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Abstract: In this work, by introducing several parameters, a new kernel function including both the homo-
geneous and non-homogeneous cases is constructed, and a Hilbert-type inequality related to the newly
constructed kernel function is established. By convention, the equivalent Hardy-type inequality is also
considered. Furthermore, by introducing the partial fraction expansions of trigonometric functions, some
special and interesting Hilbert-type inequalities with the constant factors represented by the higher deri-
vatives of trigonometric functions, the Euler number and the Bernoulli number are presented at the end of
the paper.

Keywords: Hilbert-type inequality, partial fraction expansion, Euler number, Bernoulli number

MSC 2020: 26D15, 41A17

1 Introduction

Let |fllp,. denote the norm of a measurable function f : R* — R* with respect to a measurable weighted
function u: R* — R*, that is,

1

p

Il = jy(X)fp(X)dx ,
IR+

where p > 1. Under the definition of |f],,,, we define a weighted measured function space L, ,(R*) as
follows:

Lp,y(R+) ={f:R* - R", ”f”p,u < oo}

In particular, for u(x) = 1, we have the abbreviated form: ||f|j,, = lIfl, and L,,,(R*) = L,(R*).

Consider two nonnegative real-valued functions f € L,(R*) and g € L,(R*), where p > 1 and% + % =1.
Then we have the following classical inequality [1]:
X T
[[ 2D axay < Z sy, (L)
X+y sin
00
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(1.1) is the so-called Hilbert inequality, which

p
is one of the most important inequalities in analysis and its relevant applications. Additionally, we also
have some inequalities similar to inequality (1.1), such as [1]

IEs

In general, such inequalities as inequality (1.2) are called Hilbert-type inequalities. Although (1.1) and (1.2)
were put forward more than 100 years ago, mathematicians have always been interested in their extensions,
refinements, analogies and high-dimensional generalizations. The following inequality is a classical exten-
sion of (1.1), which was established by Yang [2] in 2004, that is,

* log :
f(x)g(y)dxdy < { ] I1fllp gl - (1.2)
p

T f08) n
[ [ ey < st htslan, 13
00 r

_ () _ya(1-5) 1,1 _ . .
where 8 > 0, u(x) = x vy =y and S+ = 1, and the constant factor on the right-hand side
of (1.3) is the best possible. For some other extensions of inequality (1.1), and the relevant research on the
discrete and half-discrete cases corresponding to (1.1), we can refer to [3—17]. Furthermore, some analogical

forms of inequality (1.1) can be found in [16], such as

fx)g(y) 231
_[_[ X+ xPyP + yzﬁdXd)’ o ——— 2.8l (1.4)
and
fOgy) 431
_[_[ x2B — Xﬁyﬁ + yzﬁdXdy B ||f||2y||g”2v; (1.5)

where 8 > 0, u(x) = x'=? and v(y) = y'-%.
Regarding inequality (1.2), Yang [18] gave an analogy as follows in 2008:

15

where ¢o = Y72 (z(k ?1)2 = 0.91596" is the Catalan constant.

Some other inequalities related to (1.2) and (1.6), including the discrete and half-discrete cases, can be
found in [7,16,19-21]. In addition, by the introduction of different new kernel functions, multiple para-
meters and special functions, a large number of new Hilbert-type inequalities were established in the past
several decades (see [22-33]).

In this work, we will establish the following Hilbert-type inequalities with the best constant factors:

‘log

f(x g(y)dxdy < 8collfl:lgl., (1.6)

II 2+ log f(x)g(y)dxdy < 62\1/27'[ 1F 12, g N2, 5 (1.7)
ﬂ2

fju yxz S W dxdy < J-Ifla gl 18

0000 1 X 2

ffé;%%ﬁvmwmw “Jﬁmmmmp (1.9)

where p(x) = x7%, vi(y) =y and vy(y) =
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More generally, we will construct a new kernel including both the homogeneous and non-homoge-
neous cases, and establish a new Hilbert-type inequality which is a unified extension of inequality
(1.1)-(1.9). Furthermore, the equivalent Hardy-type inequality is also considered. The discussions will be
closed with some corollaries addressing special Hilbert-type inequalities with the constant factors asso-
ciated with the higher derivatives of trigonometric functions.

2 Definitions and lemmas

Lemma 2.1. Letn € N*,§ € {1, -1} andnf > A > 0. Let a be such thata > -1 for 6" = 1 and a > O for 6" = -1.
Define

[log |4
K(t) = . 2.1
® 1+ 6t8 + -+ (6tA)| @1
00
Then IO K(t)t*-1dt converges.
Proof. For the case a > -1 and 6" = 1, let 6 be such that 0 < § < nf§ — A. Then
. K@ott [log e eGPy [log t|«
Jm e = M = e - M g =0
Since -nf + A + 6 — 1 < -1, it follows that LOOK(t)t"’ldt converges.
In addition, since n € N*, § € {1, -1} and 6" = 1, we can easily obtain
Lim(1 + 6t +--+ 6tF"| =1+ 6+ 62 +--+ 8"+ 0.
t—1
Therefore,
A-1 I3
m KO ! Jim 108 1% _ ! . 2.2)

(o1 1=t 1+6+6%++8Tt>1 [1—t]%  1+6+6%+---+6"
Hence, it follows from (2.2) that _[ K(t)t*1dt converges.

Finally, it is needed to prove that .[ZK (t)t*-1dt converges, and this is obvious according to the following

equality, that is,

. KOt logt

lim = lim =0,
t—0* t/\+971 t—0* t@

where -A < 0 < 0. Based on the above discussions, it is proved that j:OK(t)t"‘ldt converges under the

condition @ > —1 and 6" = 1. Similarly, it can also be proved that I;OK(t)t"‘ldt converges under the condi-
tiona > 0 and 6" = -1. O

Lemma 2.2. Letn € N*,§ € {1, -1} and in > A > 0. Let a be such that & > -1 for 8" = 1and a > 0O for 6" = -1.
Define

— S k(n+1) 1 _ 6
Clao . A, 6., By, ) = 3.8 {(kﬁ’(n T AT (B + 1) + B+ 1) — et

kzooo 2.3)

+ Zék(ml) 1 _ 6 X
(kB(n +1) + Bn — )**1 (kB(n + 1) + A + B)*+!

k=0
Then

'[ K@©)t*dt = T(@ + 1C(@, B, A, 6, n, By, ), (2.4)

where I'(u) = '[;Ox"*le*"dx, (u > 0) is the I'-function [34], and I'(u) = (u — 1)! foru € N*.
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Proof.

2 2 A1 A+p-1
1 meAeBe
JK(t)t’Hdt _ [l i

———|log t|*dt
- @y o8
A-1_ gphep-1 A-1_ gphep-1
I It 8t I |log t|*dt + J‘Mllog tjede
(6tﬁ)n+1| (Stﬁ)nﬂl
= Il + 12.

Observing that § > 0, 6 € {1, -1} and O < t < 1, we have

1 o0
—— = Z(&tﬂ)k(nﬂ).
1- (6Pt &=
Therefore,
Z&k(nﬂ) Itkﬁ(n+1)+A 1|10g l‘|“dt _ 5thﬁ(n+1)+/l+ﬁ 1|10g t|"‘dl‘ — Z5k(n+1) (Ill _ 5112).
k=0 o o k=0
Setting |logt| = m, we can obtain
(AN R p7oN— L5 -
(kB(n + 1) + A)x+! (kB(n + 1) + )2+
0

Similarly, we have

(e9]

I, = L Ie‘“u“du = [+ 1) .
(kB(n + 1) + A + B)*+! (kB(n + 1) + A + B)x+!
0

It follows from plugging (2.7) and (2.8) into (2.6) that

I = iak(nﬂ) Tla+1) _ Ol(a + 1)
= (kB(n + 1) + D)*T (kB(n + 1) + A+ )+t

Similarly, we can deduce that

I'tﬂn -A-1 _ tﬁ(n+1)—}l—1|

log t|*dt
i@

— i k(n+1) [(a+1) _ 6l(a + 1)
Pard (kB(n + 1) + Bn — )@ (kB(n + 1) + f(n + 1) — )@+ [
Plugging (2.9) and (2.10) back into (2.5), and using (2.3), we obtain (2.4).

Lemma 2.3. Leta, b > 0,a + b =s and m € N. Let ¢,(x) = cotx. Then

(am) (ﬂj _ (Zm)!sz’"“i 1 ~ 1
@ s p2m+1 Par (Sk + a)2m+1 (Sk+ b)2m+1 ’

(p(z,,,ﬂ)[ j __(@m+ 1)152m+2§ 1 . 1
1 S p2m+2 Par (Sk + a)2m+2 (Sk + b)2m+2 :

(2.5)

(2.6)

(2.7)

(2.8)

(2.9)

(2.10)

(2.11)

(2.12)
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Proof. We start the proof of Lemma 2.3 from the partial fraction expansion of ¢,(x) = cotx as follows [34]:

o=t S, 1)

X o\x+kn x-kn

Taking the 2mth derivative of ¢,(x), we have

™ (x) = (2m)! lim [z o kn)2m+l Z kﬂ)2m+1] (2.13)

n—oo k=0 k=1

Setting x = % in (2.13), in view of a + b = s, it follows that

n n
(am) ﬂj _ (zm)!32m+1 lim
# ( S 2m+l I;)(Sk + a)2m+l kZ:l Sk)2m+l

(2m)1s2m+1 L 1 ol 1
= ———— lIm -
n—2m+1 n—co (& (Sk + a)2m+1 = (Sk + b)2m+1

_ (am)1s?mt S ( 1 1 J

p2m+l ~ (Sk+ a)2m+1 - (Sk+ b)2m+1 :

Therefore, the proof of (2.11) is completed. Similarly, we can obtain (2.12). O

Lemma 2.4. Leta,b > 0,a + b = s and m € N. Let ¢,(x) = csc x. Then

2m) anj @m)!s?mt & 1 1 )1
@, [ S n2m+l z( (Sk + a)2m+1 + (sk + b)2m+l : (2.14)

Proof. Take the 2mth derivative the partial fraction expansion of ¢,(x) = csc x as follows [34]:

1
0-1iv k( ) 215
P, = Z( b x+kt  x—kn 215)
Then
“ 0 ¢ (-DF
@m) (x) = (2m)! lim -
(pz ( ) ( ) n—oo kz() (X + kﬂ)2m+1 kzl - ]<7T)2m+1
. ) . ) (2.16)
(-1 (-1)
2m)! lim
= @m)! 00 [kz;) (kmr + x)¥m+1 g (krr + 11 — x)2m+1 [
Since a + b = s, then we can arrive at (2.14) by setting x = ? in (2.16). O
Remark 2.5. Letting a = b = 1 in (2.12), we have
(p(2m+1)[ ) __(@m+ 112 - 1 . 217)
1 2 n2m+2 = (2k + 1)2m+2
Since [34] Z;’iokl,}m = %Bmﬂ, where By, is a Bernoulli number, B; = %, B; = %, B; = %, , then we
obtain
oo oo 1 1 22m+2 -1 e
z Qk + 1)2m+2 = ’(Z(kZerZ B (zk)2m+2j = 202m + 2)! T By 1. (2.18)
k=0 =1 .

Applying (2.18) to (2.17), we obtain

1
(2m+1) _ J2m+2 _ 1)p2m+lg 2.19
h (2] m+ 1( ) el 21
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Similarly, letting a = 1, b = 3 in (2.12), we can also obtain

g01(2m+1) [ j - _ 1 (22m+2 _ 1)42m+1Bm+1_ (2_20)
4 m+1
In addition, lettinga =1, b = 3 in (2.11) and a = b = 1 in (2.14), in view of [34] Zﬁo(zktg;ﬂ = zzﬂg;), ms
where E,, is an Euler number, E, =1, E; =1, E, = 5, E3 = 61,..., we obtain
Ep (2m) ( j (2m) ( ) 2.21
<P1 4 ©, 5 (2.21)

3 Main results

Theorem 3.1. Letn e N*, 6 € {1, -1}, Bn > A > O and B,B, # O. Let a be such thata > -1for6" =1anda > 0
for 6" = ~1. Define u(x) = x*1-M)-1 gnd v(y) = ya91-%)-1 where p > 1 and % + % = 1. Suppose that f(x),

g(x) 20 and f(x) € L, ,(R"), g(x) € Ly (R"). K(t) is defined via (2.1) and C(a, B, A, 6, n, B;, B,) is defined
via (2.3). Then

IIK(Xﬁlyﬁz) FOOg(y)dxdy < |B,[#|B,I 7T (a + 1) C(a, B, A, 8, 1, By, By) Iy, gl G.D

00

where the constant factor |B1|*% |B2|*%F(a + 1)C(a, B, A, 6, n, By, B,) is the best possible.

Proof. By Holder’s inequality and Fubini’s theorem, we have
| [xCeye) o0gtyraxay

00

- II{(K(xmyﬁz jp x iy f(X)][[K(Xﬁwﬁz)]qyl Xy g(y)]dxdy

1 L (3.2)
[eelNve) p [ 0O OO q
p(1- 17/\
< IJK xﬁlyﬁz yMa- 1x fp(x)dxdy J II((Xﬂlyﬁz) XMy p gq(y)dxdy
(V0] 0 0
< qa-A8, !
- jw(x)x P o) dx fw(y)y gyl
0
where w(x) = I:OK(xﬁlyﬁz) y¥-1dy and w(y) = j:OK(xﬁlyﬁz) xM-1dx.
Setting xPiyf> = t, and using Lemma 2.2, we can obtain
w0 = j OOt = L T(a + 1Ca, B, A, 6, 1, By, By)x (33)
Iﬁz 1B,
and
y™ 1
w()’) = | - |ﬁ_|r(a + 1) C(a’ ﬂ’ /\a 6’ n, ﬁp ﬂz)yi/\ﬁz' (3.4)
1 1
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Plugging (3.3) and (3.4) into (3.2), we obtain
[ [xCebyes) so0gaxey < BB @ + DC@, 8,4, 6, 1, By By lglan (3.5)
00

If (3.5) takes the form of an equation, then there must exist two constants C; and G, that are not both equal to
zero, such that

1 p(-A87) q(1-A85)

CR(xPryP2 )y fP(x) = GK(xPyP2)x¥ily™ 5 ga(y)

holds almost everywhere in the domain (0, co) x (0, co). That is,

CuxPU-W0fP(x) = Gyat-Mga(y).
Hence, there must be a constant C such that C;xP4-4)fP(x) = C and G,y?1-¥)g4(y) = C hold almost every-
where in (0, o). Without loss of generality, assuming C; # 0, we can obtain xPU-M)-1fP(x) = C—CX holds
almost everywhere in (0, co). This obviously contradicts the fact that f(x) € L, ,(R*). Therefore, (3.5) keeps

the form of a strict inequality, and (3.1) is obtained.
Finally, it will be proved that the constant factor in (3.1) is the best possible. If the constant factor

IB,I"1B,I"?T(a + 1)C(a, B, A, 8, n, B, B,) is not the best possible, then there will be a positive constant k <

IB,I4|B,I"?T(a + 1)C(a, B, A, 8, n, B, B,), such that (3.1) still holds if |8,|"¢|B,I »T(a + 1)C(at, B, A, 8, n, B, B,)
is replaced by k. That is,

[ee]ee]

[ [xGePy®) e0gaxay < Kiftp gl (3.6)
00

Consider a sufficiently small positive number ¢, and define the functions f;(x) and g.(y) as follows:

Xp(wl’pl)’ﬁlf xeQ qmﬂz*q”‘rﬂzf c0
fe0) = e gy=yY Ve
0 X € [R+\Ql, 0, y € IR+\02,

B B
Whertez{x:x> O,Xﬁ > l}ansz ={y:y> O,yﬁ < 1}.
Replacing f and g in (3.6) with f; and g,, respectively, we have

1 1
0000 p q

€ JII((xﬁlyﬁz) fe(X)g,(y)dxdy < ek J‘x*ﬁlffldx J‘yﬁzf*dy = kI, 7|, |4 (3.7
00 o Q,

On the other hand, setting xf1y#: = t, we have

€ IIK(Xﬁlyﬁz) fe(x)g.(y)dxdy = sij IK(xﬁlyﬁz) X dx\dy
00 Q, O

_ £ f yhae1 J‘K(t)t/‘*%*ldt dy
By ]
2

yﬂz

(3.8)

0 1
= Iﬁil f yhaet f K()tA-5-1dt|dy + ijyﬁzf-l IK(t)tA-%'ldt dy
1L 1 Q, yh2

I8l

2

(o)

1
J-K(t)tf‘*%*ldt + & IyﬁzH J‘K(t)t/‘*%*ldt dy.
1B,
1 Q, yh

_ 1
BB,
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No matter , > 0 or §, < 0, it follows from Fubini’s theorem that

1 1

jyﬁze-l II((t)tA‘%‘ldt dy = Ljf((t)tﬂ%-ldt. (3.9)

|ﬁ2|€
Q, Yﬁz 0

Applying (3.9) to (3.8), we can obtain

[ee)oe)

£ _”K (xPiyP2) f.(0g.(y)dxdy =

00

1
1B,

[ 1
IK(t)tA-%-ldt + IK(t)tA+5‘1dt ) (3.10)
1 0

Letting € — 0* and using (2.4), we arrive at

00 0O

€ ”I<(xﬁ1yﬁz) fe(X)g:(y)dxdy =

00

Combining (3.7) and (3.11), and letting € — 0%, then we have IBII*% Iﬁzlfél"(a +1)C(a, B, A, 6,n, B, B,) <k,
which obviously contradicts the hypothesis. Therefore, the constant factor in (3.1) is the best possible. [

1
1B,

IF(a + 1)C(a, B, A, 6, n, B, B,) + o(1). (3.11)

By convention, we will establish the following equivalent form of Theorem 3.1, which is usually called
the Hardy-Hilbert-type inequality.

Theorem 3.2. Letn e N*,§ € {1, -1}, fn > A > O and B, B, # 0. Let a be such thata > -1for6" = 1anda > 0
for 6" = —1. Define u(x) = x?4-20-1 and v(y) = ya1-2-1 where p > 1 and% + % = 1. Suppose that f(x) = 0
with f(x) € L, ,(R*). K(t) is defined via (2.1) and C(a, B, A, 6, n, B, B,) is defined via (2.3). Then

I~ P p

[yt [R(ePym) fo0ax| ay < (BB I + 0@, B A S By B Ufa)?s G2

0 0

where the constant factor(|ﬁ1|‘% |B2|‘%F(a +1)C(a, B, A, 6,n, B, Bz))p is the best possible, and (3.12) is equiva-
lent to (3.1).

0 p-1
Proof. Consider g(y) := yp"ﬂzl[jK(xﬁlyﬁz) f (x)dx] . It follows from Theorem 3.1 that
0

o p

0 < (lglyn)? = qu“-wz*lgq(y)dy

0
o p P

_ I Y1 f K(xPiyk:) fooydx | dy
0

0 (3.13)
00 00 p
- | [ [xCxry) rosmnaxdy
00
< (I 418,13 T (@ + 1C(@, B, A, 6, 1, By, By) ) (IF )7 (gl )P
Therefore,
ey [eY) p
0 < (Ugla)? = [y#:| [R(xPy:) Fo0ax | ay
! ! (3.14)

< (I 418, P T (@ + 1CCa, B, A, 6,1, By, B) ) (If )P
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Since f(x) € L, ,(R"), it follows from (3.14) that g(x) € L, ,(R"). By using Theorem 3.1 again, we can obtain
that both (3.13) and (3.14) take the form of strict inequality, and therefore (3.12) is proved.
On the other hand, if (3.12) is valid, by Holder’s inequality, we have

HK(xﬁlyﬁz)f(x)g(y dxdy = j L fK(xﬁlyﬁz)f(x)dx (y-1e-lg () dy

00
1 (3.15)

00 00 b P

< '[yp/lﬁz—l II((Xﬁlyﬁz)f(X)dX dy ”g"q,v'
0

0

Plugging (3.12) into (3.15), we can get (3.1). Therefore, (3.1) is equivalent to (3.12). According to the equiva-
lence of (3.1) and (3.12), it can be shown that the constant factor (|,81|‘31 |,BZ|—}:1“(a +1)C(a, B,A,6,n, B, B,) )p
in (3.12) is the best possible. The proof of Theorem 3.2 is completed. O

4 Applications

Letting 6 = 1, a = 2m (m € N) in (2.3), and using (2.11), we can obtain

B p2m+l @m) A om B+ AT
C(""B”I’‘S’"’Bl’ﬁz)‘<2m)![ﬁ(n+1)12"”1{(”1 [ﬁ(n+1)J " B[

Therefore, settingd = 1,a = 2m (m € N), B, = 1and 8, = —1in Theorem 3.1, and replacing g(y)yPn with g(y),
we can obtain the following corollary.

Corollary 4.1. Let n e N*, m € N and fn > A > 0. Let ¢,(x) = cotx, u(x) = x?4-V=1 gnd v(y) = yaa+A-pr-1
where p > 1 and 1 + 1 = 1. Suppose that f(x), g(x) = 0 with f(x) € L, ,(R*) and g(x) € Lq,(R*). Then

]""j’ - log f x)8(y)

+ X”y/"” Dt +yﬁ”dXdy (4.1)
e em| AT ) om B+ AT
B+ D {fpl B+ 1) o) B+ 1) 1 1lp,p. 118 1lg,v
Let n = 11in (4.1), in view of
A B+Mm A
(2m) 2m) = p2m+1,@m) | 20
# EZBJ # ( % ] & [ﬁ]
where ¢,(x) = csc x, then (4.1) is transformed to
10 - p- 2m+1 -
j f A f0g(y)dxdy < {ﬁ} o ( ; jufup,y Il “.2)

where pu(x) = x?1-V-1 and v(y) yda+A-p-1 Tet m = 0, A = B in 4.2), Where ~+ =1, then (4.2) reduces
to (1.3). Additionally, let A = £ 1n (4.2), then it follows from (2 21) that

1og p 2m+1
H A feog(y)dxdy < [ BJ Enlflpoul€la, (43)

where p(x) = x’”(l"g)"1 and v(y) = yq( ),
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Let n = 2 in (4.1), then we have

0000 log P 2m+1 /\7‘[ (ﬂ + /1)7'[
(2m) (2m) 4.4
ijzﬁ N X/;yﬁ f(x)g(y)dxdy < (3/3] {(pl [Bﬁj 2 (73/; J}"f"p,y”g"q,v, (4.4)

where u(x) = x?4-Y-1 and v(y) = y?1+4-26-1 Lettingm = 0, A = B and p = q = 2 in (4.4), we obtain (1.4).
Lettingm =1, A= =1and p = q = 2 in (4.4), we obtain (1.7). Letting A = g in (4.4), since p*™ (”) =0,
we can also obtain

<2 log 2m+1
I f T f(x)g(y)dxdy<(3ﬂj 0 (2l sl (4.5)

8 5
where p(x) = x"’(l'f)‘1 and v(y) = ’1(1'37)‘1.
Letn =3 and A = B in (4.1). In view of ™ ( ) 0, and using (2.21), we have

(log(xy) 2m dnd p 2m+1 E
,[_[(xﬂ + yﬁ) X2 + yzﬁ)f(x)g(y) y < E 4m1 "f"py”g"q Vs (4.6)

where u(x) = x*0-A-1 and v(y) = ya1-2-1,
Setting 6 = 1, a = 2m (m € N) and B, = B, = 1 in Theorem 3.1, we can have the following Hilbert-type
inequality with a non-homogeneous kernel.

Corollary 4.2. Letn € N*,m € N and fn > A > 0. Let ,(x) = cotx, u(x) = x?-Y-Tand v(y) = y94--1 where
p>1 and% + % = 1. Suppose that f(x), g(x) = 0 with f(x) € L, ,(R*) and g(x) € Ly, (R*). Then

T‘X’ (log(xy) 2" f()g(y)
J 1+ ) ek )

4.7)
_ommt  am AT ) om (Bt /\)
[ﬁ(n 4 1)]2m+1 {ng (B(n + I)J (pl ﬁ( "f"py”g"q Ve
Let n = 1in (4.7), then we have
[ [ Gogoo) 2 Y™ o (A
[ 5 o TSy < ( /3) 0" | Ul slgla. (4.8)
00

where @,(x) = csc x, p(x) = xP-V-1 and v(y) = yaa-H-1,
Similarly, taking special values for the parameters in Corollary 4.2, we can obtain some other special
cases of Corollary 4.2. For instance, settingn =2, A = f and n = 3, A = § in (4.7), respectively, we obtain

1 2m 2m+1
I j 1+((Z§§;yi)( yE ™) g()/)dxdy<2[;;] ¢,1<2m>( jnfnp,yugnq,v, (4.9)

I J o foog(y)dxdy < |2 " En i fllp, gl (4.10)
1+ (Xy)ﬁ) + (X)/)zﬁ) B fm+1 p,uliSllg, v .

where pu(x) = x?0-P-1 and v(y) = ya1-A-1,
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Llet6=n=a=1and A= fm(23) we can obtain

< 8¢y

Cl b 2.0, By ) = Z{mk 1?7 (4k + 3)2} Z(2k - 1)2 N

where ¢y = Z32, (z(k 7= = 0.91596" is the Catalan constant. Therefore, setting§ =n=a=1,1= 73, Bl =1land

B, = -1 in Theorem 3.1, and replacing g(y)y? with g(y), we can obtain another corollary.

101 B p(l—ﬁ)—l B q(l—’g)—l
Corollary 4.3. Let § > 0, p > 1 and >te = 1. Let u(x) = x"\""2)7" and v(y) = y*\""2)". Suppose that f(x),
g(x) = 0 with f(x) € Ly ,(R*) and g(x) € Lg,(R*). Then

0000 ‘10 X

IE
B+ VP

f(x)g(y)dxdy <
00 y

ﬁz IIfIIp ulglg,v- (4.11)

Let $ =1and p = g = 2, then (4.11) reduces to (1.6).

Furthermore, settingd =a =1,n=3,A=p, §, =1and 5, = -1 in Theorem 3.1, and replacing gy)y¥#
with g(y), we can obtain Corollary 4.4.

Corollary 4.4. Let >0, p > 1 and % + % = 1. Let u(x) = x?4-B-1 gnd v(y) = y11-2P-1, Suppose that f(x),
g(x) = 0 with f(x) € Ly ,(R*) and g(x) € Lg,(R*). Then

; 4.12
-(l)‘-!- (XB + yﬁ) (X2ﬁ + yzﬁ)f(x)g(y)dXdy < ﬁz ”f”py"g”q Ve ( )

Remark 4.5. Corollaries 4.3 and 4.4 can be regarded as supplements to (4.2) and (4.6), respectively. It
should be noted that if n takes natural numbers other than 1 and 3, the conclusion expressed by the Catalan
constant like Corollaries 4.3 and 4.4 cannot be obtained.

Letd=-1,n=2l-1( eN*)and a =2m + 1 (m € N) in (2.3). By using (2.13), we can obtain

- 2m+2 omsn) [ A omsn [ B+ A1
C@ B, 4. 6,m, By, By) = (2m + 1)1 (2p1)¥m+2 {‘pl (251) Th 2p1

Therefore, setting 6 =-1,n=21-1(1eN*),a=2m+1(meN), ;=1 and B, = -1 in Theorem 3.1, and
replacing g(y)y@-Y8 with g(y), we can obtain Corollary 4.6.

Corollary 4.6. Let le N*, meN and 2l -1)B>A> 0. Let ¢,(x) = cotx, p(x) = xPN-1 and w(y) =
ya+A+5-20)-1 where p > 1and% + % = 1. Suppose that f(x), g(x) > Owith f(x) € L, ,(R*) and g(x) € Lg,(R*).
Then

* ‘log 5
! X@D _ xPAD B . _y(zzfl>/s|f ()8(y)dxdy

_ﬁ (2m+1) An (2m+1) (ﬁ + )
(21‘8)2m+2 {(pl ZIB (pl 21‘8 ||f"p,]1 ”g”q,v-

Letl =1 in (4.13), in view of

A B+ A
@2m+1)| % 2m+1) — 22m+2 @m+1)| ME
. [Zﬁj T [ 25 j h (/J

o—3

(4.13)
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then it follows from (4.13) that

2m+1

log )22
” —————f(0)g(y)dxdy < ( ﬂj gofz'"“{ ﬁ)nfnp,,uguqv, (4.14)

where u(x) = x*0-N-1 and v(y) = y94+4-H-1 Jetm =0, f=1and A = é in (4.14), then we obtain (1.2). Let
A= g in (4.14), by using (2.19), then we obtain

2m+1

(IOg y) T 2m+2 22m+2 _ q
”Wf(x)g(y)dxdy < (EJ L 1l gl (415
00

where u(x) = x¥ (1%)71 and v(y) = y? ( ) . Letting A = = 1n (4.14), and using (2.20), we obtain

00 00 (log §)Zm+1 i - 22m+2 »
I_[ Xﬁ — B f(X)g(}’)dXdy < [E] W42m+1Bm+1”f”p,y”g"q,v; (4.16)
00 y
(1-5)-
where u(x) = x*\'"4)7" and v(y) = y11-)-1
Letl =2 and B = A in (4.13), then we have

log (x)g(y) 7 22 ame2 _ g

.[ .[ (P - yﬂ) o 4 By W < [@j o @ D Balfl gl (4.17)

where u(x) = x*0-A-1 and v(y) = y?1-2$-1, Letm = 0, = 1 and p = q = 2, then we have (1.8).
Letd =-1,n=2 (l e N*) and « = 2m (m € N) in (2.3). By using (2.13), we can obtain

em+l (om) At om (B +)m
C@pdo.m by = (2m)'[(21+1)ﬁ]2’"“{(p2 ((2l+1>/3]+% @+B)[

Therefore, setting 6 = -1,n = 21 (I e N*),a = 2m (m e N), §, = 1 and f, = -1 in Theorem 3.1, and replacing
g(y)y?# with g(y), we can obtain the last corollary.

Corollary 4.7. Let | e N*, m € N and 2IB > A > 0. Let @,(x) = csc x, p(x) = xP"V1 gnd v(y) = ya0+A-2p)-1,
where p > 1 and 1 + l = 1. Suppose that f(x), g(x) = 0 with f(x) € L, ,(R*) and g(x) € Ly,,(R*). Then

log—)
jj|leﬁ X@DBy B yzwlf(x)g(Y)dXdy

ot em A om [ (B+A)m
@+ D {% [(21 + 1)[3] T A g I 18-

Let I = 1in (4.18), then we have

log " Fo0g(y) s A B+
o (2m (4.19)
_[_[ x28 — Xﬁyﬁ N )/2'8 dxdy < [Bﬁ] {(pz [3ﬁ] + @, ( 3ﬁ J}"f”p,,u"g”q,v’

where p(x) = x?0-V-1 and v(y) = y?11+4-2-1 Let m = 0, A = B and p = q = 2 in (4.19), we can obtain (1.5).
In addition, letm =1, A= =1and p = g =2 in (4.19), then we can arrive at (1.9). At last, letting A = =
in (4.19), and using (2.21), we have

(4.18)
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22 10g 2m+1
”Xm . f(x)g(y)dxdy<[7;] [4052’“)[6)+Em]||f||p,u||g||q,v, (4.20)

where u(x) = xl"(l_g)"1 and v(y) = yq(l’?)"l.
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