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1. Introduction. It is the purpose of this paper to develop a nonequilibrium ther-
modynamics for phase transitions, capillarity, and other phenomena involving large
concentration gradients. The main ideas are best explained in terms of a binary
mixture undergoing isothermal diffusion, and it is within this setting that we frame
the theory. The generalization to multiple species is obvious; the extension to non-
isothermal behavior will be the subject of a future paper.

We begin with a discussion of the classical theory of diffusion for a mixture in
a region Q. The basic physical quantities, defined for all x in Q and all time t, are
the concentration c(x, t), the mass flux h(x, t), the mass supply q(x, t), the free energy

t), and the chemical potential fi(x, t)\ and the underlying laws, for any subregion
P of H, are balance of mass

*Lc=-Lk"+Lq
and the second law, which for isothermal diffusion has the form

d

(1)

dt
where n is the outward unit normal to dP.

The term

/ V < ~ / • n + HQ.
Jp JdP Jp

(2)

- f fih n (3)
JdPIdP

represents energy carried across dP by the diffusing material; this particular form
for the energy flux insures that energy flows across dP when and only when mass
flows across dP. In a transition region between phases, or in any other region of high
capillarity, surface effects not modeled by the classical theory become important, and
I believe that to characterize such phenomena one must allow for a flow of energy
over and above that carried by the diffusing material.

To help motivate the primitive concepts of my theory, it is instructive to consider
the classical model of Gibbs [1] in which a phase interface is represented by a surface
d of zero thickness. When the model of Gibbs is considered within a dynamical
framework one finds, for P an arbitrary subregion, a flow of energy into P due to
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130 MORTON E. GURTIN

the motion of d. Indeed, since d has energy, energy is carried into and out of P as
portions of j enter and leave P.x This flow is clearly not included in the diffusive
term (3). There is also a flow of energy into P along j due to the flow of mechanical
energy within d, a flow present when the material is anisotropic; roughly speaking,
this flow compensates for the change in surface energy resulting from rotations of
Both of these energy flows are linear3 in the normal velocity of n.

In the theory presented here a phase interface appears as a thin transition zone ^,
and an additional energy flux is introduced to represent energy flows of the type dis-
cussed above. Here we are faced with a major problem: the transition zone and corre-
sponding normal velocity are not easily identified. A possible means of characterizing

is with the aid of a potential 7r(x, t); roughly speaking, iT might correspond to a
thin region in which n(\, t) varies rapidly with values in a spinodal-type set between
phases, the "normal velocity" of being related to the derivative 7i(x, t) = d,n(x, t).
With this in mind, I add an energy flux of the form

L7i£ ■ n (4)
IdP

with 7t a scalar field called the capillarity potential and £ a vector field called the
capillarity flux. One might visualize (4) as a flow of energy necessary to sustain the
transition zone, its nonequilibrium nature clear from the presence of the rate it.

This flux of energy4 is one of the two essential ingredients of the theory. The
second ingredient is a set of constitutive equations which includes a dependence on
higher gradients,5 a dependence needed to model situations involving thin regions of
rapidly varying concentration.

We therefore add to our list of primitive concepts the capillarity potential n(\, t)
and the capillarity flux £(x, t), and consider constitutive equations involving a depen-
dence on c as well as its higher gradients:6

y/ — i//(c, Vc, V2c, V3c,...), fi = fi(c, Vc, V2c, V3c,...),
h = h(c, Vc, V2c, V3c,...), n — 7t(c, Vc, V2c, V3c ),

C = ;{c, Vc, V2c, V3c,...).
Further, we find it useful to define an additional field, the reduced capillarity vector

{ = {(c, Vc, V2c, V3c,...),

through7
  I = dcnl
1 Cf. Fernandez-Diaz and Williams [13], Gurtin [14],
2Gurtin [25], extending to dynamics ideas of Cahn and Hoffman [10, 11].
3Cf. Gurtin [21], Eq. (5.6) and [25], Eqs. (2.2), (2.3), and (3.10).
4 (For a deforming body without diffusion) energy flows—not included in the classical flows of heat and
mechanical power—are introduced and systematically treated by Dunn and Serrin [15].
5The use of higher gradients to model capillarity is due to van der Waals [2] and Korteweg [3], and more
recently to Cahn and Hilliard [4] and Landau and Lifschitz [5], See also Widom [12],
6 Here V denotes the pth gradient, so that V2 is not the Laplacian; we write A for the Laplacian and div
for the divergence.
7We write dAf for the (generally partial) derivative of the function / with respect to the variable A. In
particular, for / scalar-valued and A a tensor of order n, d\f has components df/dASimilarly,
dAB.f = 9A (dBf), etc.
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A dependence of free energy on concentration gradients is often used to character-
ize capillarity; within this context, higher gradients appear as a stabilizing influence.
Under fairly weak assumptions (cf. the free-energy hypothesis) consistent with this
observation, we show, as a consequence of the second law, that the free energy can
depend at most on c and the first gradient

g = Vc,
the chemical potential at most on c, g, and the second gradient

G = V2c.
In fact, we show that:

(i) the constitutive equations must have the reduced form
V = V(c, g). H = Kc, g,G),
n = 7t(c), = l(c,g);

(ii) the free energy generates the chemical potential and reduced capillarity vector
through the relations

ju = dc\j/ - div|,

I =
(iii) the mass flux obeys the inequality

h ■ V/i < 0.
We also consider a quasi-linear theory in which the chemical potential, mass flux,

and reduced capillarity vector are linear (affine) functions of the gradients of c. We
show, as consequences of our general results, that such constitutive equations neces-
sarily have the specific form:8

V = Wo (c) + 3g ■ Ag,
H = y/^c) - A • G,
Z = Ag,
h = -K [c)Vn,

where A and K(c) are second-order tensors with A symmetric, A > 0, A / 0, K(c) >
0. Here Wq(c) represents the coarse-grain free energy (the free energy at constant
concentration), and y/'Q(c) — di//o(c)/dc.

The constitutive equations (5), when combined with the local form of balance of
mass, yield a single partial differential equation for the concentration,

c = div{K(c)V[^(c)-A- V2c]} + q, (6)

which, for an isotropic material with K constant, reduces to the Cahn-Hilliard equa-
tion,9

c = IcA[i//q{c) - aAc] + q.
8We write u • v for the inner product of u and v, regardless of the inner-product space in question. For A
and B tensors of order n, A • B = AlJ_..kBu k. (We use components and summation convention where
convenient.) For T an appropriate linear transformation, T > 0 signifies that T is positive semi-definite.
9Cahn [7,8]; see also Cahn and Hilliard [9], The derivation of this equation, within a continuum-
thermodynamical framework, was a motivating factor for the present study.
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We discuss appropriate initial/boundary-value problems for (6), and deduce associ-
ated Liapunov functions. Because of the underlying thermodynamics, the latter is
not difficult: the Liapunov function for an isolated boundary is the total free energy
of Q.

In a future paper we will relate the present theory to that of [21,25] in which the
interface is modeled as a surface of zero thickness.

II. Generalization of the second law. Capillarity flux and capillarity potential. Con-
stitutive equations.

1. Balance of mass. The second law. We now make precise the general discussion
of the Introduction. We assume that Q. is a compact region in R3. Then the primitive
physical quantities, defined for all x in Q and all time t, are

concentration c(x, t),
mass flux h(x, t),
mass supply q{\, t),
free energy y/{\,t),
chemical potential /u(\, t),
capillarity potential 7r(x, t),
capillarity flux f(x, t)\

the basic physical laws, for any subregion P of £2, are balance of mass

= °+// (11)
and the second law

d
dt [v<-[ (i"h - 7rC) • n + [ nq, (1.2)

J p J dp J p
where n is the outward unit normal to dP. Since P is arbitrary, (1.1) and (1.2) have
the equivalent local forms

c — - div h + q,
(1.3)\j/ < - div(/*h - hZ) + nq.

and together yield the dissipation inequality

\j/ - fic - div(7t£) + h • Vfi < 0. (1.4)
The integral laws (1.1) and (1.2) have several simple but important consequences,

depending on the behavior of the boundary. We will consider two types of boundary
conditions:

(i) isolated boundary:

fn = 0 and hn = 0 on <9Q; (1.5)
(ii) uniform boundary:

H = nb and n = nb on d£2, (1.6)
with nb and nb constant.

The next theorem will yield Liapunov functions for the underlying boundary-value
problems.
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Growth Theorem. Let q — 0. Then balance of mass and the second law imply that:
(i) for an isolated boundary

(1.7)

(ii) for a uniform boundary

Hbc)< 0. (1.8)

2. Constitutive equations. As constitutive equations for free energy, chemical
potential, and mass flux we write

y/ - Vc, V2c, V3c,...),
H = /i(c,Vc,V2c,V3c,...), (2.1)
h = h(c, Vc, V2c, V3c,...),

and add similar relations for the capillarity vector and capillarity potential:

7i = n(c, Vc, V2c, V3c,...), £ = C(c,Vc,V2c,V3c,...). (2.2)

Let
S„ = space of symmetric nth order tensors, n >2,

So - R,
5, = R3.

We assume that the response functions yy, fi, h, ft, and £ are smooth on the set
(0,1) x x S2 x S3 x • • •.

Note that each concentration field c(x, t) generates, through the constitutive equa-
tions (2.1) and (2.2), a constitutive process /i = (c, n.h.n.Q-, balance of mass
(1.3) i then tells us the mass supply10 q necessary to support /*, but there is no such
freedom in the second law (1.3)2, and it seems reasonable to expect that (1.3)2—or
equivalently (1.4)—will hold in all processes only if certain restrictions are placed on
the response functions.

We now make this observation precise. By a concentration field we mean a smooth
function c: x R —► (0,1); and by a constitutive process we mean an array /z =
(c, , 7t, C) with c a concentration field and y/, p., h, n, and f defined on Q x
R through the constitutive equations (2.1) and (2.2). We say that the constitutive
equations are compatible with thermodynamics if each constitutive process obeys the
dissipation inequality (1.4).

Since the constitutive equations (2.1) and (2.2) depend on gradients of c higher
than the first, some additional notation is useful. Let V°c - c. Given a func-
tion 4>(c, Vc, V2c, V3c,...), we write Dp<t> and Dpp& for the first and second partial
derivatives of O with respect to the argument Vc:

DpO — SvfcO, Dppfa = d^Pcdvpc®-
10The inclusion of the supply q, which is essential to the logical development of the theory, is due to
Serrin [18].
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Note that for <J> scalar-valued, Dp<& has values in Sp.
We say that has finite grade if there is an integer m > 0 such that 4>(c, Vc, V2c,

V3c,...) is independent of V"c for n > m\ the smallest such m is then called the
grade of <i>, written

Grade O,
and the domain of O is identified with the set I = (0, 1) x S\ x 5*2 x S3 x • • • x Sm.
We say that 4> is strongly of grade m, and write

Grade= m (strongly),

if Grade = m and if there is no open subset of X on which Z)m4> vanishes.
We henceforth assume that the response functions \}/, fi, h, ft, and £ are of finite

grade.
For 4> a scalar response function of grade m and c a concentration field, let

O(x) = 4>(c(x), Vc(x), V2c(x),..., Vmc(x)),

where, for convenience, we have suppressed the argument t. Then, using obvious
notation,

m
VO = ^2 dpMc, Vc, V2c, ..., Vmc)Vp+1c. (2.3)

p=1

The right side of (2.3) defines a function on (0,1) x S\ x ^ x S3 x ■ • ■ x Sm+i\ we
write VC> for this function:

(V4>)(c, Vc, V2c,..., Vm+1c) = right side of (2.3).

An analogous definition applies to

(div 4>)(c, Vc, V2c Vm+1c)

for tensor-valued. Note that VO is always of grade m + 1, while div <t> is generally,
but not always, of grade m + 1.

Finally, we write 4>(c, 0) for the value of 4>(c, Vc, V2c,..., Vmc) when all of the
concentration gradients vanish:

O(c,0) = 4>(c,0,0 0). (2.4)

III. Consequences of the second law.
3. The compatibility theorem. Capillarity, generally a stabilizing influence, is

often characterized by a dependence of free energy on concentration gradients. For
that reason we restrict our attention to materials with Grade \j/ > 1 (cf. Remark 5).
Further, we shall assume that the dependence of y on the highest gradient, Vmc, is
(in a very weak sense) stabilizing, at least near equilibrium. These assumptions are
stated precisely as the free energy hypothesis:

(FH) (i) ij/ is strongly of grade m > 1;
(ii) for each c,

Dmif/(c, 0) = 0, Dmm\j/{c, 0) > 0, Dmm\j/{c, 0)^0. (3.1)
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For convenience, we define a new constitutive variable, the reduced capillarity
vector

«* = |(c,d), d - (Vc, V2c, V3c,...).

through
£(c,d) = acft(c,d)C(c,d). (3.2)

Also, since many of our results involve only the first few gradients of c, we shall
consistently write

g = Vc, G = V2c, H = V3c.

Compatibility Theorem. Granted (FH), the constitutive equations are compatible
with thermodynamics if and only if the following three conditions are satisfied:

(i) the constitutive equations have the form

V = V(c, g). n = /*(c,g,G),
n = n{c). i = {(c.g):

(ii) the free energy generates the chemical potential and reduced capillarity vector
through the relations

= f, (34)
I = dgfi;

(iii) dcn never vanishes;
(iv) the mass flux is consistent with the inequality

h ■ V/i < 0. (3.5)

The proof of this theorem is given in Section 5.
Remark 1. Compatibility with thermodynamics and (FH) actually require that

Grade\j/ = 1 (strongly), Graded = 0 (strongly),
Grade = 2, Grade j = Graded = 1.

Remark 2. By (3.3) and (3.4), we can rewrite the constitutive equation for the
chemical potential in the alternative form

ft(c, g, G) = 9cy/(c, g) - dc%&(c, g) g - <9ggg) ■ G.

Remark 3. The restrictions (3.3) and (3.4) do not generally follow if the hypothesis
(FH) is dropped. Indeed, the constitutive equations

y/ = if/o(c) + (J® A) • H,
V- = Vo(c)-
n = A-G,
f = constant,
h = - V/i

are compatible with thermodynamics, but not with (3.3), (3.4), or (FH).
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Remark 4. Assume that the constitutive equations are compatible with thermody-
namics. Consider a second constitutive theory, also compatible with thermodynam-
ics, in which

tc and £ are replaced by response functions n* and f*. (3.6)

Balance of mass (1.1) does not involve the fields n and f, while the second law (1.2)
involves them only through the combination rcf. Thus the transformation (3.6) will
leave these laws unaltered if, given any concentration field c,

n(c) l(c, g) = 7r*(c) T(c,g)
onQxR; in this case we will refer to (3.6) as thermodynamically invariant. Trivially,
transformation of capillarity variables is thermodynamically invariant if and only
if the transformation leaves the reduced capillarity vector unchanged. In fact, the
transformation defined by

7T*(C)=C, r(C,g)=|(c,g)

for all c and g is thermodynamically invariant. Thus: replacing the capillarity vector
by the reduced capillarity vector and the capillarity potential by the concentration is a
thermodynamically invariant transformation. In view of this result, we may, without
loss of generality, replace the capillarity term in the second law (1.2) by

Lc• n.
dP

Further, it is clear from the Compatibility Theorem that £ is uniquely determined by
the free energy, while n and £ are not. Indeed, given any function h with nonvan-
ishing derivative on (0,1), replacing ii and £ by it and is thermodynamically
invariant, and this defines the complete set of thermodynamically invariant transfor-
mations.

Remark 5. If (FH) is replaced by the assumption Grade y — 0, then compatibility
with thermodynamics leads to the restrictions fi = dc ij/, | = 0, and to the conclusion
that replacing n with 0 and £ with 0 is a thermodynamically invariant transformation.
Thus, as would be expected, for Grade ^ = 0 the theory is classical.

4. Algebraic preliminaries to the proof of the compatibility theorem. Recall that
So = R, Si = R3, and S„ (n > 2) is the space of symmetric «th order tensors.
Recall also that the inner product of two «th order tensors A and B is defined by
A B = Aij...kBij...k.

Given a tensor A of order n > 2, we write sym A for its symmetric part: symA is
the unique tensor in S„ with the property:

(sym A) B = A ■ B for all B e S„.

We write A <g> B for the tensor product of tensors A and B:

(A ® B)ij..-kmn - r = -

For A e S„ and B e Sp, A® B will usually arise as the linear transformation from Sp
into S„ defined by

(A <S> B)C = (B • C)A
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for all C e Sp. For v a vector, we write ®"v for the tensor product of v with itself n
times ((®"v) e S„).

The next lemma is crucial to our proof of the compatibility theorem.

Lemma 1. Let n > 1 be an integer.
(i) Let : S„ —► be linear and consistent with

(®*a) • «P(®"v) = 0 (4.1)

for all vectors a and v. Then
¥ = 0.

(ii) Let \eSi,feSn. Then

sym(v ® *F) = 0 implies v ® = 0.

(iii) Let *P: Sn —► Sn be linear and symmetric and suppose that *P > 0, ^ 0.
Then (considering *P as a tensor of order 2n)

sym T/0. (4.2)
Proof, (i) This is a trivial generalization of the standard result: if <f>(v\, v2,..., v*)

is a symmetric /c-linear form on R3, then

0(v, v,..., v) = 0 for all v e R3 implies </> = 0. (4.3)

To verify (i) choose <8>"a arbitrarily and consider the symmetric /c-lmear form

(f>(vi, v2, — \k) = (®"a) ■ *P(sym(vi ® v2 ® • • • ® \k)).

By (4.1), this form vanishes when the v, coincide, and hence, by (4.3), must vanish
in general. Thus, writing *FT: —> Sn for the transpose of *F, and using the fact that
the tensors sym(vi ® v2 ® • • • ® \k) span Sk, we are led to the conclusion that

A • *PT (®"a) = 0 for all A e Sk and aeR3.

Thus, the argument applied above yields

A • YT(sym(ai ® a2 ® • • • ® a„)) = 0,

and ¥ = 0.
(ii) Assume that sym(v ® *P) = 0, or equivalently that

(v ® *F) • B = 0 for all Bg5„+1.

We will show that v / 0 implies = 0. Assume that v ^ 0 and take B = ®'I+1w,
which leads to the conclusion that ¥ • (®" w) = 0 for all w not perpendicular to v, and
hence, by continuity, for all w. The desired conclusion therefore follows from (4.3).

(iii) Assume symf = 0, so that

(®"v) • *P (®"v) = 0

for all vectors v. Thus, since *F is symmetric and > 0,

(®"a)-T(®"v) = 0

for all vectors a and v. Thus, by (i), = 0, a contradiction. ■
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5. Proof of the Compatibility Theorem. The proof that (i)-(iv) of the Compatibility
Theorem imply compatibility with thermodynamics is straightforward and can safely
be omitted. We therefore confine our attention to the converse assertion.

Assume that the constitutive equations are compatible with thermodynamics.
The verification of (i)-(iv) will consist of a series of lemmas. The first lemma is

central to the Coleman-Noll [6] procedure for finding thermodynamic restrictions on
constitutive equations; roughly speaking, this lemma asserts that we can arbitrarily
specify c and c at any given time, and that we can arbitrarily specify the spatial
gradients of c and c of any order at any given point and time.

Variation Lemma. Choose to ER.
(i) Let Co(x) and ^o(x) be smooth functions on Q, and suppose that Co(x) has values

in (0,1). Then there is a concentration field c(x, t) such that

c(x, to) = Co(x) and c(x, t0) = Vo(x) for all x e £1

(ii) Choose x0 e £2 and let N be a given integer. Then given B„, C„ E Sn for
n — 0,1,..., N with Bo E (0, 1) it is possible to find a concentration field c(x, t) such
that

V"c(x0, to) = B„ and Vnc(x0, to) = C„ for n - 0,1,..., N.

Proof (Lemma), (i) Since is compact and Co, t>o smooth, Co has values in a
compact subset of (0, 1), while Vo has values in a compact subset of R. Thus we can
find a smooth function /1(t) on R such that p{to) = 1 and such that the function
defined on Q x R by c(x, t) = co(x) + p(t)v0(x) has values in (0,1). The function c is
the desired concentration field.

(ii) Using polynomials of degree N, it is a trivial matter to construct functions
/(x) and Vo(x) such that

V"/(xo) = B„ and V"vo(xo) = C„ for n = 0,
Let <p(x) be a smooth function with compact support in such that <j> = 1 in some
neighborhood of xo and such that <$>f has values in (0,1) (which is possible since
Bo e (0,1)). Then (i) with Co = </>/ and Vo yields a concentration field c with the
desired properties. ■

The next lemma generalizes a classical result of Gibbs.

Lemma 2. Constitutive processes satisfy the Gibbs relation

V = nc + div(7rf) (5.1)

and the inequality
h • < 0. (5.2)

Proof. Choose an arbitrary constitutive process (with c the corresponding concen-
tration field), an arbitrary time to, and a scalar a. By (i) of the Variation Lemma,
there is a second concentration field b such that, for all x e Q, b(x, to) = c(x, to), but
b(x,to) = ac(x,to). If we apply the dissipation inequality at t0 to the constitutive
process generated by b, and use the fact that a and to are arbitrary, we are led to
(5.1) and (5.2). ■
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The next lemma provides a new method of obtaining restrictions on constitutive
equations; its proof is based on the standard variational technique of obtaining Euler-
Lagrange equations. Here we use the following notation: for A(x) a tensor of order
n at each x, divA(x) is the tensor of order n - 1 defined by

[divA(x)]jk...p = dXiAijk...p{x).

(Note that contraction is over the first subscript.) Also, recall that, by (FH),

m := Grade y/ > 1.

Lemma 3.
fi = dctj/+ J2(-l)Pdiy"(Dp<i'). (5.3)

the sum being from p — 1 to p = m.
Proof. Let <p{x) be a smooth scalar field with compact support in Q. Then given

any smooth field A(x) on D, with values in Sp,

[ A • Vcp = (-l)p f (div"A)<p. (5.4)
Jn Jn

Choose a constitutive process and an arbitrary time to, and let b(x) denote the
corresponding concentration field at to- Let c(x, t) denote the concentration field
constructed in the proof of (i) of the Variation Lemma with Co(x) = b(x) and
vq(x) - (p(x). Since (p has compact support in Q, the capillarity potential for c(x, t)
has a time derivative that vanishes on dQ. Thus the Gibbs relation (5.1), applied at
t = to to the constitutive process generated by c(x, t), yields, by virtue of (5.4) with
A = Dp\j/,

° = L^dc^ ~ + ̂ °p^ VP<P^ = + diy"(Dp^(p-

This implies (5.3), since cp is arbitrary. ■
Let M denote the maximum of the grades of the response functions, and for any

integer p, 1 < p < M, let
Lp = Z®Dp7i (L0 = £). (5.5)

Then
n; = L0c + Y2lpvpc

(the sum being from p = 1 to p — M).
The equation obtained upon substituting the constitutive equations into (5.1) is

linear in the rates Vc, 0 < p < M + 1. We may therefore use (ii) of the Variation
Lemma to conclude that the coefficient of each Vc must vanish, and this yields the
relations

dcy/ = fi + divL0,
DpV - symLp_! + divLp, 1 < p < M, (5.6)

0 = sym La/.
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Lemma 4. £ cannot vanish on an open set. Further,

Grade fi = 2m, Grade fc = m - 1 (strongly). (5.7)

Proof. If f vanished on an open set, then, by (5.6), Dm\j/ would vanish on an open
set, which contradicts (FH).

Next, the term on the right side of (5.3) of highest (possible) order is

Dmmij/(c, d) • V2mc. (5.8)

By (3.1) and Lemma l(iii) (considering Dmmi//(c, 0) as a tensor of order 2m),

sym[Dmmy/(c, 0)] ^ 0.

Thus (5.8) is not identically zero and, by (5.3), Grade ju = 2m.
It is clear from (5.6) and Lemma 1 (ii) that Lp = 0 for p > m; thus, in view of

(5.5), Lemma 1 (ii), and the fact that £ cannot vanish on an open set,
Dpft = 0 for p > m,P . (5.9)

Dmy/ = sym(C <g> Dm^\h).
On the other hand, Dm-\n cannot vanish on an open set X, for if it did (5.9)2 would
yield Dm \j/ = 0 on I, and (// would not be strongly of grade m. Hence Grade n = m -1
(strongly). ■

Lemma 5. Grade y/ = 1, Grade ju = 2, Grade ft = 0.
Proof. In view of Lemma 4, it suffices to show that m > 2 leads to a contradiction.

Assume that m >2. Let
P = Z)m_i7T.

Then, by (5.9)2, mDmy) has components

Pjk - asCi + Pik- -as^j + ' ' ' + Pjk- -isCa + Pjk- -aiCs-
Let R = Vrc with r > m + 1. Then OrI// = Ortt = 0 and

Pjk - as(h.£i + Pik - as^tlCj + 1" Pjk - isdflCa + Pjk - ai<h.Cs = 0;
and if we take the inner product of this relation with os^rC/ and sum over the
indices jk ■■ ■ asi, we find that |Z>m_i7r|2 |<9rC|2 plus a sum of nonnegative terms must
vanish. Therefore \Dm-\fi\ |<9r£| = 0, and, since R = Vrc with r > m + 1 is arbitrary,

|Dot_i7t| |A-C| = 0 forr>m+l.
But n is strongly of grade m— 1; hence cannot vanish on an open set and

Dr£ - 0 for r > m + 1.

Thus, by (5.5) and (5.7)2,
A-(divLo) = 0 for r>m + 2,

and, since Grade i// = m, (5.6)\ yields
Drfi — 0 for r > m + 2.

Moreover, since m > 2, it follows that 2m > m + 2, and D2mfi = 0, which contradicts
(5.7),. ■
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Lemma 6. The restrictions (3.4) are satisfied and Grade? = Grade| = 1.
Proof. In view of Lemma 5, (5.6) reduce to (3.4). Since Grade ij/ = 1, (3.4)2 yields

Grade< 1. But by (3.1), cannot be identically zero; hence Gradef = 1. Since
Graden = 0, this and (3.2) imply that Grade? = 1. ■

Lemmas 5 and 6 yield all of the assertions in (i) and (ii). To verify (iii), note that,
if dcn(c) = 0 at a particular c, then (3.2) and (3.4)2 would render \j/{c, g) independent
of g at that c, which would violate (3.1)3.

Finally, assertion (iv) is a direct consequence of (5.2).
This completes the proof of the Compatibility Theorem.

IV. Quasi-linear theory.
6. Consequences of the second law. The results of the Compatibility Theorem take

a particularly simple form when the constitutive equations are quasi linear in the
sense of the hypothesis:

For each c, fi(c, g, G), h(c, g, G, H), and f(c, g) are affine
(QJ-v

functions of their remaining arguments.

Compatibility Theorem for Quasi-Linear Response. Assume that the constitu-
tive equations are compatible with thermodynamics, and that assumptions (FH) and
(QL) are satisfied. Then the constitutive equations have the specific form:

V = Vo(c) + ■ Ag,
fi = Vo(c)-A-G,
£ — Ag,
h = - K(c)V//,

where A and K(c) (for each c) are second-order tensors with

A symmetric, A > 0, A ̂  0, K(c) > 0. (6.2)

The proof of this theorem is greatly facilitated by

Lemma 7. Let U and V be vector spaces, let F, G: U —* V be linear transformations
with G surjective and such that

Gu Fu> 0 (6.3)
for all u&U. Then there is a linear transformation K: V —► V with K > 0 such that

F = KG. (6.4)

Proof. Our first step is to show that

Gu = 0 implies Fu = 0. (6.5)

Assume Gu — 0. Then (6.3) implies that <p(w) = Gw ■ Fw has a minimum at w = u\
thus, since G and F are linear, if we expand <p{w) with w = u + z we find that

Gz ■ Fu - 0 for every z e U. (6.6)

Since G is suijective, this yields Fu - 0. Thus (6.5) is satisfied.
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Next, in view of the surjectivity of G, for each v € V there is a (not necessarily
unique) u(v) e U such that Gu(v) = v. We define K: V —► V by Kv = Fu(v).
Choose p € U and let v = Gp. Then KGp = Fu{v) and Gu(v) = v = Gp. Since
F and G are linear, (6.5) implies that Fu(v) - Fp. Hence KGp = Fp and (6.4) is
valid.

We have only to establish the linearity and positivity of K. Using the linearity of
G and the definition of u, it is not difficult to verify that the composition G o u is
linear; by virtue of (6.5), this implies that K = F o u is linear.

Finally, (6.3), (6.4), and the surjectivity of G imply that K > 0. ■
Proof (Theorem). By hypothesis, |(c, g) is an affine function of g. We may there-

fore use (3.1) and (3.4)2 to conclude that

V{c,g) = Vo{c) + ±g- A(c)g (6.7)

with A(c) symmetric, A(c) > 0, A(c) ^ 0. Thus (3.4)2 implies that

{(c,g) = A(c)g,
while (3.4)! yields

fi(c, g, G) = y/'0(c) - ig • A'(c)g - A(c) • G;

since fi(c, g, G) is affine in (g, G), A' = 0 and

fi(c, g, G) = ^o(c) - A G.
We have established (6.1)i—(6.1)3 and that part of (6.2) concerning A\ to complete

the proof we have only to verify the results concerning the mass flux.
Let to = (g, G, H), u = V/i, and for convenience suppress the argument c. Then,

in view of (3.5),
h(a>) • u(co) < 0, (6.8)

where h and u are mappings of W = R3 x Si x S3 into R3, and (6.8) holds for all
(oeW.

Our next step will be to show that
u is surjective. (6.9)

By (6.1)2,
u(») = Vo'g - AH,

where AH is the vector with components

(AH)* = AuHljk.
To verify (6.9) it therefore suffices to show that given any vector v 6 R3, there is an
H £ S3 such that (in components)

AijHjjk = vk. (6.10)

Since A is symmetric and A / 0, we may assume, without loss in generality, that A
is diagonal with Au ^0. Then H with all components zero except

H\\k = = Hku = vk/A\\ (k = 1,2,3)
is a solution of (6.10).
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Note that, since u is linear and surjective, (6.8) can hold for all to only if h(0) = 0;
hence h is also linear.

We have only to establish the relation (6.1)4 with K = K(c) > 0; but this is an
immediate consequence of (6.8), (6.9), and Lemma 7 with G = u, F = -h, U — W,
and V = R3. ■

For an isotropic material (6.1) simplify considerably. Indeed, there are scalars a
and k(c) such that

A = at, K(c) = k(c)l,
a > 0, k(c) > 0,

with 1 the identity tensor, and (6.1) reduces to

V = Vo (c) + ja\g\2,
H=Vo (c)-aAc,
£ = ag,
h = - k(c)V/i,

with A the Laplacian. We call a the capillarity constant, k(c) the diffusivity.
7. The Cahn-Hilliard equation. Boundary-value problems. The general anisotropic

constitutive equations (6.1), when combined with balance of mass (1.3) 1 reduce to a
single partial differential equation for the concentration:

c = div{K(c)V[^(c) - A • Wc]} + q. (7.1)

For an isotropic material with constant dilfusivity this equation has the particularly
simple form:

c = kA[y/Q{c) - aAc] +q, (7.2)

which is the Cahn-Hilliard equation.
Consider now the more general differential equation (7.1), supplemented by the

constitutive equations:
W = y/0(c) + \Vc ■ AVc,
^AVC' (7.3)
ii = y^{c) - A • Wc,
h = -K {c)V/i.

We shall consider the boundary conditions (1.5) and (1.6), but with c as capillarity
potential and £ as capillarity vector:

(i) isolated boundary:
<jf • n = 0 and h • n = 0 on (7.4)

(ii) uniform boundary:

c = Cb and n - jub on dCl, (7.5)
with cb and jub constant.
We define a Gibbs function for the uniform boundary through

G(c) = <//0(c) - nbc; (7.6)
then, as a direct consequence of (1.7), (1.8), and (7.3) 1, we have the
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Growth Theorem for Quasi-Linear Response. Let c be a solution of the differ-
ential equation (7.1) with q = 0. Then:

(i) for an isolated boundary

d_
dt

(7.7)
[ c = 0,

JQ

± J MO+
(ii) for a uniform boundary

^- [ {G{c) + • AVc} < 0. (7.8)
dt Jn

Remark. The uniform boundary defined by (7.5) is in equilibrium if

to = Vo(Cb)-, (7-9)

this condition allows us to rewrite (7.5) as

c = cb and A ■ VVc = 0 on dQ. (7.10)

For an isotropic material (cf. (6.11)) the condition for an isolated boundary reduces
to

dc/dn = 0 and d(Ac)/dn = 0 on dQ, (7.11)

where d/dn denotes the normal derivative on dQ. On the other hand, for a uniform
boundary isotropy yields the condition

c = cb and Wo(c) ~ a^c = to o° dQ., (7.12)

or equivalently, if the boundary is in equilibrium,

c = C[, and Ac = 0 onSil. (7.13)

Appropriate initial/boundary-value problems11 consist of the partial differential
equation (7.1) on Q x (0,oo), the boundary condition (7.4) or (7.5) on dQ x (0,oo),
and the initial condition

c(x,0) = C(x) on Q, (7.14)

where C(x) is the prescribed initial concentration.
Remark. More generally one might consider as boundary conditions the prescrip-

tion of either // or h ■ n and either c or £ • n at each point of <9fl.
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"For the isotropic problem (7.2), (7.11), and (7.14), von Wahl [19] proves existence under reasonable
growth conditions on i//q, while Elliott and Songmu [20] establish existence and uniqueness in one space-
dimension for (</o> the usual double-well potential. For related results and discussion concerning this
problem, cf. Novick-Cohen and Segel [22], Novick-Cohen [17], Nicolaenko and Scheurer [16], Songmu
[23], and Elliott and French [24], To my knowledge there are no results for a uniform boundary.
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