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ON A NEW GENERALIZATION OF FIBONACCI HYBRID

NUMBERS

ELIF TAN AND N. ROSA AIT-AMRANE

Abstract. The hybrid numbers were introduced by Ozdemir [9] as a new
generalization of complex, dual, and hyperbolic numbers. A hybrid number
is defined by k = a + bi + cǫ + dh, where a, b, c, d are real numbers and
i, ǫ, h are operators such that i2 = −1, ǫ2 = 0, h2 = 1 and ih = −hi =
ǫ + i. This work is intended as an attempt to introduce the bi-periodic
Horadam hybrid numbers which generalize the classical Horadam hybrid
numbers. We give the generating function, the Binet formula, and some
basic properties of these new hybrid numbers. Also, we investigate some
relationships between generalized bi-periodic Fibonacci hybrid numbers
and generalized bi-periodic Lucas hybrid numbers.

1. Introduction

Non-commutative algebras play important role and have broad applications
in many areas, such as mathematics and physics. Hence it is worth to study
and investigate the properties of some special types of non-commutative alge-
bras. The real quaternion algebra is the first non-commutative division algebra
to be discovered and defined by

H = {a+ bi+ cj + dk | i2 = j2 = k2 = −1, ij = −ji = k}

where a, b, c, d ∈ R. For a survey on the properties of quaternions, we refer to
Hamilton’s book [5], and for some special type of quaternions see [4, 6].

A new non-commutative number system, the hybrid numbers, were intro-
duced by Ozdemir [9] as a generalization of complex numbers, dual numbers,
and hyperbolic numbers which are having the form a+be with e2 = −1, e2 = 0,
and e2 = 1, respectively. The set of hybrid numbers are defined as

K =
{
a+ bi+ cǫ+ dh | i2 = −1, ǫ2 = 0, h2 = 1, ih = −hi = ǫ+ i

}
(1.1)

where a, b, c, d ∈ R.
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The addition, substraction and multiplication of two hybrid numbers k1 =
a1 + b1i+ c1ǫ+ d1h and k2 = a2 + b2i+ c2ǫ+ d2h are defined as

k1 ± k2 = (a1 ± a2) + (b1 ± b2) i+ (c1 ± c2) ǫ+ (d1 ± d2) h,

k1k2 = a1a2 − b1b2 + d1d2 + b1c2 + c1b2

+(a1b2 + b1a2 + b1d2 − d1b2) i

+(a1c2 + c1a2 + b1d2 − d1b2 + d1c2 − c1d2) ǫ

+(a1d2 + d1a2 + c1b2 − b1c2)h.

The multiplication of a hybrid number k = a+bi+cǫ+dh by the real scalar
s is defined as

sk = sa+ sbi+ scǫ+ sdh,

and the norm of a hybrid number k is defined by

‖k‖ :=
√

|C (k)|,
where C (k) := kk is the character of the hybrid number k and k := a −
bi − cǫ − dh is the conjugate of k. Ozdemir’s paper [9] serves as an excellent
reference to the algebraic and geometric properties of the hybrid numbers.

Recently, many studies have been devoted to hybrid numbers whose com-
ponents are taken from special integer sequences such as Fibonacci, Lucas,
Pell, Jacobsthal sequences, etc. In particular, Szynal-Liana [13] introduced
the Horadam hybrid numbers as

KW,n = Wn +Wn+1i+Wn+2ǫ+Wn+3h (1.2)

where {Wn} is the Horadam sequence defined by Wn = pWn−1 − qWn−2

with arbitrary initial values W0,W1. In [12–15], the authors studied several
properties of special type of hybrid numbers. The basic properties of k-Pell
hybrid numbers were investigated by Catarino [2]. Also, Morales [8] considered
the (p, q)-Fibonacci and (p, q)-Lucas hybrid numbers and gave several relations
between them. Recently, motivated by the Szynal-Liana’s paper, Senturk et
al. [11] derived summation formulas, matrix representations, general bilinear
formula, Honsberger formula, etc. regarding to the Horadam hybrid numbers.

This work has been intended as an attempt to introduce a new gener-
alization of Horadam hybrid numbers, called as, bi-periodic Horadam hy-
brid numbers. The bi-periodic Horadam hybrid numbers generalize the best
known hybrid numbers in the literature, such as Horadam hybrid numbers,
Fibonacci&Lucas hybrid numbers, k-Pell hybrid numbers, Pell&Pell-Lucas hy-
brid numbers, Jacobsthal&Jacobsthal-Lucas hybrid numbers, etc. The com-
ponents of the bi-periodic Horadam hybrid numbers belong to the bi-periodic
Horadam sequence {wn} which is defined by the recurrence relation

wn = χ (n)wn−1 + cwn−2, n ≥ 2 (1.3)
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where χ (n) = a if n is even, χ (n) = b if n is odd with arbitrary initial
conditions w0, w1 and nonzero real numbers a, b and c. It is clear that if we
take a = b = p and c = −q, then it reduces to the classical Horadam sequence
in [7]. For the details of the bi-periodic Horadam sequences see [1, 3, 10,18].

The outline of this paper is as follows: In the rest of this section, we give
some necessary definitions and mathematical preliminaries, which is required.
In Section 2, we introduce the bi-periodic Horadam hybrid numbers and give
the generating function, the Binet formula, matrix representation and several
basic properties of these hybrid numbers such as Vajda’s identity, Catalan’s
identity, Cassini’s identity, summation and binomial sum formulas. In Section
3, we give some relationships between the generalized bi-periodic Fibonacci
hybrid numbers and the generalized bi-periodic Lucas hybrid numbers. The
final section is devoted to the conclusions.

The Binet formula for the bi-periodic Horadam sequence {wn} is

wn =
aξ(n+1)

(ab)⌊
n
2 ⌋

(Aαn −Bβn) , (1.4)

where

A :=
w1 − β

a
w0

α− β
and B :=

w1 − α
a
w0

α− β
. (1.5)

Here α and β are the roots of the polynomial x2 − abx − abc, that is, α =
ab+

√
a2b2+4abc
2 and β = ab−

√
a2b2+4abc
2 , and ξ (n) = n − 2

⌊
n
2

⌋
is the parity

function, i.e., ξ (n) = 0 when n is even and ξ (n) = 1 when n is odd. Let

assume a2b2+4abc > 0. Also we have α+β = ab, ∆ := α−β =
√
a2b2 + 4abc

and αβ = −abc. If we take the initial conditions 0 and 1, we get the Binet
formula of the generalized bi-periodic Fibonacci sequence {un} as

un =
aξ(n+1)

(ab)⌊
n
2 ⌋

(
αn − βn

α− β

)
(1.6)

and by taking the initial conditions 2 and b, we get the Binet formula of the
generalized bi-periodic Lucas sequence {vn} as

vn =
a−ξ(n)

(ab)⌊
n
2 ⌋

(αn + βn) . (1.7)

The bi-periodic Horadam numbers for negative subscripts is defined as

(−c)nw−n =

(
b

a

)ξ(n)

w0un+1 −w1un. (1.8)

Also we have

αm = a−1a
m+ξ(m)

2 b
m−ξ(m)

2 αum + ca
m−ξ(m)

2 b
m+ξ(m)

2 um−1 (1.9)
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and

βm = a−1a
m+ξ(m)

2 b
m−ξ(m)

2 βum + ca
m−ξ(m)

2 b
m+ξ(m)

2 um−1. (1.10)

For details, see [16,17].

2. The bi-periodic Horadam hybrid numbers

Definition 1. For n ≥ 0, the bi-periodic Horadam hybrid number Kw,n is
defined by the recurrence relation

Kw,n = wn + wn+1i+ wn+2ǫ+ wn+3h

where wn is the n-th bi-periodic Horadam number.

From the definition of bi-periodic Horadam hybrid numbers, we have

Kw,0 = w0 + w1i+ (aw1 + cw0) ǫ+ ((ab+ c)w1 + bcw0)h,

Kw,1 = w1 + (aw1 + cw0) i+ ((ab+ c)w1 + bcw0)ǫ

+(a (ab+ 2c)w1 + c (ab+ c)w0)h.

In the following table we state several number of hybrid numbers in terms
of the bi-periodic Horadam hybrid numbers Kw,n according to the initial con-
ditions w0, w1 and the related coefficients a, b, c.

Kw,n (w0,w1;a,b, c) bi-periodic Horadam hybrid numbers

Ku,n (0, 1; a, b, c) gen. bi-periodic Fibonacci hybrid numbers
Kv,n (2, b; a, b, c) gen. bi-periodic Lucas hybrid numbers
KW,n (W0,W1; p, p,−q) Horadam hybrid numbers [11,13]
KU,n (0, 1; p, p, q) (p, q)-Fibonacci hybrid numbers [8]
KV,n (2, p; p, p, q) (p, q)-Lucas hybrid numbers [8]
KF,n (0, 1; 1, 1, 1) Fibonacci hybrid numbers [12]
KL,n (2, 1; 1, 1, 1) Lucas hybrid numbers [13]
KP,n (0, 1; 2, 2, 1) Pell hybrid numbers [15]
KQ,n (2, 2; 2, 2, 1) Pell-Lucas hybrid numbers [15]
KkP,n (0, 1; 2, 2, k) k-Pell hybrid numbers [2]
KJ,n (0, 1; 1, 1, 2) Jacobsthal hybrid numbers [14]
Kj,n (2, 1; 1, 1, 2) Jacobsthal-Lucas hybrid numbers [14]

Table 1 : Special cases of the sequence {Kw,n}

The norm of the n-th bi-periodic Horadam hybrid number Kw,n is ‖Kw,n‖ :=√
|C (Kw,n)|. Here C (Kw,n) is the character of the n-th bi-periodic Horadam
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hybrid number Kw,n and defined by

C (Kw,n) = Kw,nKw,n = w2
n + (wn+1 − wn+2)

2 − w2
n+2 − w2

n+3, (2.1)

where Kw,n := wn−wn+1i−wn+2ǫ−wn+3h is the conjugate of the bi-periodic
Horadam hybrid number.

Theorem 1. The generating function for the bi-periodic Horadam hybrid se-
quence {Kw,n} is

G (x) =

(
1− (ab+ c) x2 + bcx3

)
Kw,0 + x

(
1 + ax− cx2

)
Kw,1

1− (ab+ 2c) x2 + c2x4
.

Proof. Let

G (x) =

∞∑

n=0

Kw,nx
n = Kw,0 +Kw,1x+Kw,2x

2 + · · ·+Kw,nx
n + · · · .

Since the bi-periodic Horadam hybrid numbers satisfy the recurrence relation

Kw,n = (ab+ 2c)Kw,n−2 − c2Kw,n−4, n ≥ 4,

we get
(
1− (ab+ 2c) x2 + c2x4

)
G (x)

= Kw,0 +Kw,1x+ (Kw,2 − (ab+ 2c)Kw,0) x
2

+(Kw,3 − (ab+ 2c)Kw,1)x
3

+

∞∑

n=4

(
Kw,n − (ab+ 2c)Kw,n−2 + c2Kw,n−4

)
xn

= Kw,0 +Kw,1x+ ((aKw,1 + cKw,0)− (ab+ 2c)Kw,0)x
2

+(((ab+ c)Kw,1 + bcKw,0)− (ab+ 2c)Kw,1)x
3.

�

Next, we state the Binet formula for the bi-periodic Horadam hybrid num-
bers and so derive some well-known mathematical properties.

Theorem 2. The Binet formula for the bi-periodic Horadam hybrid numbers
is

Kw,n =
aξ(n+1)

(ab)⌊
n
2 ⌋
(
Aαξ(n)α

n −Bβξ(n)β
n
)
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where αξ(n) and βξ(n) are defined as

αξ(n) : = 1 +
1

a

(a
b

)ξ(n)
αi+

1

ab
α2ǫ+

1

a2b

(a
b

)ξ(n)
α3h,

βξ(n) : = 1 +
1

a

(a
b

)ξ(n)
βi+

1

ab
β2ǫ+

1

a2b

(a
b

)ξ(n)
β3h.

Proof. By using the definition of the sequence {Kw,n} and the Binet formula
of {wn} , we obtain the desired result. �

Remark 1. If we take a = b = p and c = −q, we obtain the Binet formula of
the classical Horadam hybrid numbers in [15].

Lemma 1.

αξ(n)βξ(n) =

{
Kv,0 − θ + ∆

a
c (Ku,0 − η) , if n is even

Kv̂,0 − θ̂ + ∆
b
c
(
Kû,0 − η̂

)
, if n is odd

(2.2)

βξ(n)αξ(n) =

{
Kv,0 − θ − ∆

a
c (Ku,0 − η) , if n is even

Kv̂,0 − θ̂ − ∆
b
c
(
Kû,0 − η̂

)
, if n is odd

(2.3)

where

η : = (1− b) i+ (a− b− c) ǫ+ (1 + ab+ c) h,

η̂ : = (1− a) i+ (b− a− c) ǫ+ (1 + ab+ c) h,

θ : = 1− bc

a
+ bc+

bc3

a
,

θ̂ : = 1− ac

b
+ ac+

ac3

b
.

and the sequences
{
Kû,0

}
and

{
Kv̂,0

}
are the auxiliary sequences that are

obtained from {Ku,0} and {Kv,0} just only switching a ↔ b. That is, ûn =(
b
a

)ξ(n+1)
un and v̂n =

(
a
b

)ξ(n)
vn.

Proof. By using the definition of multiplication of two hybrid numbers, we
have

αξ(n)βξ(n) = 1 +
bc

a

(a
b

)2ξ(n)
− bc3

a

(a
b

)2ξ(n)
−
(a
b

)ξ(n)
bc

+

(
b
(a
b

)ξ(n)
+
(a
b

)2ξ(n) bc
a
∆

)
i

+

(
(ab+ 2c) +

bc

a

(a
b

)2ξ(n)
∆+

c2

a

(a
b

)ξ(n)
∆

)
ǫ

+

((a
b

)ξ(n) (
ab2 + 3bc

)
− c

a

(a
b

)ξ(n)
∆

)
h
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= 1 +
(a
b

)ξ(n)
bc

(
1

a

(a
b

)ξ(n)
− c2

a

(a
b

)ξ(n)
− 1

)

+
(a
b

)ξ(n)
((

b

a

)ξ(n)

2 + bi+

(
b

a

)ξ(n)

(ab+ 2c) ǫ+ (b (ab+ 3c))h

)
− 2

+∆
(a
b

)ξ(n) c
a

((a
b

)ξ(n)
bi+

(
b
(a
b

)ξ(n)
+ c

)
ǫ− h

)

After some necessary simplifications, we get the result (2.2).
Similarly, we can obtain βξ(n)αξ(n). �

By using the Lemma 1, we have

αξ(n)βξ(n) + βξ(n)αξ(n) =

{
2 (Kv,0 − θ) , if n is even

2
(
Kv̂,0 − θ̂

)
, if n is odd.

(2.4)

αξ(n)βξ(n) − βξ(n)αξ(n) =

{
2∆ c

a
(Ku,0 − η) , if n is even

2∆ c
b

(
Kû,0 − η̂

)
, if n is odd.

(2.5)

Lemma 2.

αξ(n)αξ(n) =

{
Kv,0 + µe +

∆
a
(Ku,0 + γe) , if n is even

Kv̂,0 + µo +
∆
b

(
Kû,0 + γo

)
, if n is odd

(2.6)

βξ(n)βξ(n) =

{
Kv,0 + µe − ∆

a
(Ku,0 + γe) , if n is even

Kv̂,0 + µo − ∆
b

(
Kû,0 + γo

)
, if n is odd

(2.7)

where

µe : = −1 +
b

a
c (u5 + 2u2 − u1) + bγe

µo : = −1 +
a

b
c

(
u5 + 2

b

a
u2 − u1

)
+ aγo

and

γe : =
1

2

(
b

a
u6 + 2u3 −

b

a
u2

)

γo : =
1

2
(u6 + 2u3 − u2) .

Proof. By considering the relations

αξ(n)αξ(n) = 2αξ(n) − C
(
αξ(n)

)

and

βξ(n)βξ(n) = 2βξ(n) − C
(
βξ(n)

)
,

where C
(
αξ(n)

)
is the character of the hybrid number αξ(n) and using the

relations (1.9) and (1.10), we get the desired result. �
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Remark 2. If we take a = b = p and c = q, we obtain the analogous relations
for (p, q)-Fibonacci hybrid numbers in [8, Lemma 2.9].

Theorem 3. (Vajda’s like identity) For nonnegative integers n, r, and s, we
have

Kw,n+2rKw,n+2s −Kw,nKw,n+2(r+s)

=

{
(−c)nAB∆2u2r ((Kv,0 − θ) u2s − c (Ku,0 − η) v2s) , if n is even

(−c)nAB∆2u2r

((
Kv̂,0 − θ̂

)
b
a
u2s − c

(
Kû,0 − η̂

)
v2s

)
, if n is odd.

Proof. From the Binet formula of the bi-periodic Horadam hybrid numbers,
we get

Kw,n+2rKw,n+2s −Kw,nKw,n+2(r+s)

=
aξ(n+2r+1)

(ab)⌊
n+2r

2 ⌋
(
Aαξ(n)α

n+2r −Bβξ(n)β
n+2r

) aξ(n+2s+1)

(ab)⌊
n+2s

2 ⌋
(
Aαξ(n)α

n+2s −Bβξ(n)β
n+2s

)

− aξ(n+1)

(ab)⌊
n
2 ⌋
(
Aαξ(n)α

n −Bβξ(n)β
n
) aξ(n+2(r+s)+1)

(ab)

⌊
n+2(r+s)

2

⌋
(
Aαξ(n)α

n+2(r+s) −Bβξ(n)β
n+2(r+s)

)

=
a2ξ(n+1)

(ab)2⌊
n
2 ⌋+r+s

(
−ABαξ(n)βξ(n)α

n+2rβn+2s −ABβξ(n)αξ(n)α
n+2sβn+2r

+ABαξ(n)βξ(n)α
nβn+2(r+s) +ABβξ(n)αξ(n)α

n+2(r+s)βn
)

=
a2ξ(n+1)

(ab)2⌊
n
2 ⌋+r+s

AB (αβ)n
(
αξ(n)βξ(n)β

2s
(
β2r − α2r

)
+ βξ(n)αξ(n)α

2s
(
α2r − β2r

))

=
a2ξ(n+1)

(ab)2⌊
n
2 ⌋+r+s

AB (αβ)n
(
α2r − β2r

) (
βξ(n)αξ(n)α

2s − αξ(n)βξ(n)β
2s
)
.

If n is even, by considering the relations (2.2) and (2.3), we obtain

Kw,n+2rKw,n+2s −Kw,nKw,n+2(r+s)

=
a2ξ(n+1)

(ab)2⌊
n
2 ⌋+r+s

AB (αβ)n
(
α2r − β2r

) (
βξ(n)αξ(n)α

2s − αξ(n)βξ(n)β
2s
)

=
a2 (−c)n

(ab)r+s AB
(
α2r − β2r

)(
(Kv,0 − θ)

(
α2s − β2s

)
− ∆

a
c (Ku,0 − η)

(
α2s + β2s

))

=
a2 (−c)n

(ab)r+s AB
(ab)r

a
∆u2r

(
(Kv,0 − θ)

(
(ab)s

a
u2s∆

)
− ∆

a
c (Ku,0 − η) ((ab)s v2s)

)

= (−c)nABu2r∆
2 ((Kv,0 − θ)u2s − c (Ku,0 − η) v2s) .

Similarly, we obtain the desired result for odd n. �
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Corollary 1. If we take s = −r, we get the Catalan’s like identity:

Kw,n+2rKw,n−2r −K
2
w,n

=

{
(−1)n+1 cn−2rAB∆2u2r ((Kv,0 − θ) u2r + c (Ku,0 − η) v2r) , if n is even

(−1)n+1 cn−2rAB∆2u2r

((
Kv̂,0 − θ̂

)
b
a
u2r + c

(
Kû,0 − η̂

)
v2r

)
, if n is odd.

Corollary 2. If we take s = −r and r = 1, we get the Cassini’s like identity:

Kw,n+2Kw,n−2 −K
2
w,n

=

{
(−1)n+1 acn−2AB∆2 ((Kv,0 − θ) a+ c (ab+ 2c) (Ku,0 − η)) , if n is even

(−1)n+1 acn−2AB∆2
((

Kv̂,0 − θ̂
)
b+ c (ab+ 2c)

(
Kû,0 − η̂

))
, if n is odd.

Note that for even case, the Cassini’s like identity can be stated as by means
of the following matrix identity:

[
Kw,2n+2 Kw,2n

Kw,2n Kw,2n−2

]
=

[
Kw,4 Kw,2

Kw,2 Kw,0

] [
ab+ 2c −c2

1 0

]n−1

. (2.8)

By taking determinant from above to down below of both sides of the matrix
equality (2.8), we get

Kw,2n+2Kw,2n−2 −K
2
w,2n = c2n−2

(
Kw,4Kw,0 −K

2
w,2

)
. (2.9)

By taking determinant from down below to above of both sides of the matrix
equality (2.8), we get

Kw,2n−2Kw,2n+2 −K
2
w,2n = c2n−2

(
Kw,0Kw,4 −K

2
w,2

)
. (2.10)

Theorem 4. For n ≥ 1, we have

n∑

r=1

Kw,r =
c2 (Kw,n +Kw,n−1 −Kw,0 −Kw,−1)−Kw,n+2 −Kw,n+1 +Kw,2 +Kw,1

c2 − ab− 2c+ 1
.

Proof. First note that by considering the formula in (1.8), the bi-periodic
Horadam hybrid numbers for negative subscripts can be defined as

Kw,−n = w−n + w−n+1i+ w−n+2ǫ+ w−n+3h.

If n is odd, we have

n∑

r=1

Kw,r =

n−1
2∑

r=1

Kw,2r+

n+1
2∑

r=1

Kw,2r−1
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=
a

(ab)
n−1
2


Aαξ(n)α

n+1 −Aαξ(n)α
2 (ab)

n−1
2

α2 − ab
+

−Bβξ(n)β
n+1 +Bβξ(n)β

2 (ab)
n−1
2

β2 − ab




+
ab

(ab)
n+1
2


Aαξ(n)α

n+2 −Aαξ(n)α (ab)
n+1
2

α2 − ab
+

−Bβξ(n)β
n+2 +Bβξ(n)β (ab)

n+1
2

β2 − ab




=

n−1
2∑

r=1

a

(ab)r

(
Aαξ(n)α

2r −Bβξ(n)β
2r
)
+

n−1
2

+1∑

r=1

ab

(ab)r

(
Aαξ(n)α

2r−1 −Bβξ(n)β
2r−1

)

= aAαξ(n)

n−1
2∑

r=1

(
α2

ab

)r

− aBβξ(n)

n−1
2∑

r=1

(
β2

ab

)r

+
ab

α
Aαξ(n)

n−1
2

+1∑

r=1

(
α2

ab

)r

− ab

β
Bβξ(n)

n−1
2

+1∑

r=1

(
β2

ab

)r

= aAαξ(n)




(
α2

ab

)n−1
2

+1
− α2

ab

α2

ab
− 1


− aBβξ(n)




(
β2

ab

)n−1
2

+1
− β2

ab

β2

ab
− 1




+
ab

α
Aαξ(n)




(
α2

ab

)n−1
2

+2
− α2

ab

α2

ab
− 1


− ab

β
Bβξ(n)




(
β2

ab

)n−1
2

+2
− β2

ab

β2

ab
− 1




=
a

(ab)
n−1
2 (α2 − ab)

(
β2 − ab

) ×
(
(αβ)2

(
Aαξ(n)α

n−1 −Bβξ(n)β
n−1
)
− ab

(
Aαξ(n)α

n+1 −Bβξ(n)β
n+1
)

+(ab)
n−1
2

(
− (αβ)2

(
Aαξ(n) −Bβξ(n)

)
+ ab

(
Aαξ(n)α

2 −Bβξ(n)β
2
)))

=
c2 (Kw,n−1 −Kw,0 +Kw,n −Kw,−1)−Kw,n+1 −Kw,n+2 +Kw,2 +Kw,1

c2 − ab− 2c+ 1

If n is even, we have

n∑

r=1

Kw,r =

n
2∑

r=1

Kw,2r +

n
2∑

r=1

Kw,2r−1.

In a similar manner, we get the desired result. �
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Theorem 5. For nonnegative integers n and r, we have

(i)

n∑

i=0

(
n

i

)
(−c)n−i

Kw,2i+r = (ab)
n
2

(a
b

) ξ(n+r)−ξ(r)
2

Kw,n+r.

(ii)
n∑

i=0

(
n

i

)
cn−i (ab)

i
2

(a
b

) ξ(i+r)−ξ(r)
2

Kw,i+r = Kw,2n+r.

Proof. (i) From the Binet formula of the bi-periodic Horadam hybrid numbers,
we get

n∑

i=0

(
n

i

)
(−c)n−i

Kw,2i+r

=

n∑

i=0

(
n

i

)
(−c)n−i a

ξ(2i+r+1)

(ab)⌊
2i+r
2 ⌋

(
Aαξ(n)α

2i+r −Bβξ(n)β
2i+r

)

=
aξ(r+1)

(ab)⌊
r
2⌋

Aαξ(n)α
r

n∑

i=0

(
n

i

)
(−c)n−i

(
α2

ab

)i

− aξ(r+1)

(ab)⌊
r
2⌋

Bβξ(n)β
r

n∑

i=0

(
n

i

)
(−c)n−i

(
β2

ab

)i

=
aξ(r+1)

(ab)⌊
r
2⌋

Aαξ(n)α
r

(
α2

ab
− c

)n

− aξ(r+1)

(ab)⌊
r
2⌋

Bβξ(n)β
r

(
β2

ab
− c

)n

=
aξ(r+1)

(ab)⌊
r
2⌋
(
Aαξ(n)α

n+r −Bβξ(n)β
n+r
)
=

aξ(r+1)

(ab)⌊
r
2⌋

(ab)⌊
n+r
2 ⌋

aξ(n+r+1)
Kw,n+r

=
a−ξ(r)+ξ(n+r)

(ab)⌊
r
2⌋−⌊n+r

2 ⌋Kw,n+r = (ab)
n
2

(a
b

)−ξ(r)+ξ(n+r)
2

Kw,n+r.

(ii) It can be proven similarly. �

3. Some relations between generalized bi-periodic Fibonacci and

Lucas hybrid numbers

Now we state some relations between bi-periodic Fibonacci and bi-periodic
Lucas hybrid numbers. To do this, we consider the generalized bi-periodic
Fibonacci hybrid numbers Ku,n and the generalized bi-periodic Lucas hybrid
numbers Kv,n which are stated in Table 1.

The Binet formula of Ku,n is

Ku,n =
aξ(n+1)

(ab)⌊
n
2 ⌋

(
αξ(n)α

n − βξ(n)β
n

α− β

)
, (3.1)
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and the Binet formula of Kv,n is

Kv,n =
a−ξ(n)

(ab)⌊
n
2 ⌋
(
αξ(n)α

n + βξ(n)β
n
)
. (3.2)

Theorem 6. For any natural number m,n with n > m, we have

(i)Ku,n+1+cKu,n−1 =
(a
b

)ξ(n)
Kv,n

(ii)Kv,n+1+cKv,n−1 =
(a
b

)ξ(n)
∆2

Ku,n

(iii)Ku,nKv,m−Ku,mKv,n =

{
2 (−c)m un−m (Kv,0 − θ) , if n is even

2
(
a
b

)−ξ(m)
(−c)m un−m

(
Kv̂,0 − θ̂

)
, if n is odd.

(iv)K2
v,n−K

2
u,n =





(
∆2−a2

∆2

)
(Kv,0 + µe) v2n +

(
∆2−a2

a2

)
(Ku,0 + γe) u2n

+2 (−c)n
(
∆2+a2

∆2

)
(Kv,0 − θ) ,

if n is even

(
∆2−a2

∆2

) (
Kv̂,0 + µo

)
bv2n
a

+
(
∆2−a2

a2

) (
Kû,0 + γo

)
u2n

+2b
a
(−c)n

(
∆2+a2

∆2

)(
Kv̂,0 − θ̂

)
,

if n is odd.

Proof. (i) From the relations (3.1) and (3.2), we have,

Ku,n+1+cKu,n−1

=
aξ(n)

(ab)⌊
n+1
2 ⌋

(
αξ(n)α

n+1 − βξ(n)β
n+1

α− β

)
+c

aξ(n)

(ab)⌊
n−1
2 ⌋

(
αξ(n)α

n−1 − βξ(n)β
n−1

α− β

)

=
aξ(n)

(ab)⌊
n
2 ⌋+ξ(n)

(
αξ(n)α

n+1 − βξ(n)β
n+1 − αξ(n)α

nβ + βξ(n)β
nα

α− β

)

=
aξ(n)

(ab)⌊
n
2 ⌋+ξ(n)

(
αξ(n)α

n (α− β) + βξ(n)β
n (α− β)

α− β

)

=
aξ(n)

(ab)⌊
n
2 ⌋+ξ(n)

(
αξ(n)α

n + βξ(n)β
n
)
=
(a
b

)ξ(n)
Kv,n

(ii) The proof can be done similarly as (i) by using the relations (3.1) and
(3.2).

(iii) By using the Binet formulas for Ku,n and Kv,n, and considering the
relation (2.4), we get the desired result.

(iv) By using the Binet formulas for Ku,n and Kv,n, we have

∆2 (Kv,nKv,n −Ku,nKu,n)
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=
a2ξ(n+1)

(ab)2⌊
n
2 ⌋

∆2

a2

(
αξ(n)αξ(n)α

2n + βξ(n)βξ(n)β
2n + (αβ)n

(
αξ(n)βξ(n) + βξ(n)αξ(n)

))

−
(
αξ(n)αξ(n)α

2n + βξ(n)βξ(n)β
2n − (αβ)n

(
αξ(n)βξ(n) + βξ(n)αξ(n)

))

=
a2ξ(n+1)

(ab)2⌊
n
2 ⌋

((
∆2

a2
− 1

)(
αξ(n)αξ(n)α

2n + βξ(n)βξ(n)β
2n
)

+

(
∆2

a2
+ 1

)
(αβ)n

(
αξ(n)βξ(n) + βξ(n)αξ(n)

))
.

By considering the relations (2.4), (2.6), and (2.7), we get the desired result.
�

4. Conclusion

In recent years, many studies have been devoted to investigate the hybrid
numbers whose components are from the special number sequences such as
Fibonacci, Lucas, Pell, Horadam numbers, etc. This work provides a new
generalization for hybrid numbers whose coefficients are from the Horadam
numbers. Most of the results of this study generalize the results of those were
given in [8,11,13]. It would also be interesting to study the algebraic structure
of these new hybrid numbers.
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