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Copyright q 2008 Stevo Stević. This is an open access article distributed under the Creative
Commons Attribution License, which permits unrestricted use, distribution, and reproduction in
any medium, provided the original work is properly cited.

1. Introduction

Let B be the open unit ball in the complex vector space C
n, S = ∂B its boundary, D

the open unit disk in the complex plane C, dV (z) the Lebesgue measure on B, dVα(z) =

cα(1 − |z|2)
α
dV (z),where α > −1 and where the constant cα is chosen such that Vα(B) = 1, dσ

the normalized rotation invariant measure on S (that is, σ(S) = 1), H(B) the class of
all holomorphic functions on the unit ball and H∞ = H∞(B) the space of all bounded
holomorphic functions on B with the norm

‖f‖∞ = sup
z∈B

∣

∣f(z)
∣

∣. (1.1)

Let z = (z1, . . . , zn) and w = (w1, . . . , wn) be points in C
n,

〈z,w〉 =
n
∑

k=1

zkwk (1.2)

and |z| =
√

〈z, z〉.
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For f ∈ H(B) with the Taylor expansion f(z) =
∑

|β|≥0aβz
β, let

Rf(z) =
∑

|β|≥0

|β|aβz
β (1.3)

be the radial derivative of f, where β = (β1, β2, . . . , βn) is a multi-index, |β| = β1 + · · · + βn and

zβ = z
β1
1 · · · z

βn
n . It is well known (see, e.g., [1]) that

Rf(z) =
n
∑

j=1

zj
∂f

∂zj
(z). (1.4)

For p > 0 the Hardy space Hp = Hp(B) consists of all f ∈ H(B) such that

‖f‖
p
p = sup

0<r<1

∫

S

∣

∣f(rζ)
∣

∣

p
dσ(ζ) < ∞. (1.5)

It is well known that for every f ∈ Hp the radial limit

f∗(ζ) := lim
r→1

f(rζ) (1.6)

exists almost everywhere on ζ ∈ S.
The weighted Bergman space A

p
α = A

p
α(B), p > 0, α > −1, consists of all f ∈ H(B) such

that

‖f‖
p

A
p
α
=

∫

B

∣

∣f(z)
∣

∣

p
dVα(z) < ∞. (1.7)

When p ≥ 1, the weighted Bergman space with the norm ‖·‖Ap
α
becomes a Banach space. If

p ∈ (0, 1), it is a Frechet space with the translation invariant metric

d(f, g) = ‖f − g‖
p

A
p
α
. (1.8)

Since for every f ∈ Hp

lim
α→−1+0

∫

B

∣

∣f(z)
∣

∣

p
dVα(z) =

∫

S

∣

∣f∗(ζ)
∣

∣

p
dσ(ζ), (1.9)

we will also use the notation A
p

−1 for the Hardy space Hp.
A positive continuous function φ on [0, 1) is called normal (see [2]) if there is δ ∈ [0, 1)

and a and b, 0 < a < b such that

φ(r)

(1 − r)a
is decreasing on [δ, 1), lim

r→1

φ(r)

(1 − r)a
= 0;

φ(r)

(1 − r)b
is increasing on [δ, 1), lim

r→1

φ(r)

(1 − r)b
= ∞.

(1.10)

From now on if we say that a function µ : B → [0,∞) is normal, we will also assume that it is
radial, that is, µ(z) = µ(|z|), z ∈ B.
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The weighted space H∞
µ = H∞

µ (B) consists of all f ∈ H(B) such that

‖f‖H∞
µ
= sup

z∈B

µ(z)
∣

∣f(z)
∣

∣ < ∞, (1.11)

where µ is normal. For µ(z) = (1 − |z|2)β, β > 0, we obtain the weighted space H∞
β

= H∞
β
(B)

(see, e.g., [3–5]).
The little weighted spaceH∞

µ,0 = H∞
µ,0(B) is a subspace ofH

∞
µ consisting of all f ∈ H(B)

such that

lim
|z|→1

µ(z)
∣

∣f(z)
∣

∣ = 0. (1.12)

The class of all f ∈ H(B) such that

Bµ(f) = sup
z∈B

µ(z)
∣

∣Rf(z)
∣

∣ < ∞, (1.13)

where µ is normal, is called the Bloch-type space, and is denoted by Bµ = Bµ(B). With the
norm

‖f‖Bµ
=
∣

∣f(0)
∣

∣ + Bµ(f), (1.14)

the Bloch-type space becomes a Banach space.
The little Bloch-type space Bµ,0 is a subspace of Bµ consisting of those f ∈ Bµ such that

lim
|z|→1

µ(z)
∣

∣Rf(z)
∣

∣ = 0. (1.15)

The α-Bloch space Bα is obtained for µ(z) = (1 − |z|2)α, α ∈ (0,∞) (see, e.g., [6–11]). For α = 1
the space B1 = B becomes the classical Bloch space.

Let ϕ be a holomorphic self-map of B. For any f ∈ H(B), the composition operator is
defined by

Cϕf(z) = f
(

ϕ(z)
)

, z ∈ B. (1.16)

It is of interest to provide function theoretic characterizations when ϕ induces bounded
or compact composition operators on spaces of holomorphic functions. For some classical
results in the topic (see, e.g., [12]). For some recent results see, for example, [3–5, 7, 13–23]
and the references therein.

Let g ∈ H(D) and ϕ be a holomorphic self-map of D. For f ∈ H(D), products of
integral-type and composition operator are defined as follows:

CϕJgf(z) =

∫ϕ(z)

0

f(ζ)g ′(ζ)dζ, JgCϕf(z) =

∫z

0

f
(

ϕ(ζ)
)

g ′(ζ)dζ. (1.17)

When ϕ(z) = z, operators in (1.17) are reduced to the integral operator introduced in
[24]. For some other results on the operator; see, for example, [25, 26], and related references
therein. Some results on related integral-type operators on spaces of holomorphic functions
in C

n can be found, for example, in [27–41] (see also the references therein).
In [42], among other results, we proved the following theorem regarding the

boundedness of the operator JgCϕ : A
p
α(D) → Bµ(D).
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Theorem 1.1. Assume that p > 0, α > −1, g ∈ H(D), µ is normal, and ϕ is a holomorphic self-map
of D. Then JgCϕ : A

p
α(D) → Bµ(D) is bounded if and only if

sup
z∈D

µ(z)
∣

∣g ′(z)
∣

∣

(

1 −
∣

∣ϕ(z)
∣

∣

2)(α+2)/p
< ∞. (1.18)

One of the interesting questions is to extend operators in (1.17) in the unit ball settings
and to study their function theoretic properties on spaces of holomorphic functions on the
unit ball in terms of inducing functions.

Assume that g ∈ H(B), g(0) = 0, and ϕ is a holomorphic self-map of B. We introduce
the following important integral-type operator on the space of holomorphic functions on B:

P
g
ϕ (f)(z) =

∫1

0

f
(

ϕ(tz)
)

g(tz)
dt

t
, f ∈ H(B), z ∈ B. (1.19)

First note that when n = 1, the operator is reduced to an operator of the form
as the second operator in (1.17). Indeed, since g ∈ H(D) and g(0) = 0, it follows that
g(z) = zg0(z), z ∈ D for some g0 ∈ H(D). By using this fact and the change of variables
ζ = tz, we obtain

P
g
ϕf(z) =

∫1

0

f
(

ϕ(tz)
)

tzg0(tz)
dt

t
=

∫z

0

f
(

ϕ(ζ)
)

g0(ζ)dζ. (1.20)

Hence operator (1.19) is a natural extension of the second operator in (1.17).
Now we formulate the following big research project related to the operator P

g
ϕ .

Research project 1. Let X and Y be two Banach spaces of holomorphic functions on the
unit ball in C

n (e.g., the weighted Bergman space A
p
α, the Bloch-type space Bµ, the Hardy

space Hp space, the weighted space H∞
µ , the Besov space Bp, BMOA etc.) Characterize the

boundedness, compactness, essential norms, and other operator theoretic properties of the
operator P

g
ϕ : X → Y in terms of function theoretic properties of inducing functions ϕ and g.

Another interesting question is to find the exact value of the norm of operators on
spaces of holomorphic functions. Majority of papers in the area only find asymptotics of the
operator norm of certain linear operators on some spaces of holomorphic functions. There
are a few papers which calculate the operator norm of these operators. Recently in [4] we
calculated operator norm of theweighted composition operator uCϕ mapping the Bloch space
B to the weighted space H∞

µ , which motivates us to find the norms of weighted composition
and other closely related operators between various spaces of holomorphic functions.

Research project 2. LetX and Y be two Banach spaces of holomorphic functions as in Research
project 1. Calculate the operator norm of P

g
ϕ : X → Y in terms of inducing functions ϕ and g.

In this paper, among other results, wewill calculate the operator norm of P
g
ϕ : A

p
α(B) →

Bµ(B). We will also characterize the boundedness, compactness, and the essential norm of the
operator. These results partially solve problems posed in the above research projects.

Throughout the paper, C denotes a positive constant not necessarily the same at each
occurrence. The notation A ≍ B means that there is a positive constant C such that A/C ≤

B ≤ CA.
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2. Auxiliary results

In this section, we give several auxiliary results, which are used in the proofs of the main
results.

Lemma 2.1 (see [43, Corollary 3.5]). Suppose that p ∈ (0,∞) and α ≥ −1. Then for all f ∈ A
p
α(B)

and z ∈ B, the following inequality holds:

∣

∣f(z)
∣

∣ ≤
‖f‖Ap

α

(

1 − |z|2
)(n+1+α)/p

. (2.1)

The following criterion for the compactness follows by standard arguments (see, e.g.,
[12, 20, 34–36]). Hence, we omit its proof.

Lemma 2.2. Suppose that 0 < p < ∞, α ≥ −1, g ∈ H(B), µ is normal, and ϕ is a holomorphic
self-map of B. Then the operator P

g
ϕ : A

p
α → Bµ is compact if and only if P

g
ϕ : A

p
α → Bµ is bounded

and for every bounded sequence (fk)k∈N
inA

p
α converging to zero uniformly on compacts of B, one has

‖P
g
ϕfk‖Bµ

→ 0 as k → ∞.

The following result can be found in [44]. For closely related results, see also [11, 45–
52] and the references therein.

Lemma 2.3. Suppose that 0 < p < ∞, α > −1, then

‖f‖
p

A
p
α
≍
∣

∣f(0)
∣

∣

p
+

∫

B

∣

∣∇f(z)
∣

∣

p(
1 − |z|2

)p+α
dV (z), (2.2)

for every f ∈ A
p
α (here ∇f = ((∂f/∂z1), . . . , (∂f/∂zn))).

The following lemma can be proved similar to [53, Lemma 1].

Lemma 2.4. Suppose that µ is normal. A closed set K in Bµ,0 is compact if and only if it is bounded
and

lim
|z|→1

sup
f∈K

µ(z)
∣

∣Rf(z)
∣

∣ = 0. (2.3)

The following lemma is related to [32, Lemma 1] and [34, Lemma 2].

Lemma 2.5. Assume that f, g ∈ H(B) and g(0) = 0. Then

RP
g
ϕ (f)(z) = f(ϕ(z))g(z). (2.4)

Proof. Since the function f(ϕ(z))g(z) is holomorphic and g(0) = 0, it has the Taylor expansion
in the following form

∑

α/= 0aαz
α. Then

R
[

P
g
ϕ (f)

]

(z) = R

∫1

0

∑

α/= 0

aα(tz)
αdt

t
= R

(

∑

α/= 0

aα

|α|
zα

)

=
∑

α/= 0

aαz
α, (2.5)

as claimed.
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3. The norm of the operator P
g
ϕ : A

p
α → Bµ

In this section, we calculate the norm ‖P
g
ϕ ‖Ap

α→Bµ
.

Theorem 3.1. Assume that p > 0, α ≥ −1, g ∈ H(B), µ is normal, ϕ is a holomorphic self-map of
B, and P

g
ϕ : A

p
α(B) → Bµ(B) is bounded. Then

‖P
g
ϕ ‖Ap

α→Bµ
= ‖P

g
ϕ ‖Ap

α→Bµ,0
= sup

z∈B

µ(z)
∣

∣g(z)
∣

∣

(

1 −
∣

∣ϕ(z)
∣

∣

2)(n+1+α)/p
=: M. (3.1)

Proof. If f ∈ A
p
α, then by Lemmas 2.5 and 2.1 we obtain

‖P
g
ϕf‖Bµ

= sup
z∈B

µ(z)
∣

∣g(z)f
(

ϕ(z)
)∣

∣ ≤ ‖f‖Ap
α
sup
z∈B

µ(z)
∣

∣g(z)
∣

∣

(1 −
∣

∣ϕ(z)
∣

∣

2
)
(n+1+α)/p

, (3.2)

from which it follows that

‖P
g
ϕ ‖Ap

α→Bµ
≤ M. (3.3)

Now we prove the reverse inequality. For w ∈ B fixed, set

fw(z) =

(

1 − |w|2
)(n+1+α)/p

(

1 − 〈z,w〉
)2(n+1+α)/p

, z ∈ B. (3.4)

We have that ‖fw‖Ap
α
= 1, for eachw ∈ B. For α > −1 this fact is well known. The proof for the

case α = −1 could be less known, and we give a proof of it for the lack of a specific reference
and for the benefit of the reader. Let z = rζ, ζ ∈ S, then we have

‖fw‖
p
p = sup

0<r<1

∫

S

(1 − |w|2
)n

∣

∣1 − 〈z,w〉
∣

∣

2n
dσ(ζ)

=
(

1 − |w|2
)n

sup
0<r<1

∫

S

∣

∣

(

1 − 〈z,w〉
)−n∣

∣

2
dσ(ζ)

=
(

1 − |w|2
)n

sup
0<r<1

∫

S

∣

∣

∣

∣

∣

∞
∑

k=0

Γ(n + k)

Γ(k + 1)Γ(n)
rk〈ζ,w〉k

∣

∣

∣

∣

∣

2

dσ(ζ)

=
(

1 − |w|2
)n

sup
0<r<1

∫

S

∞
∑

k=0

(

Γ(n + k)

Γ(k + 1)Γ(n)

)2

r2k
∣

∣〈ζ,w〉
∣

∣

2k
dσ(ζ)

=
(

1 − |w|2
)n

sup
0<r<1

∞
∑

k=0

Γ(n + k)

Γ(k + 1)Γ(n)
r2k|w|2k

=
(

1 − |w|2
)n

sup
0<r<1

1
(

1 − r2|w|2
)n = 1,

(3.5)

where we have used the following formula (see, e.g., [1])

∫

S

∣

∣〈ζ,w〉
∣

∣

2k
dσ(ζ) =

Γ(k + 1)Γ(n)

Γ(n + k)
|w|2k. (3.6)
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From this and the boundedness of P
g
ϕ : A

p
α → Bµ, we have

∥

∥P
g
ϕ

∥

∥

A
p
α→Bµ

=
∥

∥fϕ(w)

∥

∥

A
p
α

∥

∥P
g
ϕ

∥

∥

A
p
α→Bµ

≥
∥

∥P
g
ϕ

(

fϕ(w)

)∥

∥

Bµ

= sup
z∈B

µ(z)
∣

∣g(z)
∣

∣

∣

∣fϕ(w)

(

ϕ(z)
)∣

∣

≥ µ(w)
∣

∣g(w)
∣

∣

∣

∣fϕ(w)

(

ϕ(w)
)∣

∣

=
µ(w)

∣

∣g(w)
∣

∣

(

1 −
∣

∣ϕ(w)
∣

∣

2)(n+1+α)/p
.

(3.7)

Taking the supremum in (3.7) over w ∈ B, we obtain

∥

∥P
g
ϕ

∥

∥

A
p
α→Bµ

≥ M. (3.8)

From (3.3) and (3.8), it follows that ‖P
g
ϕ ‖Ap

α→Bµ
= M.

Since

∥

∥P
g
ϕ

∥

∥

A
p
α→Bµ,0

≤
∥

∥P
g
ϕ

∥

∥

A
p
α→Bµ

(3.9)

and the proof of (3.8) does not depend on the space Bµ (wemay replace it by Bµ,0) the second
equality in (3.1) also holds.

Corollary 3.2. Assume that p > 0, α ≥ −1, g ∈ H(B), µ is normal, and ϕ is a holomorphic self-map
of B. Then P

g
ϕ : A

p
α → Bµ is bounded if and only if

sup
z∈B

µ(z)
∣

∣g(z)
∣

∣

(

1 −
∣

∣ϕ(z)
∣

∣

2)(n+1+α)/p
< ∞. (3.10)

Proof. If P
g
ϕ : A

p
α → Bµ is bounded, then (3.10) follows from Theorem 3.1. If (3.10) holds, then

the boundedness of P
g
ϕ : A

p
α → Bµ follows from (3.3).

4. The boundedness of the operator P
g
ϕ : A

p
α → Bµ,0

Here we characterize the boundedness of the operator P
g
ϕ : A

p
α → Bµ,0.

Theorem 4.1. Assume that p > 0, α ≥ −1, g ∈ H(B), µ is normal, and ϕ is a holomorphic self-map
of B. Then P

g
ϕ : A

p
α → Bµ,0 is bounded if and only if P

g
ϕ : A

p
α → Bµ is bounded and g ∈ H∞

µ,0.

Proof. Assume that P
g
ϕ : A

p
α → Bµ is bounded and g ∈ H∞

µ,0. Then, for each polynomial p, we

have

µ(z)
∣

∣RP
g
ϕp(z)

∣

∣ = µ(z)
∣

∣g(z)p
(

ϕ(z)
)∣

∣ ≤ µ(z)
∣

∣g(z)
∣

∣‖p‖∞ −→ 0, as |z| −→ 1 (4.1)

from which it follows that P
g
ϕ (p) ∈ Bµ,0.

Since the set of all polynomials is dense inA
p
α,we have that for every f ∈ A

p
α there is a

sequence of polynomials (pk)k∈N
such that

lim
k→∞

∥

∥f − pk
∥

∥

A
p
α
= 0. (4.2)
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From this and since the operator P
g
ϕ : A

p
α → Bµ is bounded, it follows that

∥

∥P
g
ϕf − P

g
ϕpk

∥

∥

Bµ
≤
∥

∥P
g
ϕ

∥

∥

A
p
α→Bµ

∥

∥f − pk
∥

∥

A
p
α
−→ 0, (4.3)

as k → ∞. Hence P
g
ϕ (A

p
α) ⊂ Bµ,0. Since Bµ,0 is a closed subset of Bµ, the boundedness of

P
g
ϕ : A

p
α → Bµ,0 follows.

Now assume that P
g
ϕ : A

p
α → Bµ,0 is bounded. Then clearly P

g
ϕ : A

p
α → Bµ is bounded.

Taking the test function f(z) = 1 ∈ A
p
α, we obtain g ∈ H∞

µ,0.

5. Compactness of the operator P
g
ϕ : A

p
α → Bµ

This section is devoted to studying of the compactness of the operator P
g
ϕ : A

p
α → Bµ. We

prove the following result.

Theorem 5.1. Assume that p > 0, α ≥ −1, g ∈ H(B), µ is normal, ϕ is a holomorphic self-map of B,
and the operator P

g
ϕ : A

p
α → Bµ is bounded. Then the operator P

g
ϕ : A

p
α → Bµ is compact if and only if

lim
|ϕ(z)|→1

µ(z)
∣

∣g(z)
∣

∣

(

1 −
∣

∣ϕ(z)
∣

∣

2)(n+1+α)/p
= 0. (5.1)

Proof. First assume that the operator P
g
ϕ : A

p
α → Bµ is compact. If ‖ϕ‖∞ < 1, then condition

(5.1) is vacuously satisfied. Hence, assume that ‖ϕ‖∞ = 1 and assume to the contrary that
(5.1) does not hold. Then there is a sequence (zk)k∈N

satisfying the condition |ϕ(zk)| → 1 as
k → ∞ and δ > 0 such that

µ(zk)
∣

∣g(zk)
∣

∣

(

1 −
∣

∣ϕ(zk)
∣

∣

2)(n+1+α)/p
≥ δ, k ∈ N. (5.2)

For w ∈ B fixed, set

Fk(z) = fϕ(zk)(z), k ∈ N, (5.3)

where fw is defined in (3.4). Recall that ‖fw‖Ap
α
= 1, for each w ∈ B. Then ‖Fk‖Ap

α
= 1, k ∈ N

and it is easy to see that Fk → 0 uniformly on compacts of B as k → ∞. Hence, by Lemma 2.2,
it follows that

lim
k→∞

∥

∥P
g
ϕFk

∥

∥

Bµ
= 0. (5.4)

On the other hand, by Lemma 2.5 and (5.2), we obtain

∥

∥P
g
ϕFk

∥

∥

Bµ
= sup

z∈B

µ(z)
∣

∣g(z)
∣

∣

∣

∣Fk

(

ϕ(z)
)∣

∣ ≥
µ(zk)

∣

∣g
(

zk
)∣

∣

(

1 −
∣

∣ϕ
(

zk
)∣

∣

2)(n+1+α)/p
≥ δ > 0, (5.5)

for every k ∈ N, which contradicts with (5.4).
Now assume that (5.1) holds. Then for every ε > 0 there is an r ∈ (0, 1) such that when

r < |ϕ(z)| < 1,

µ(z)
∣

∣g(z)
∣

∣

(

1 −
∣

∣ϕ(z)
∣

∣

2)(n+1+α)/p
< ε. (5.6)
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On the other hand, since the operator P
g
ϕ : A

p
α → Bµ is bounded, for f ≡ 1 ∈ A

p
α, we

obtain ‖g‖H∞
µ
< ∞.

Assume that (hk)k∈N
is a bounded sequence in A

p
α converging to zero uniformly on

compacts of B as k → ∞. Let supk∈N
‖hk‖Ap

α
= M1. Then by Lemma 2.1 and (5.6), for r <

|ϕ(z)| < 1, we obtain

µ(z)
∣

∣g(z)
∣

∣

∣

∣hk

(

ϕ(z)
)∣

∣ ≤ sup
k∈N

‖hk‖Ap
α

µ(z)
∣

∣g(z)
∣

∣

(

1 −
∣

∣ϕ(z)
∣

∣

2)(n+1+α)/p
< M1ε. (5.7)

If |ϕ(z)| ≤ r, we have

µ(z)
∣

∣g(z)
∣

∣

∣

∣hk

(

ϕ(z)
)∣

∣ ≤ ‖g‖H∞
µ
sup
|w|≤r

∣

∣hk(w)
∣

∣ −→ 0, as k −→ ∞. (5.8)

From (5.7) and (5.8), it follows that ‖P
g
ϕhk‖Bµ

→ 0 as k → ∞, from which the compactness of

the operator P
g
ϕ : A

p
α → Bµ follows.

6. Compactness of the operator P
g
ϕ : A

p
α → Bµ,0

This section characterizes the compactness of the operator P
g
ϕ : A

p
α → Bµ,0.

Theorem 6.1. Assume p > 0, α ≥ −1, g ∈ H(B), µ is normal, ϕ is a holomorphic self-map of B, and
the operator P

g
ϕ : A

p
α → Bµ,0 is bounded. Then the operator P

g
ϕ : A

p
α → Bµ,0 is compact if and only if

lim
|z|→1

µ(z)
∣

∣g(z)
∣

∣

(

1 −
∣

∣ϕ(z)
∣

∣

2)(n+1+α)/p
= 0. (6.1)

Proof. Assume P
g
ϕ : A

p
α → Bµ,0 is compact. Then clearly P

g
ϕ : A

p
α → Bµ,0 is bounded and as in

Theorem 4.1 we have that g ∈ H∞
µ,0.

Hence if ‖ϕ‖∞ < 1, then

lim
|z|→1

µ(z)
∣

∣g(z)
∣

∣

(

1 −
∣

∣ϕ(z)
∣

∣

2)(n+1+α)/p
≤ lim

|z|→1

µ(z)
∣

∣g(z)
∣

∣

(

1 − ‖ϕ‖2∞
)(n+1+α)/p

= 0, (6.2)

from which the result follows in this case.
Now assume ‖ϕ‖∞ = 1. By using the test functions Fk(z) = fϕ(zk)(z), k ∈ N, defined

in (5.3) we obtain that condition (5.1) holds, which implies that for every ε > 0, there is an
r ∈ (0, 1) such that for r < |ϕ(z)| < 1, condition (5.6) holds.

Since g ∈ H∞
µ,0, there is σ ∈ (0, 1) such that for σ < |z| < 1

µ(z)
∣

∣g(z)
∣

∣ < ε
(

1 − r2
)(n+1+α)/p

. (6.3)

Hence, if |ϕ(z)| ≤ r and σ < |z| < 1, we have

µ(z)
∣

∣g(z)
∣

∣

(

1 −
∣

∣ϕ(z)
∣

∣

2)(n+1+α)/p
≤

µ(z)
∣

∣g(z)
∣

∣

(

1 − r2
)(n+1+α)/p

< ε. (6.4)

From (5.6) and (6.4), condition (6.1) follows.
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Now assume that condition (6.1) holds. Then the quantity M in Theorem 3.1 is finite.
Using this fact and the following inequality

µ(z)
∣

∣RP
g
ϕf(z)

∣

∣ ≤ µ(z)
∣

∣g(z)f
(

ϕ(z)
)∣

∣ ≤ ‖f‖Ap
α

µ(z)
∣

∣g(z)
∣

∣

(

1 −
∣

∣ϕ(z)
∣

∣

2)(n+1+α)/p
, (6.5)

it follows that the set P
g
ϕ ({f : ‖f‖Ap

α
≤ 1}) is bounded in Bµ, moreover, in view of (6.1), it is

bounded in Bµ,0. Taking the supremum in the last inequality over the unit ball in A
p
α, then

letting |z| → 1, using condition (6.1) and employing Lemma 2.4, we obtain the compactness
of the operator P

g
ϕ : A

p
α → Bµ,0, as desired.

7. Essential norm of P
g
ϕ : A

p
α → Bµ

Let X and Y be Banach spaces, and let L : X → Y be a bounded linear operator. The essential
norm of the operator L : X → Y , denoted by ‖L‖e,X→Y , is defined as follows:

‖L‖e,X→Y = inf
{

‖L +K‖X→Y : K is compact from X toY
}

, (7.1)

where ‖·‖X→Y denote the operator norm.
From this definition and since the set of all compact operators is a closed subset of the

set of bounded operators, it follows that operator L is compact if and only if ‖L‖e,X→Y = 0.
In this section, we study the essential norm of the operator P

g
ϕ : A

p
α → Bµ for the case

p > 1.

Theorem 7.1. Assume that p ∈ (1,∞), α ≥ −1, g ∈ H(B), g(0) = 0, ϕ is a holomorphic self-map
of B, and P

g
ϕ : A

p
α → Bµ is bounded. Then the following inequalities hold:

lim sup
|ϕ(z)|→1

µ(z)
∣

∣g(z)
∣

∣

(

1 −
∣

∣ϕ(z)
∣

∣

2)(n+1+α)/p
≤
∥

∥P
g
ϕ

∥

∥

e,A
p
α→Bµ

≤ 2lim sup
|ϕ(z)|→1

µ(z)
∣

∣g(z)
∣

∣

(

1 −
∣

∣ϕ(z)
∣

∣

2)(n+1+α)/p
. (7.2)

Proof. Assume that (ϕ(zk))k∈N
is a sequence in B such that |ϕ(zk)| → 1 as k → ∞. Note that

the sequence (fϕ(zk))k∈N
(where fw is defined in (3.4)) is such that ‖fϕ(zk)‖Ap

α
= 1 for each k ∈ N

and it converges to zero uniformly on compacts of B. From this and by [11, Theorems 2.12
and 4.50], it follows that fϕ(zk) → 0 weakly inA

p
α, as k → ∞ (here we use the condition p > 1).

Hence, for every compact operator K : A
p
α → Bµ, we have that ‖Kfϕ(zk)‖Bµ

→ 0 as k → ∞.

Thus, for every such sequence and for every compact operator K : A
p
α → Bµ, we have that

∥

∥P
g
ϕ +K

∥

∥

A
p
α→Bµ

≥ lim sup
k→∞

∥

∥P
g
ϕfϕ(zk)

∥

∥

Bµ
−
∥

∥Kfϕ(zk)
∥

∥

Bµ
∥

∥fϕ(zk)
∥

∥

A
p
α

= lim sup
k→∞

∥

∥P
g
ϕfϕ(zk)

∥

∥

Bµ

≥ lim sup
k→∞

µ(zk)
∣

∣g
(

zk
)

fϕ(zk)
(

ϕ
(

zk
))∣

∣

= lim sup
n→∞

µ
(

zk
)∣

∣g
(

zk
)∣

∣

(

1 −
∣

∣ϕ
(

zk
)∣

∣

2)(n+1+α)/p
.

(7.3)
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Taking the infimum in (7.3) over the set of all compact operators K : A
p
α → Bµ, we

obtain

∥

∥P
g
ϕ

∥

∥

e,A
p
α→Bµ

≥ lim sup
n→∞

µ
(

zk
)∣

∣g
(

zk
)∣

∣

(

1 −
∣

∣ϕ
(

zk
)∣

∣

2)(n+1+α)/p
, (7.4)

from which the first inequality follows.
In the sequel we prove the second inequality. Assume that (rl)l∈N

is a sequence which
increasingly converges to 1. Consider the operators defined by

(

P
g
rlϕf

)

(z) =

∫1

0

g(tz)f
(

rlϕ(tz)
)dt

t
, l ∈ N. (7.5)

We prove that these operators are compact. Indeed, since |rlϕ(z)| ≤ rl < 1, it follows that
condition (5.1) in Theorem 5.1 is vacuously satisfied, from which the claim follows.

Recall that g ∈ H∞
µ . Let ρ ∈ (0, 1) be fixed for a moment. Employing Lemma 2.1, and

using the fact

∥

∥f − frl
∥

∥

A
p
α
≤ 2‖f‖Ap

α
, l ∈ N, (7.6)

which follows by using the triangle inequality for the norm, the monotonicity of the integral
means

M
p
p(f, r) =

∫

S

∣

∣f(rζ)
∣

∣

p
dσ(ζ) (7.7)

and the polar coordinates, we have

∥

∥P
g
ϕ − P

g
rlϕ

∥

∥

A
p
α→Bµ

= sup
‖f‖

A
p
α
≤1

sup
z∈B

µ(z)
∣

∣g(z)
∣

∣

∣

∣f
(

ϕ(z)
)

− f
(

rlϕ(z)
)∣

∣

≤ sup
‖f‖

A
p
α
≤1

sup
|ϕ(z)|≤ρ

µ(z)
∣

∣g(z)
∣

∣

∣

∣f
(

ϕ(z)
)

− f
(

rlϕ(z)
)∣

∣

+ sup
‖f‖

A
p
α
≤1

sup
|ϕ(z)|>ρ

µ(z)
∣

∣g(z)
∣

∣

∣

∣f
(

ϕ(z)
)

− f
(

rlϕ(z)
)∣

∣

≤ ‖g‖H∞
µ

sup
‖f‖

A
p
α
≤1

sup
|ϕ(z)|≤ρ

∣

∣f
(

ϕ(z)
)

− f
(

rlϕ(z)
)∣

∣

+ 2 sup
|ϕ(z)|>ρ

µ(z)
∣

∣g(z)
∣

∣

(

1 −
∣

∣ϕ(z)
∣

∣

2)(n+1+α)/p
.

(7.8)

Let

Il := sup
‖f‖

A
p
α
≤1

sup
|ϕ(z)|≤ρ

∣

∣f(ϕ(z)) − f
(

rlϕ(z)
)∣

∣. (7.9)
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If α > −1, then by using themean value theorem, the subharmonicity of the partial derivatives
of f and Lemma 2.3, we have

Il ≤ sup
‖f‖

A
p
α
≤1

sup
|ϕ(z)|≤ρ

(

1 − rl
)∣

∣ϕ(z)
∣

∣ sup
|w|≤ρ

∣

∣∇f(w)
∣

∣

(7.10)

≤ Cρ

(

1 − rl
)

sup
‖f‖

A
p
α
≤1

(∫

|w|≤(1+ρ)/2

∣

∣∇f(w)
∣

∣

p(
1 − |w|2

)p+α
dV (w)

)1/p

≤ Cρ

(

1 − rl
)

sup
‖f‖

A
p
α
≤1

(∫

B

∣

∣f(w)
∣

∣

p(
1 − |w|2

)α
dV (w)

)1/p

≤ Cρ(1 − rl) −→ 0 as l −→ ∞. (7.11)

If α = −1, then applying in (7.10) the known fact that for each compact K ⊂ B,

sup
w∈K

∣

∣∇f(w)
∣

∣ ≤ C‖f‖p, (7.12)

for some C independent of f (see [11]), we obtain that (7.11) also holds in this case.
Letting l → ∞ in (7.8), using (7.11), and then letting ρ → 1, the second inequality in

(7.2) follows, finishing the proof of the theorem.

Motivated by Theorem 7.1, we leave the following open problem.

Open problem 1. Find the exact value of the essential norm of the operator P
g
ϕ : A

p
α → Bµ.
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[28] D.-C. Chang and S. Stević, “Estimates of an integral operator on function spaces,” Taiwanese Journal of
Mathematics, vol. 7, no. 3, pp. 423–432, 2003.

[29] D.-C. Chang and S. Stević, “The generalized Cesàro operator on the unit polydisk,” Taiwanese Journal
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[40] S. Li and S. Stević, “Compactness of Riemann-Stieltjes operators between F(p, q, s) spaces and α-Bloch
spaces,” Publicationes Mathematicae Debrecen, vol. 72, no. 1-2, pp. 111–128, 2008.
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