǫ < 1 for some given real constant ǫ

fulfilling 0 ≤ ǫ < 1 − r(AN). From the definition of the spectral radius and the fact that AN is

convergent such a norm upper-bounded by such a ρ parameter always exists. By talking limits in (52)

as n, m → ∞, so that (kn+m+1 − kn) → ∞, one gets the contradiction +∞ ≤ 2Tb1
(1+2aT)ρ

. This happens

since N̂kn+m+1
→ +∞ as (n + m) → ∞ by the unboundedness assumption on Nk as k → ∞ and

ρ < 1, DK + EK + RK + SK ≥ 0 and Nk ≥ 0; ∀k ≥ 0 from the non-negativity of the subpopulations

with the conditions of Proposition 1. Then, Nk; ∀k ≥ 0 is bounded for any given non-negative

initial conditions and Property (i) follows. Property (ii) is a direct consequence of Property (i) and the

non-negativity of all the subpopulations for any sample and given finite non-negative initial conditions.

Property (iii) follows since if R0 < 1 the END point is not reachable and if R0 = 1 it is coincident with

the DFE one. Therefore for R0 ≤ 1 the unique reachable equilibrium point from non-negative initial

conditions is the DFE one which is globally asymptotically stable since it is locally asymptotically

stable from Theorem 1.

5. Numerical Simulations

We start the simulation with the subpopulations in an initial conditions next to the DFE

point, concretely:

(S(0), E(0), I(0), A(0), D(0), R(0)) = (S∗DFE, 0.05, 0.05, 0.05, 0.05, R∗
DFE)

With the susceptible and recovered DFE values as defined in Equation (7). Then, our parameters

are set in order to obtain a reproduction number less than unity. The value of the parameters relative

to the host population are based in what is expected to be the average rates of growth in a human

society, and the ones related to the disease are based on previous models describing Ebola disease [7].

In this way, the mortality and natality rates will be b1 = b2 = 1/(365 × 70) days−1, while the

recovery rates from the infection are τ0 = 1/12 days−1, µ = 1/3 days−1, the parameters of the

disease are defined by the infectivity rates β = 0.15 days−1, βA = 0.02 days−1 and βD = 0.15 days−1,

the probability of transition p = 0.75, the mortality of the infected subpopulation α = 0.1 days−1,

the transition from infected to recovered γ = 1/300 days−1 and the recovered to susceptible rate

is defined by η = 0.15 days−1. On the other hand, the parameters for the controller methods are

defined by the vaccination constants V = b1/100 days−1, KV = b2/2 days−1, and the antiviral

constant Kξ = 0.01 days−1. Given these conditions, we obtain a reproduction number smaller than

unity 1, namely, R0 = 0.81 and the initial conditions based on the DFE point RDFE = 1.3 × 10−4 and

SDFE = 0.99987. It can be seen in Figures 1 and 2 the time evolution of the subpopulations given these

parameters: The infectious subpopulations decrease exponentially as the susceptible and recovered
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subpopulations continuously approaches to the values corresponding the DFE point. Note that the

simulations are performed to display the trajectory evolution tendencies through time rather than

describe real amount of individuals.

Figure 1. Time evolution of the different subpopulations for a R0 = 0.81.

Another simulation is made with the subpopulations starting at the same initial condition that

the used in the previous example, but in this time with the reproduction number exceeding unity.

The parameters, as in the previous simulation, are based on the average rates of growth in a human

society afflicted by an Ebola-type disease. However, the value of the main infectivity rate β is changed

from β = 0.15 days−1 to β = 0.30 days−1 so the reproduction number goes from R0 = 0.81 to

R0 = 1.39. Observe that the change of the infectibity does not change the values of the parameters SDFE

and RDFE, so the initial conditions remain the same. We can see at Figures 3 and 4 the time evolution

of the subpopulations reaching the END point. Observe in Figures 4 and 5 that even though given the

parameters used in this simulation system takes quite long to stabilize, the subpopulations tend to the

endemic values (red dotted).

It is worth mentioning that the purpose of running the simulations at such a long time is not

with the intention of showing the desired final state of our population, as it would be ridiculous.

We want however, to show the general tendency of the dynamic of the subpopulations when the

reproduction number exceeds one ( the infectious subpopulations will be relevant for an indefinite

time) and when it doesn’t (the infectious subpopulations will decrease exponentially over time).

More numerical experimentation has been performed by modifying the control gains while maintaining

the reproduction number. The purpose is to study the different velocities at which the subpopulations

reach the equilibrium point for a given reproduction number. In this case, the stability properties of the

DFE point hold intact depending on the value of R0 being smaller or greater than unity, but the values

of the subpopulations corresponding to the equilibrium points of the model and the rate of convergence

can be modified. In Figure 6 we can see the dynamics characterized by the parameters of the previous

simulations for the infectivity rates β = 0.92 days−1, βA = 0.2 and βD = 0.5, and two different sets of

vaccination control gains, one corresponding to the constant vaccination strategy and the other one

corresponding to the vaccination strategy based on the feedback of the susceptible subpopulation.

Both present the same reproduction number and the same values for the subpopulations in the DFE

point. However, it is seen that the disease decreases exponentially in both examples, as it is expected

when the disease is being eradicated, and that there is a noticeable difference in the presence of the

sick individuals. The infectious subpopulations for the set of parameters 2 are larger during the first

days, while in the long run they decrease faster than the ones from set 1.
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Figure 2. A detailed display of the reaction of the different subpopulations during the first days after

the introduction of the disease given a R0 = 0.81.

Figure 3. Time evolution of the different subpopulations given a R0 = 1.39.
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Figure 4. A better display of the different subpopulations for a R0 = 1.39.

Figure 5. A close look at the beginning of the dynamic simulation of the different subpopulations for a

R0 = 1.39.
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Figure 6. Time evolution of the different subpopulations given a R0 = 0.81 and two different sets of

control vaccination gains. Set 1 shares common parameters with set 2 except for V = 0 and KV = 0.89,

while set 2 presents V = 0.13 and KV = 0.

In Figure 7 we show a similar disposition than the previous graphic. With the same parameters

as before and V = 0, we run three different simulations with the same parameters and reproduction

number R0 = 0.81, varying the proportional vaccination control gain KV and the antiviral treatment

control gain Kξ .

Figure 7. Time evolution of the different subpopulations given a R0 = 0.81 and three different sets of

control vaccination gains. Set 1 shares common parameters with set 2 and 3, except for KV = 0 and

Kξ = 1.29, while set 2 presents KV = 0.45 and Kξ = 0.14 and set 3 KV = 0.90 and Kξ = 0.

6. Conclusions

A functional discrete model based on classic models [1,2] describing an Ebola-type disease

spreading through a population has been constructed and the control gains applied to synthesize

the vaccination and treatment signals are also put into the model successfully. The discrete model

has been properly created and the boundaries of the parameters of the simulation are set so that the

non-negativity of the system remains as long as the initial conditions are non-negative, as it should be

in a model that depicts real populations. Thus, the conditions that guarantee the boundaries of the total

population stability of the END and the DFE points have been tested and studied. The simulations

presented in this paper also show that the values assigned to the control gain can substantially affect
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the evolution of the infection. This happens even though the final equilibrium state is the same, which

can be used to pick the best strategy when facing humanitarian crisis situations, or when trying to

eradicate an endemic disease happening in a region. It can be seen that the increase of the control gains

V, Kv and Kξ leads to a computable decrease of the reproduction number (see Equations (31) and (42).

It can be seen that the DFE point can be modified with the vaccination control gains, in particular,

the susceptible decrease with the constant vaccination V, while the recovered increase with such

a control. It can be seen that the disease free susceptible subpopulation decreases as KV increases,

while the recovered increases since the total population remains constant. Also, we have observed the

influence of the vaccination control gains in the dynamics even when the reproduction number stays

invariant under certain changes of the control gains. This suggests an interesting point when building

the control gains of the epidemic models in future works, as it shows that the reproduction number is

not the only relevant parameter to be taken into account.
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